JPH07310131A - Production of mg-base composite material - Google Patents

Production of mg-base composite material

Info

Publication number
JPH07310131A
JPH07310131A JP14416494A JP14416494A JPH07310131A JP H07310131 A JPH07310131 A JP H07310131A JP 14416494 A JP14416494 A JP 14416494A JP 14416494 A JP14416494 A JP 14416494A JP H07310131 A JPH07310131 A JP H07310131A
Authority
JP
Japan
Prior art keywords
powder
composite material
assistant
base composite
infiltration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14416494A
Other languages
Japanese (ja)
Inventor
Hiromitsu Kaneda
裕光 金田
Takao Cho
隆郎 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP14416494A priority Critical patent/JPH07310131A/en
Publication of JPH07310131A publication Critical patent/JPH07310131A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To obtain an Mg-base composite material without the mechanical properties being deteriorated due to the entrainment of an atmospheric gas at the time of bringing molten matrix Mg into contact with reinforcement powder to infiltrate the melt into the powder by mixing an infiltration assistant in the reinforcement powder. CONSTITUTION:An infiltration assistant (SiO2, etc.) is mixed with reinforcement powder (of SiC, etc., having about 0.1-100mum grain diameter) so that the obtained mixed powder 2 contains 1-99vol.% assistant, and the mixed powder 2 is placed on the bottom of a steel crucible 1. A matrix alloy consisting of the ingot of Mg or Mg alloy is put on the mixed powder 2, and the crucible 1 is arranged in a high-frequency induction furnace 6, surrounded with a chamber 7 contg. an Ar atmosphere and placed in the atmosphere. The ingot is heated into a melt 3a, the melt 3a is infiltrated into the mixed powder 2 and allowed to react with the infiltration assistant to form magnesium oxide, and an Mg-base composite material wherein the reinforcing grains are dispersed is produced. Consequently, the entrainment of the atmospheric gas is prevented, and an Mg-base composite material without the mechanical properties being deteriorated is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はMg又はMg合金をマト
リックスとする金属基複合材料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal matrix composite material having Mg or a Mg alloy as a matrix.

【0002】[0002]

【従来の技術】金属をマトリックスとする複合材料の製
造方法として、代表的なものとして溶湯攪拌法,粉末冶
金法,スクイズキャスト法などがあり、比較的に新しい
方法としてプリメクス法(Primex法 , Lanxide社)があ
る。溶湯攪拌法は溶融した金属を攪拌翼で攪拌しながら
強化材を添加する方法である。また粉末冶金法はマトリ
ックス金属の粉末と強化材粉末とを予め混合し、これを
成形したあと、熱間押出などの加工をおこない複合化さ
せて材料を得る方法である。 またスクイズキャスト法
は強化材のプリフォームを作り、これを型内に設置した
あと溶融金属を注湯加圧して含浸させる方法である。さ
らにプリメクス法は、図3に示すように加熱炉内のルツ
ボa内に強化粒子bからなる粉末を収容し、その粉末の
上部にマトリックスとなる、たとえばAl−Mg合金イ
ンゴットcを配置し、N2 ガス、またはN2 ガスと不活
性ガスの混合ガス雰囲気のもとに加熱し、Alインゴッ
トcを溶融しその溶湯を強化粒子bに無加圧浸透させる
方法がある。
2. Description of the Related Art As a typical method for producing a composite material having a metal matrix, there are a molten metal stirring method, a powder metallurgy method, a squeeze casting method, and the like, and relatively new methods such as the Primex method and the Lanxide method. Company). The molten metal stirring method is a method of adding a reinforcing material while stirring molten metal with a stirring blade. The powder metallurgy method is a method in which a powder of a matrix metal and a powder of a reinforcing material are mixed in advance, which is molded and then subjected to processing such as hot extrusion to obtain a composite material. The squeeze casting method is a method in which a reinforcing material preform is prepared, placed in a mold, and then molten metal is poured and pressurized to impregnate it. Further, in the premex method, as shown in FIG. 3, a crucible a in a heating furnace contains a powder made of reinforcing particles b, and an Al-Mg alloy ingot c serving as a matrix is arranged on the upper portion of the powder. 2 gas, or heated to the original mixed gas atmosphere of N 2 gas and an inert gas, there is a method to suck pressure permeate the molten metal to melt the Al ingot c strengthening particles b.

