JP2609107B2 - Intermetallic compound particle dispersion strengthened alloy and method for producing the same - Google Patents

Intermetallic compound particle dispersion strengthened alloy and method for producing the same

Info

Publication number
JP2609107B2
JP2609107B2 JP62128622A JP12862287A JP2609107B2 JP 2609107 B2 JP2609107 B2 JP 2609107B2 JP 62128622 A JP62128622 A JP 62128622A JP 12862287 A JP12862287 A JP 12862287A JP 2609107 B2 JP2609107 B2 JP 2609107B2
Authority
JP
Japan
Prior art keywords
alloy
intermetallic compound
particle dispersion
matrix
dispersion strengthened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62128622A
Other languages
Japanese (ja)
Other versions
JPS63293138A (en
Inventor
隆雄 三好
博幸 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryobi Ltd
Original Assignee
Ryobi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryobi Ltd filed Critical Ryobi Ltd
Priority to JP62128622A priority Critical patent/JP2609107B2/en
Publication of JPS63293138A publication Critical patent/JPS63293138A/en
Application granted granted Critical
Publication of JP2609107B2 publication Critical patent/JP2609107B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属間化合物粒子分散強化型合金及びその製
造方法に関する。
The present invention relates to an intermetallic compound particle dispersion strengthened alloy and a method for producing the same.

〔従来の技術〕[Conventional technology]

AlMn系金属間化合物粉末は高硬度の粉末であり、同系
のAl−Mn−Mg系マトリックスとは濡れ性がよく、しかも
安定性に優れている。尚、前記金属間化合物粉末は、Al
−Si系合金等の従来のアルミ合金溶湯中へ直接添加する
と短時間で溶解してしまうため従来、金属粒子及び金属
間化合物粒子分散強化型合金は焼結法によって製造して
いる。
The AlMn-based intermetallic compound powder is a powder of high hardness, has good wettability with the Al-Mn-Mg-based matrix of the same type, and has excellent stability. Incidentally, the intermetallic compound powder, Al
When directly added to a conventional aluminum alloy melt such as a Si-based alloy or the like, it melts in a short time, and thus, conventionally, the metal particle and the intermetallic compound particle dispersion strengthened alloy are manufactured by a sintering method.

従来の焼結法は、微細な母合金粉末に、金属粉末又は
金属間化合物粉末を添加して機械的に撹拌混合を行い、
これをプレス成形し、加熱焼結して金属粒子又は金属間
化合物粒子分散強化型合金を製造するもので、加熱焼結
したものを押出機、圧延機により目的とする製品を製造
する方法である。しかしながら従来の焼結法では金属粉
末又は金属間化合物粉末と母合金粉末を機械的に撹拌混
合するのであるがマトリックスである母合金粉末に金属
粉末又は金属間化合物粉末を均一に分散混合することは
粒子間の凝集、比重差等の為に困難であった。
In the conventional sintering method, a metal powder or an intermetallic compound powder is added to a fine mother alloy powder and mechanically stirred and mixed.
This is press-formed and heat-sintered to produce a metal particle or intermetallic compound particle dispersion-strengthened alloy, which is a method of manufacturing a target product by heat-sintering an extruder or a rolling mill. . However, in the conventional sintering method, the metal powder or the intermetallic compound powder and the master alloy powder are mechanically stirred and mixed.However, it is not possible to uniformly disperse and mix the metal powder or the intermetallic compound powder in the matrix mother alloy powder. It was difficult due to agglomeration and specific gravity difference between particles.

又、プレス成形、加熱焼結に際して参加が伴なう為
に、加熱焼結する過程で酸化防止法及び装置が必要であ
り、それ故に寸法精度の高い製品、又強度的にも制約が
あり経費の点でもかなりの問題を有している為、安価に
粒子分散型合金を大量生産することは困難であるなどの
問題点がある。このため容易な方法により母合金中に金
属間化合物粒子を十分に均一分散させた機械的特性、特
に耐摩耗性あるいは耐食性に優れた金属間化合物粒子分
散強化型合金が望まれていた。尚、耐摩耗性ダイカスト
用アルミニウム合金としては一般に過共晶Al−Si系合金
が知られており、390合金がASTMに規格化されている。
In addition, because of the participation in press molding and heat sintering, an antioxidant method and equipment are required in the process of heat sintering, and therefore products with high dimensional accuracy and limited strength are also expensive. In view of this, there is a considerable problem in that it is difficult to mass-produce a particle-dispersed alloy at low cost. For this reason, there has been a demand for an intermetallic compound particle dispersion strengthened alloy which is excellent in mechanical properties, particularly abrasion resistance or corrosion resistance, in which intermetallic compound particles are sufficiently and uniformly dispersed in a mother alloy by an easy method. A hypereutectic Al-Si alloy is generally known as a wear-resistant aluminum alloy for die casting, and 390 alloy is standardized to ASTM.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は、上記問題点を解消しようとしたもので、従
来、金属間化合物粉末を母合金溶湯中に添加すると溶解
する為に直接溶湯中に添加することは不可能とされてい
たものを、ダイカストマシンを使用することによって、
直接溶湯中に添加できて短時間の機械的撹拌により溶解
させずに、金属間化合物粒子を均一にマトリックスに分
散させることができ、このことによって延性を減じるこ
となく優れた機械的特性を有し、更にマトリックスに耐
蝕性ダイカスト用アルミニウム合金を用いることによ
り、優れた耐蝕性をも有する金属間化合物粒子分散強化
型合金と、その製造方法を提供しようとするのが、その
目的である。
The present invention has been made to solve the above problems, and conventionally, it has been considered impossible to directly add the intermetallic compound powder to the melt in order to dissolve it when added to the master alloy melt, By using a die casting machine,
It can be added directly into the molten metal and disperse the intermetallic compound particles uniformly in the matrix without dissolving by short-time mechanical stirring, thereby having excellent mechanical properties without reducing ductility. It is another object of the present invention to provide an intermetallic compound particle dispersion strengthened alloy having excellent corrosion resistance by using a corrosion-resistant aluminum alloy for die-casting as a matrix, and a method for producing the same.

〔問題点を解決するための手段〕[Means for solving the problem]

即ち本発明は、Al−Mn−Mg系合金をマトリックスと
し、このマトリックスにAlMn、Al3Mn、Al4Mn、Al6Mnの
うち1種類以上の金属間化合物粉末を分散させ、又上記
Al−Mn−Mg系合金の溶湯中へ、上記金属間化合物粉末を
直接添加し、撹拌混合した後、ダイカスト成形すること
により当該粉末を均一にマトリックスに分散させるよう
にして、上記問題点を解決したのである。
The present invention provides a AlMn-Mg-based alloy as a matrix, AlMn in the matrix, Al 3 Mn, Al 4 Mn , dispersing one or more intermetallic compound powder of Al 6 Mn, also the
The above-mentioned problem is solved by directly adding the above-mentioned intermetallic compound powder into a molten metal of an Al-Mn-Mg alloy, stirring and mixing, and then dispersing the powder uniformly in a matrix by die casting. It was done.

〔発明の具体的構成〕[Specific configuration of the invention]

以下に本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.

本発明に用いられるAl−Mn−Mg系合金はマトリックス
となるものであって、具体的にはAl−0.5〜4.0wt%Mn−
4.0〜8.0wt%Mg合金である。
The Al-Mn-Mg-based alloy used in the present invention is a matrix, and specifically, Al-0.5 to 4.0 wt% Mn-
4.0 to 8.0 wt% Mg alloy.

この理由は、低MnのAl−Mn−Mg合金が優れた機械的性
質と耐蝕性を持ち、かつ価格的にもマトリックス材とし
て好適だからである。またMnの含有率が0.5wt%以下で
は耐蝕性が不十分であり4.0wt%以上だと機械的性質が
劣下する。Mgの含有率が4.0wt%以下では十分な強度が
得られず、8wt%以上だとMgの偏析が激しくなり機械的
性質が劣下する。
The reason for this is that a low-Mn Al-Mn-Mg alloy has excellent mechanical properties and corrosion resistance and is suitable as a matrix material in terms of cost. If the Mn content is 0.5 wt% or less, the corrosion resistance is insufficient, and if it is 4.0 wt% or more, the mechanical properties deteriorate. If the Mg content is 4.0 wt% or less, sufficient strength cannot be obtained, and if it is 8 wt% or more, Mg segregation becomes severe and mechanical properties deteriorate.

本発明において、前記マトリックスに混入分散させる
粒子(以下分散粒子という)はAlMn、Al3Mn、Al4Mn、Al
6Mnのうちより選ばれた1種以上の金属間化合物粉末で
あることが好ましい。
In the present invention, the particles to be mixed and dispersed in the matrix (hereinafter referred to as dispersed particles) are AlMn, Al 3 Mn, Al 4 Mn, Al
It is preferably at least one intermetallic compound powder selected from 6 Mn.

この理由は前記Al−Mn−Mg系のマトリックス材とは同
系であるため第2図のAl−Mn平衡状態に示すように、濡
れ性がよく、しかも安定性に優れているからである。
The reason for this is that, as shown in the Al-Mn equilibrium state in FIG. 2, the wettability is good and the stability is excellent, since it is the same as the Al-Mn-Mg matrix material.

更に表−1にAl−Mn系金属間化合物の硬度(ビッカー
ス硬さ:Hv)を示すが、いずれも500(Hv)以上の硬さが
あるので、これらの高硬度粒子を母合金溶湯中に添加す
ることによって、いずれも優れた耐摩耗性を有する合金
を得ることができる。
Further, Table 1 shows the hardness (Vickers hardness: Hv) of the Al-Mn-based intermetallic compound. Since each of them has a hardness of 500 (Hv) or more, these high-hardness particles were added to the mother alloy melt. By adding the same, an alloy having excellent wear resistance can be obtained.