【0003】[0003]

【発明が解決しようとする課題】前記溶湯攪拌法では、
強化材の添加と、これにともなう機械的攪拌によって、
溶湯中に雰囲気ガスを巻込み、気泡を作り、材料の機械
的特性を劣化させるという欠点がある。また強化材の粒
径が小さい場合、それが凝集しやすく、その凝集体が壊
れにくく、粒子の分散状態が悪いという問題点がある。
また、粉末冶金法は、型材などの製造には適している
が、ニアネット形状の部材の製造は困難であるという欠
点がある。またスクイズキャスト法では、プリフォーム
を用いるため、強化材の形状と体積率の範囲が限定され
てしまうという欠点がある。さらに、前記プリメクス法
では、溶湯にAl−Mg合金を用いた例しか報告されて
いない。また、プリメクス法では比較的高温のプロセス
であるため、Mg又はMg合金のように蒸気圧の高い場
合には適さない。本発明は、前記事情に鑑みてなされた
もので、前記問題点を解消したMg又はMg合金をマト
リックスとする金属基複合材料の製造方法を提供するこ
とを目的とする。
In the above-mentioned molten metal stirring method,
With the addition of reinforcements and the accompanying mechanical agitation,
There is a drawback in that the atmospheric gas is entrained in the molten metal to create bubbles and deteriorate the mechanical properties of the material. Further, when the particle size of the reinforcing material is small, there is a problem in that the particles easily aggregate, the aggregate is hard to break, and the dispersed state of the particles is poor.
Further, although the powder metallurgy method is suitable for manufacturing a mold material and the like, it has a drawback that it is difficult to manufacture a near net member. Further, the squeeze cast method has a drawback that the shape and volume ratio range of the reinforcing material are limited because a preform is used. Further, in the above-mentioned Primex method, only an example in which an Al-Mg alloy is used for the molten metal has been reported. Further, since the primex method is a relatively high temperature process, it is not suitable for high vapor pressure such as Mg or Mg alloy. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing a metal-based composite material using Mg or a Mg alloy as a matrix, which solves the above problems.

【0004】[0004]

【課題を解決するための手段】前記目的に添い、本発明
は強化材粉末とマトリックス金属溶湯を接触させ、この
溶湯を強化材粉末に浸透させる複合材料の製造方法にお
いて、強化材粉末に浸透助材を混合することにより浸透
現象を発現させたMg基複合材料の製造方法とすること
によって前記課題を解消した。
According to the above-mentioned object, the present invention provides a method for producing a composite material in which a reinforcing material powder and a matrix metal melt are brought into contact with each other and the molten metal penetrates into the reinforcing material powder. The above problem was solved by providing a method for producing a Mg-based composite material in which a permeation phenomenon is expressed by mixing the materials.

【0005】[0005]

【実施例】以下、本発明について、図面を参照しながら
詳細に説明する。本発明における金属基複合材料のマト
リックスにはMg又はMg合金を用いる。そして実際の
実施にあたってはMg又はMg合金のインゴットを用い
る。強化材としてセラミックス、たとえばSiC,Al
2 3 ,TiC等、其他慣用の粒子でMgと反応しない
ものを用いる。粒径としては0.1〜100μm のもの
を用いる。100μm 以上では、複合材の強度低下を招
き、また0.1μm以下では複合材溶湯の粘性が高くな
り過ぎ実用に適さない。次に浸透助材を用いる。この浸
透助材は前記強化材の粒子に混合する。この浸透助材と
しては例えばSiO2 粉末を用いる。其他の浸透助材と
してはZnOがある。即ちこの浸透助材はMg溶湯と接
触し、発熱を伴って反応する酸化物を用いる。強化材に
対する浸透助材の添加量は、強化材と浸透助材の混合粉
末中の体積率で1〜99%とする。ここで、1%未満で
は強化材への浸透が起らない。また99%を越えると、
複合材とした場合に、複合材中の強化材の体積率が非常
に小さい場合でも浸透助材(具体的にはSi)の濃度が
高くなり過ぎ、合金の融点が著しく上昇し、Mg基複合
材としての実用性が損なわれる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings. Mg or a Mg alloy is used for the matrix of the metal-based composite material in the present invention. In actual practice, an Mg or Mg alloy ingot is used. Ceramics such as SiC, Al as a reinforcing material
Other commonly used particles such as 2 O 3 and TiC that do not react with Mg are used. The particle size used is 0.1 to 100 μm. When it is 100 μm or more, the strength of the composite material is lowered, and when it is 0.1 μm or less, the viscosity of the melt of the composite material becomes too high and it is not suitable for practical use. Next, a penetration aid is used. This penetration aid is mixed with the particles of the reinforcement. As this penetration aid, for example, SiO 2 powder is used. Another penetration aid is ZnO. That is, as the penetration aid, an oxide is used which is brought into contact with the molten Mg and reacts with heat generation. The amount of the penetration aid added to the reinforcement is 1 to 99% in terms of volume ratio in the mixed powder of the reinforcement and the penetration aid. Here, if it is less than 1%, penetration into the reinforcing material does not occur. If it exceeds 99%,
When the composite material is used, even if the volume ratio of the reinforcing material in the composite material is very small, the concentration of the penetration aid (specifically, Si) becomes too high, the melting point of the alloy remarkably rises, and the Mg-based composite material Practicality as a material is impaired.