前記分散粒子の添加量は3〜30wt%であることが好ま
しく、より好ましくは5〜20wt%で更により好ましくは
10〜20wt%である。その理由は、前記添加量が3%未満
では耐摩耗性の向上効果がなく、30wt%超では撹拌段階
で急激に母合金溶湯が凝固するために本発明の製造方法
により製造することは困難であるからである。
The added amount of the dispersed particles is preferably 3 to 30% by weight, more preferably 5 to 20% by weight, and still more preferably.
It is 10 to 20% by weight. The reason is that if the addition amount is less than 3%, there is no effect of improving the wear resistance, and if it exceeds 30% by weight, the molten mother alloy rapidly solidifies in the stirring stage, so that it is difficult to produce by the production method of the present invention. Because there is.

又、分散粒子の粒子径は100μ以下が好ましく、より
好ましくは50μ以下がよい。この理由は前記粒子径が10
0μ超では前記マトリックスへの分散性が悪く、機械的
特性を劣下させるからである。
The particle size of the dispersed particles is preferably 100 μm or less, more preferably 50 μm or less. The reason is that the particle diameter is 10
If it exceeds 0 μm, the dispersibility in the matrix is poor, and the mechanical properties deteriorate.

即ち、前記マトリックスへの前記分散粒子の分散が均
一であることにより延性を失わずに、耐摩耗性をはじめ
とする機械的特性に優れた金属粒子及び金属間化合物粒
子分散強化型合金となる。
That is, since the dispersion of the dispersed particles in the matrix is uniform, the metal particles and the intermetallic compound particle dispersion strengthened alloy are excellent in mechanical properties such as abrasion resistance without losing ductility.

本発明に係る金属間化合物粒子分散強化型合金は基本
的には以上のように構成されるものであり、以下にその
製造方法を添付図面を参照しつつ詳細に説明する。
The intermetallic compound particle dispersion strengthened alloy according to the present invention is basically configured as described above, and the manufacturing method thereof will be described below in detail with reference to the accompanying drawings.

第1図は本発明に係る金属間化合物粒子分散強化型合
金の製造方法に用いられる撹拌混合装置の一構成例の一
部断面図である。
FIG. 1 is a partial cross-sectional view of one configuration example of a stirring and mixing apparatus used in the method for producing an intermetallic compound particle dispersion strengthened alloy according to the present invention.

まず、マトリックスとなるAl−Mn−Mg系合金(母合
金)溶湯を撹拌混合装置の撹拌混合槽2内に所定量注湯
した後、該溶湯に前記分散粒子を所定量投入添加し撹拌
羽根3をモーター4で回転させ短時間撹拌混合し、分散
粒子混合合金溶湯1を得ることができる。
First, a predetermined amount of molten Al-Mn-Mg alloy (master alloy) serving as a matrix is poured into a stirring and mixing tank 2 of a stirring and mixing device, and then a predetermined amount of the dispersed particles is added to the molten metal and added to the stirring blade 3. Is rotated by a motor 4 and stirred and mixed for a short time to obtain a dispersed particle mixed alloy melt 1.

Al−Mn−Mg系合金溶湯の温度は第2図に示すように、
650〜850℃が好ましく、より好ましくは730〜800℃がよ
く、特に750〜780℃が好ましい。この理由は、650℃未
満では前記Al−Mn−Mg合金溶湯がただちに凝固してしま
い、850℃超では鋳造時金型への焼付き等の鋳造上の問
題が生じるためである。
As shown in FIG. 2, the temperature of the molten Al-Mn-Mg alloy
The temperature is preferably 650 to 850 ° C, more preferably 730 to 800 ° C, and particularly preferably 750 to 780 ° C. The reason for this is that if the temperature is lower than 650 ° C., the molten Al—Mn—Mg alloy is immediately solidified, and if the temperature exceeds 850 ° C., casting problems such as seizure to a mold during casting occur.

撹拌混合に要する時間は前記分散粒子の凝集が起こら
ず、後述するダイカストマシンによって前記分散粒子が
前記マトリックスに均一に分散させることができる程度
に撹拌混合できる時間であればよく、5分以下が好まし
い。より好ましくは3〜60秒がよく、特に好ましくは5
〜10秒である。この理由は5分超では前記分散粒子が溶
解してしまい、前記マトリックスの母合金と一体となっ
てしまい、耐摩耗性の向上が見られないからである。
The time required for stirring and mixing may be such that the aggregation of the dispersed particles does not occur and the mixing and stirring can be performed to such an extent that the dispersed particles can be uniformly dispersed in the matrix by a die casting machine described below, and is preferably 5 minutes or less. . More preferably, it is 3 to 60 seconds, particularly preferably 5 to 60 seconds.
~ 10 seconds. The reason for this is that if it exceeds 5 minutes, the dispersed particles are dissolved and become integrated with the matrix mother alloy, and no improvement in wear resistance is observed.

撹拌混合後、前記分散粒子混合溶湯1はダイカストマ
シンに給湯され所望の形状に成形される。この時、該ダ
イカストマシン内にても前記分散粒子は前記マトリック
ス内に分散し、さらに均一化される。
After the stirring and mixing, the melt 1 containing the dispersed particles is supplied to a die casting machine and formed into a desired shape. At this time, the dispersed particles are dispersed in the matrix even in the die casting machine, and are further homogenized.

このようにして前記分散粒子が均一に前記マトリック
スに分散した耐摩耗性及び延性などの機械的特性に優
れ、更に耐蝕性に優れた金属間化合物粒子分散強化型合
金は製造される。従って従来の焼結粉末冶金法のように
コスト高な表面処理方法や酸化防止法及び装置を必要と
せず、複雑な形状の製品を容易にかつ安価に製造でき
る。
In this way, an intermetallic compound particle dispersion strengthened alloy having excellent mechanical properties such as abrasion resistance and ductility in which the dispersed particles are uniformly dispersed in the matrix, and further having excellent corrosion resistance is produced. Therefore, unlike the conventional sintered powder metallurgy method, a costly surface treatment method, an antioxidant method and an apparatus are not required, and a product having a complicated shape can be easily and inexpensively manufactured.

〔実施例〕〔Example〕

以下に本発明を実施例に基づき具体的に説明する。 Hereinafter, the present invention will be specifically described based on examples.

〔実施例1〕 マトリックス(母合金)であるAl−2wt%Mn−5wt%Mg
溶湯中に平均粒子径が約40μのAlMn、Al3Mn、Al4Mn、Al
6Mn金属間化合物粉末を10wt%添加し、第1図に示す撹
拌混合装置により撹拌混合後、金型にダイカストマシン
で注湯し、本発明の金属間化合物粒子分散強化型合金の
試験片を得た。添加前のAlMn金属間化合物粉末の顕微鏡
写真を第3図aに、この第3図aに示すAlMn金属間化合
物を添加した時の金型の先端部及び湯口部で得られた試
験片の拡大倍率50倍の顕微鏡写真を夫々第3図bおよび
第3図cに示す。更に、分散粒子としてAl3Mn、Al4Mn、
Al6Mn金属間化合物粉末を用いた場合の金型の湯口部で
得られた試験片の拡大倍率50倍の顕微鏡写真を夫々第3
図d、第3図e、第3図fに示す。
[Example 1] Al-2wt% Mn-5wt% Mg which is a matrix (master alloy)
AlMn, Al 3 Mn, Al 4 Mn, Al 4
10 wt% of 6 Mn intermetallic compound powder was added, and the mixture was stirred and mixed by a stirring and mixing device shown in FIG. Obtained. FIG. 3a shows a micrograph of the AlMn intermetallic compound powder before addition, and FIG. 3a shows an enlarged view of a test piece obtained at the tip of the mold and at the gate when the AlMn intermetallic compound was added. Micrographs at 50 × magnification are shown in FIGS. 3b and 3c, respectively. Further, as dispersed particles Al 3 Mn, Al 4 Mn,
The micrographs of the test pieces obtained at the gate of the mold when the Al 6 Mn intermetallic compound powder was used were taken at a magnification of 50 times, and
This is shown in FIGS. 3d, 3e and 3f.

第3図b〜第3図fから明らかなようにAlMn、Al3M
n、Al4Mn、Al6Mn金属間化合物粒子が母合金に均一に分
散していることがわかる。
As apparent from FIGS. 3b to 3f, AlMn, Al 3 M
It can be seen that n, Al 4 Mn, and Al 6 Mn intermetallic compound particles are uniformly dispersed in the master alloy.

また、第3図aと第3図bおよび第3図cを比較して
AlMn金属間化合物粉末は母合金溶湯中で少し溶解するけ
れども、均一に完全に分散したまま残存していることが
わかる。
Also, comparing FIG. 3a with FIG. 3b and FIG.
It can be seen that although the AlMn intermetallic compound powder is slightly dissolved in the molten master alloy, it remains uniformly and completely dispersed.

即ち、AlMn、Al3Mn、Al4Mn、Al6Mn金属間化合物粉末
はいずれも表−1に示すように極めて高硬度であり、Al
−Mn−Mg合金マトリックスとの結合力、又濡れ性が非常
に優れていてしかも安定性があるため混合が容易であ
り、又均一な分散が可能であることがわかる。
That is, AlMn, Al 3 Mn, Al 4 Mn, and Al 6 Mn intermetallic compound powders all have extremely high hardness as shown in Table 1, and Al
It can be seen that the bonding force with the -Mn-Mg alloy matrix and the wettability are very excellent and stable, so that mixing is easy and uniform dispersion is possible.

この結果、母合金であるAl−Mn−Mg合金の優れた機械
的性質を失うことなく、優れた耐摩耗性を得ることがで
きることがわかる。
As a result, it can be understood that excellent wear resistance can be obtained without losing excellent mechanical properties of the Al-Mn-Mg alloy as the master alloy.

〔実施例2〕 上記の金属間化合物粉末を母合金溶湯中に投入添加し
て撹拌混合後、ダイカストマシンに給湯して本発明の金
属間化合物粒子分散強化型合金の引張試験用試験片及び
磨耗試験片を鋳造した。
[Example 2] The above-mentioned intermetallic compound powder was added to a molten master alloy, mixed with stirring, and then fed to a die-casting machine to provide a test piece for a tensile test and abrasion of the intermetallic compound particle dispersion strengthened alloy of the present invention. Test specimens were cast.

こゝで、本発明例では母合金として、Al−2wt%Mn−5
wt%Mg合金を用い、又分散粒子としてAlMn金属間化合物
粉末を用い、その含有量は3、5、10、15、30wt%とし
た。
Here, in the example of the present invention, Al-2wt% Mn-5
A wt% Mg alloy was used, and AlMn intermetallic compound powder was used as dispersed particles, and the content was 3, 5, 10, 15, and 30 wt%.

比較例としては分散粒子を含有しない母合金のみのAl
−2wt%Mn−5wt%Mg合金とその母合金溶湯に分散粒子と
してAlMn金属間化合物粉末を2wt%含有した金属間化合
物粒子分散強化型合金と390合金と10wt%Si3N4/ADC10を
用い、ダイカスト法により引張用試験片及び磨耗試験片
を鋳造した。
As a comparative example, only the master alloy Al containing no dispersed particles was used.
With -2wt% Mn-5wt% Mg alloy and its mother molten alloy intermetallic particles dispersion strengthened alloys the AlMn intermetallic compound powder containing 2 wt% as the dispersed particles and 390 alloy and 10wt% Si 3 N 4 / ADC10 A tensile test piece and a wear test piece were cast by a die casting method.

尚、上記本発明および比較例に用いられているAl系母
合金の化合成分を表−2に示す。
Table 2 shows the chemical composition of the Al-based master alloy used in the present invention and the comparative examples.

得られたこれらの試験片を以下に示す夫々の試験を行
った。
Each of the obtained test pieces was subjected to the following tests.

尚、摩擦試験は大越式摩耗試験装置により相手材とし
てFC25の標準回転円板材料を用いて無潤滑条件下で最終
荷重2.1kg、滑り距離100mを一定とし、滑り速度を0.9
4、1.96、2.86、4.36m/sの4段に変化させて行い、摩耗
痕幅より比摩耗量を測定した。
The friction test was carried out using an Ogoshi type abrasion tester using FC25 standard rotating disk material as the mating material under a non-lubricated condition with a final load of 2.1 kg, a constant sliding distance of 100 m, and a sliding speed of 0.9.
The measurement was carried out by changing to four steps of 4, 1.96, 2.86, and 4.36 m / s, and the specific wear amount was measured from the wear scar width.

この試験結果を表−3、表−4、表−5、表−6及び
第4図、第5図、第6図、第7図に示す。
The test results are shown in Table 3, Table 4, Table 5, Table 6, and FIG. 4, FIG. 5, FIG. 6, and FIG.

第4図は表−3から比較例と本発明例であるマトリッ
クスとしてAl−2wt%Mn−5wt%Mg合金を用いてAlMn金属
間化合物粒子分散強化型合金で分散粒子の含有率が3、
5、10、15、30wt%の場合について横軸を滑り速度、縦
軸を比摩耗量としてプロットしたグラフである。
FIG. 4 shows that the content of the dispersed particles in the AlMn intermetallic compound particle dispersion strengthened alloy using the Al-2wt% Mn-5wt% Mg alloy as the matrix which is the comparative example and the example of the present invention from Table-3 is 3,
It is the graph which plotted the horizontal axis | shaft as sliding speed and the vertical axis | shaft as specific wear amount about the case of 5, 10, 15, and 30 wt%.

表−3及び第4図により10、15、30wt%AlMn金属間化
合物粒子分散強化型合金は、ほぼ同じ耐摩耗性を有し、
比較例である母合金のみのAl−2wt%Mn−5wt%Mg合金に
比べ優れた耐摩耗性を示すことがわかる。又、3.5wt%A
lMn金属間化合物粒子分散強化型合金も比較例である前
記Al−2wt%Mn−5wt%Mg合金より高い耐摩耗性を示すこ
とがわかる。尚、2wt%AlMn/Al−2wt%Mn−5wt%Mgにつ
いても比較例である前記Al−2wt%Mn−5wt%Mg合金より
も高い耐摩耗性を示しているが著しい耐摩耗性向上はな
いことがわかる。
According to Table 3 and FIG. 4, the 10, 15, and 30 wt% AlMn intermetallic compound particle dispersion strengthened alloys have almost the same wear resistance,
It can be seen that the abrasion resistance is superior to that of the Al-2wt% Mn-5wt% Mg alloy containing only the master alloy as a comparative example. 3.5wt% A
It can be seen that the 1Mn intermetallic compound particle dispersion strengthened alloy also exhibits higher wear resistance than the Al-2wt% Mn-5wt% Mg alloy, which is a comparative example. In addition, 2 wt% AlMn / Al-2 wt% Mn-5 wt% Mg also shows higher wear resistance than the Al-2 wt% Mn-5 wt% Mg alloy as a comparative example, but there is no remarkable improvement in wear resistance. You can see that.

又、30wt%超の分散粒子を添加すると撹拌段階で急激
に母合金溶湯が凝固するために本発明の製造方法で製造
することは困難である。
Further, if more than 30 wt% of dispersed particles are added, the molten master alloy rapidly solidifies in the stirring stage, so that it is difficult to produce by the production method of the present invention.

第5図は表−4の本発明例であるAl3Mn/Al−2wt%Mn
−5wt%Mgについて分散粒子の含有率2、3、5、10、1
5、30wt%の場合の摩耗試験結果を横軸を滑り速度、縦
軸を比摩耗量としてプロットしたグラフである。
FIG. 5 shows Al 3 Mn / Al-2 wt% Mn as an example of the present invention in Table-4.
-5 wt% Mg content of dispersed particles 2, 3, 5, 10, 1
It is the graph which plotted the wear test result in the case of 5, 30 wt% as a sliding speed on the horizontal axis and a specific wear amount on the vertical axis.

表−4及び第5図より2、3、5、10、15、30wt%Al
3Mn金属間化合物粒子分散強化型合金は表−3及び第4
図に示した母合金のみのAl−2wt%Mn−5wt%Mg合金より
高い耐摩耗性を示すことがわかる。尚、2wt%の場合に
は、3wt%の場合と同程度の高い耐摩耗性を示すが、比
摩耗量についてはより大きい。
From Table 4 and Fig. 5, 2, 3, 5, 10, 15, 30 wt% Al
Table 3 and No. 4 show the 3 Mn intermetallic compound particle dispersion strengthened alloys.
It can be seen that the abrasion resistance is higher than that of the Al-2wt% Mn-5wt% Mg alloy containing only the master alloy shown in the figure. In the case of 2 wt%, the same high abrasion resistance as in the case of 3 wt% is exhibited, but the specific wear amount is larger.

第6図は、表−5の本発明例であるAl4Mn/Al−2wt%M
n−5wt%Mgについて分散粒子の含有率2、3、5、10、
15、30wt%の場合の摩耗試験結果を横軸を滑り速度、縦
軸を比摩耗量としてプロットしたグラフである。
FIG. 6 shows Al 4 Mn / Al-2 wt% M which is an example of the present invention in Table-5.
The content of the dispersed particles for n-5 wt% Mg is 2, 3, 5, 10,
It is the graph which plotted the abrasion test result in the case of 15, 30 wt% as a sliding speed on the horizontal axis and a specific wear amount on the vertical axis.

表−5及び第6図より2、3、5、10、15、30wt%Al
4Mn金属間化合物粒子分散強化型合金は表−3及び第4
図に示した母合金のみのAl−2wt%Mn−5wt%Mg合金より
高い耐摩耗性を示すことがわかる。第7図は、表−6の
本発明例であるAl6Mn/Al−2wt%Mn−5wt%Mgについて分
散粒子の含有率2、3、5、10、15、30wt%の場合の摩
耗試験結果を横軸を滑り速度、縦軸を比摩耗量としてプ
ロットしたグラフである。
From Table 5 and FIG. 6, 2, 3, 5, 10, 15, 30 wt% Al
Table 3 and Table 4 show the 4 Mn intermetallic compound particle dispersion strengthened alloys.
It can be seen that the abrasion resistance is higher than that of the Al-2wt% Mn-5wt% Mg alloy containing only the master alloy shown in the figure. FIG. 7 is a wear test in the case of Al 6 Mn / Al-2 wt% Mn-5 wt% Mg, which is an example of the present invention in Table 6, when the content of dispersed particles is 2, 3, 5, 10, 15, 30 wt%. It is the graph which plotted the result as a sliding speed on the horizontal axis and a specific wear amount on the vertical axis.

表−6及び第7図より、2、3、5、10、15、30wt%
Al6Mn金属間化合物粒子分散強化型合金は表−3及び第
4図に示した母合金のみのAl−2wt%Mn−5wt%Mg合金よ
り高い耐摩耗性を示すことがわかる。
From Table 6 and Fig. 7, 2, 3, 5, 10, 15, 30 wt%
Al 6 Mn intermetallic particles dispersion strengthened alloy it can be seen that the indicated master alloy only Al-2wt% Mn-5wt% Mg high wear resistance than the alloy in Table 3 and Figure 4.

更に、表−7にAlMn、Al3Mn、Al4Mn、Al6Mn金属間化
合物粒子分散強化型合金である本発明例4種と比較例3
種の機械的性質を示す。
Further, Table 7 shows four kinds of the present invention which are AlMn, Al 3 Mn, Al 4 Mn, and Al 6 Mn alloys with dispersion strengthened intermetallic compound particles, and Comparative Example 3
Shows the mechanical properties of the species.

本発明例の延性(伸び)は、いずれも同種のSi3N4
るいはSiC粒子分散強化型合金の伸び又は390合金の伸び
がわずか0.7〜0.8%であるのに対し3.9〜4.3%と極めて
優れていることがわかる。
The ductility (elongation) of each of the examples of the present invention is extremely excellent at 3.9 to 4.3%, while the elongation of the same type of Si 3 N 4 or SiC particle dispersion strengthened alloy or the elongation of the 390 alloy is only 0.7 to 0.8%. You can see that it is.

又、表−8にAlMn、Al3Mn、Al4Mn、Al6Mn金属間化合
物粒子分散強化型合金である本発明例4種と比較例3種
の腐蝕促進試験結果を示す。腐蝕試験は連続塩水噴霧に
よって行ない、腐蝕状態をレィティングナンバー(ASTM
規格)で判定した。
Also shows AlMn, Al 3 Mn, Al 4 Mn, Comparative Example 3 kinds of corrosion promoting test results with the present invention Example 4 species is Al 6 Mn intermetallic particles dispersion strengthened alloys in Table 8. The corrosion test is performed by continuous salt spray, and the corrosion state is rated by a rating number (ASTM
Standard).

表−8に示す結果から塩水噴霧試験の16時間における
レイティングナンバーはADC10、10wt%Si3N4/ADC10、39
0が2.0であるのに対し、本発明合金は何れも9.3以上を
示し、耐蝕性が極めて優れていることがわかる。
Rating number from the results shown in Table 8 in 16 hours of salt spray tests ADC10,10wt% Si 3 N 4 / ADC10,39
While 0 is 2.0, all of the alloys of the present invention show 9.3 or more, indicating that the corrosion resistance is extremely excellent.

〔発明の効果〕 以上説明したように本発明に係る金属間化合物粒子分
散強化型合金によれば、Al−Mn系金属間化合物粉末が母
合金、即ちAl−Mn−Mg系合金マトリックス中に均一に分
散されていることによって延性を減じることなく優れた
機械的特性と耐蝕性を発現させる効果がある。
[Effect of the Invention] As described above, according to the intermetallic compound particle dispersion strengthened alloy according to the present invention, the Al-Mn-based intermetallic compound powder is uniformly dispersed in the master alloy, that is, the Al-Mn-Mg-based alloy matrix. By dispersing it in the metal, there is an effect of developing excellent mechanical properties and corrosion resistance without reducing ductility.

又、本発明の製造方法によれば、上記Al−Mn系金属間
化合物粉末を上記母合金溶湯中に直接添加し、撹拌混合
した後、ダイカスト成形することにより均一にマトリッ
クスに分散させるようにしたので、溶解等の問題が起こ
ることなく短時間の機械的撹拌により均一にマトリック
スに分散できて優れた機械的特性と耐蝕性を有する粒子
分散強化型合金が得られ、更に本発明の製造方法によれ
ば、ダイカスト法を利用するので、従来の焼結、粉末冶
金法のように、コスト高な表面処理法や酸化防止法及び
装置を必要としないので、複雑な形状の製品を容易に、
かつ安価に製造できる効果がある。
Further, according to the production method of the present invention, the Al-Mn-based intermetallic compound powder is added directly to the mother alloy melt, and after stirring and mixing, the mixture is uniformly dispersed in the matrix by die casting. Therefore, a particle dispersion-strengthened alloy having excellent mechanical properties and corrosion resistance can be uniformly dispersed in the matrix by short-time mechanical stirring without causing a problem such as dissolution, and the production method of the present invention is further improved. According to the use of the die casting method, unlike the conventional sintering and powder metallurgy methods, costly surface treatment methods and oxidation prevention methods and equipment are not required, so products with complicated shapes can be easily manufactured.
In addition, there is an effect that it can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る金属間化合物粒子分散強化型合金
の製造方法に用いられる撹拌混合装置の一例を一部断面
して示した側面図、第2図はAl−Mn平衡状態図、第3図
aは添加前のAlMn金属間化合物粉末の顕微鏡写真、第3
図bは金型先端部において得られた本発明に係るAlMn/A
l−2wt%Mn−5wt%Mg金属間化合物粒子分散強化型合金
の顕微鏡写真、第3図c、第3図d、第3図e、第3図
fは夫々湯口部において得られた本発明に係るAlMn/Al
−2wt%Mn−5wt%Mg、Al3Mn/Al−2wt%Mn−5wt%Mg、Al
4Mn/Al−2wt%Mn−5wt%Mg、Al6Mn/Al−2wt%Mn−5wt%
Mg各金属間化合物粒子分散強化型合金の各顕微鏡写真、
第4図、第5図、第6図、第7図は夫々各試験片の相手
材に対する滑り速度と比摩耗量との関係を示す各グラフ
である。
FIG. 1 is a side view partially showing an example of a stirring and mixing apparatus used in the method for producing an intermetallic compound particle dispersion strengthened alloy according to the present invention, FIG. 2 is an Al-Mn equilibrium diagram, FIG. FIG. 3a is a micrograph of AlMn intermetallic compound powder before addition, FIG.
FIG. B shows the AlMn / A according to the invention obtained at the mold tip.
FIGS. 3c, 3d, 3e and 3f are micrographs of the l-2wt% Mn-5wt% Mg intermetallic compound particle dispersion-strengthened alloy, respectively. AlMn / Al according to
−2wt% Mn−5wt% Mg, Al 3 Mn / Al−2wt% Mn−5wt% Mg, Al
4 Mn / Al-2wt% Mn -5wt% Mg, Al 6 Mn / Al-2wt% Mn-5wt%
Each micrograph of Mg each intermetallic compound particle dispersion strengthened alloy,
FIG. 4, FIG. 5, FIG. 6, and FIG. 7 are graphs each showing the relationship between the sliding speed of each test piece with respect to the mating material and the specific wear amount.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Al−0.5〜4.0wt%Mn−4.0〜8.0wt%Mg合金
をマトリックスとし、このマトリックスにAlMn、Al3M
n、Al4Mn及びAl6Mnのうちより選ばれた1種以上の金属
間化合物粉末が添加粉末として分散され、かつ前記添加
粉末の含有量が3〜30wt%の範囲であることを特徴とす
る金属間化合物粒子分散強化型合金。
An Al-0.5 to 4.0 wt% Mn-4.0 to 8.0 wt% Mg alloy is used as a matrix, and AlMn, Al 3 M
n, at least one intermetallic compound powder selected from Al 4 Mn and Al 6 Mn is dispersed as an additive powder, and the content of the additive powder is in a range of 3 to 30 wt%. Intermetallic compound particle dispersion strengthened alloy.
【請求項2】Al−0.5〜4.0wt%Mn−4.0〜8.0wt%Mg合金
の溶湯中にAlMn、Al3Mn、Al4Mn及びAl6Mnのうちより選
ばれた1種以上の金属間化合物粉末を3〜30wt%直接添
加し、撹拌混合した後、ダイカスト成形することにより
上記金属間化合物粉末を均一にマトリックスに分散させ
ることを特徴とする金属間化合物粒子分散強化型合金の
製造方法。
2. The method according to claim 1, wherein at least one metal selected from the group consisting of AlMn, Al 3 Mn, Al 4 Mn and Al 6 Mn is contained in the molten Al-0.5 to 4.0 wt% Mn-4.0 to 8.0 wt% Mg alloy. A method for producing an intermetallic compound particle dispersion-strengthened alloy, wherein 3 to 30% by weight of a compound powder is directly added, the mixture is stirred and mixed, and then the above-mentioned intermetallic compound powder is uniformly dispersed in a matrix by die-casting.
JP62128622A 1987-05-25 1987-05-25 Intermetallic compound particle dispersion strengthened alloy and method for producing the same Expired - Lifetime JP2609107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62128622A JP2609107B2 (en) 1987-05-25 1987-05-25 Intermetallic compound particle dispersion strengthened alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62128622A JP2609107B2 (en) 1987-05-25 1987-05-25 Intermetallic compound particle dispersion strengthened alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JPS63293138A JPS63293138A (en) 1988-11-30
JP2609107B2 true JP2609107B2 (en) 1997-05-14

Family

ID=14989347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62128622A Expired - Lifetime JP2609107B2 (en) 1987-05-25 1987-05-25 Intermetallic compound particle dispersion strengthened alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP2609107B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114985745A (en) * 2022-06-01 2022-09-02 安徽工业大学 Aluminum-manganese intermetallic compound, preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56127759A (en) * 1980-03-07 1981-10-06 Mitsubishi Alum Co Ltd Preparation of aluminum alloy foil for cathode of aluminum electrolytic condenser

Also Published As

Publication number Publication date
JPS63293138A (en) 1988-11-30

Similar Documents

Publication Publication Date Title
CN110129640B (en) 7000 series aluminum alloy wire for additive manufacturing and preparation method thereof
US11273489B2 (en) Aluminum alloy powder formulations with silicon additions for mechanical property improvements
JP4764094B2 (en) Heat-resistant Al-based alloy
JP3548709B2 (en) Method for producing semi-solid billet of Al alloy for transportation equipment
JPH07224304A (en) Production of boron-containing aluminum alloy
JP2609107B2 (en) Intermetallic compound particle dispersion strengthened alloy and method for producing the same
US4906531A (en) Alloys strengthened by dispersion of particles of a metal and an intermetallic compound and a process for producing such alloys
JP4008597B2 (en) Aluminum-based composite material and manufacturing method thereof
Zhao et al. A novel method for improving the microstructure and the properties of Al-Si-Cu alloys prepared using rapid solidification/powder metallurgy
JP2646212B2 (en) Intermetallic compound particle dispersion strengthened alloy and method for producing the same
JP4121733B2 (en) Method for producing graphite-containing aluminum alloy and sliding member
JP2554066B2 (en) Intermetallic compound particle dispersion-reinforced die-cast composite material and method for producing the same
JPH029099B2 (en)
JP4704720B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties
JPH0320453B2 (en)
JPH1150172A (en) Carbide-dispersion strengthened copper alloy material
JPH01246341A (en) Grain dispersion-type alloy and its manufacture
JPH01246340A (en) Grain dispersion-type alloy and its manufacture
CN115927932B (en) High-strength die-casting aluminum alloy and preparation method thereof
JPH01247545A (en) Grain dispersion type alloy and its manufacture
JPS61257450A (en) Heat resistant aluminum alloy
JP2005068469A (en) Magnesium-based composite material and manufacturing method therefor
JP4699787B2 (en) Heat-resistant Al-based alloy with excellent wear resistance and rigidity
JPH10324940A (en) Wear resistant aluminum ally, and production of sliding member using the same
JPH0575817B2 (en)