【0006】まず図1に示すように加熱溶解に用いるル
ツボ(鋼製)1の底部に、所定割合に混合した強化材と
浸透助材との混合粉2を収容する次に混合粉2の上部
に、マトリックスとなる合金、即ちMg又はMg合金の
インゴット3を載置する。なお4はルツボ1の底部に設
けたガス抜き用の穴である。図2は、このルツボ1を用
いた製造要領を示す。すなわち6は高周波誘導炉で、こ
の炉内には前記のルツボ1が配置してある。高周波誘導
炉6は、これを雰囲気置換チャンバー7で囲み、このチ
ャンバー7にはチャンバー7内に雰囲気ガスを送入する
入口8と、置換雰囲気を外部へ排出する出口9とを設け
てある。雰囲気ガスとしては、Arガス,CO2 +SF
6 混合ガス等、通常Mgの加熱溶解雰囲気として使用さ
れるガスならばいずれでもよい。Mgインゴット3を上
記雰囲気で所定時間加熱(約700℃)して溶湯3aと
し、この溶湯3aが下部の混合粉2のなかに浸透する。
この時、浸透助材は、Mgの溶湯と発熱を伴って反応
し、酸化マグネシウムを生成する。浸透時に穴4から粉
末中のガスが排出される。浸透が終り、冷却すれば、強
化粒子を分散したMg基の複合材が得られる。なお、強
化粒子(SiCなど)をマトリックスに均一に分散させ
ることが必要な場合には、浸透の後で気泡を巻き込まな
い程度の軽い攪拌を加えて粒子を均一に分散させればよ
い。
First, as shown in FIG. 1, a crucible (made of steel) 1 used for heating and melting contains a mixed powder 2 of a reinforcing material and a penetration aid mixed in a predetermined ratio, and then an upper portion of the mixed powder 2. An ingot 3 of an alloy serving as a matrix, that is, Mg or a Mg alloy is placed on. Reference numeral 4 is a gas vent hole provided in the bottom of the crucible 1. FIG. 2 shows a manufacturing procedure using the crucible 1. That is, 6 is a high-frequency induction furnace in which the crucible 1 is arranged. The high-frequency induction furnace 6 is surrounded by an atmosphere substitution chamber 7, and the chamber 7 is provided with an inlet 8 for feeding an atmosphere gas into the chamber 7 and an outlet 9 for discharging the substitution atmosphere to the outside. As the atmosphere gas, Ar gas, CO 2 + SF
6 Any gas, such as a mixed gas, which is usually used as a heating and melting atmosphere of Mg, may be used. The Mg ingot 3 is heated in the above atmosphere for a predetermined time (about 700 ° C.) to form a molten metal 3a, and this molten metal 3a permeates into the mixed powder 2 in the lower portion.
At this time, the penetration aid reacts with the molten Mg with heat generation to generate magnesium oxide. The gas in the powder is discharged from the holes 4 during permeation. After permeation is complete, upon cooling, a Mg-based composite with dispersed reinforcing particles is obtained. When it is necessary to uniformly disperse the reinforcing particles (SiC or the like) in the matrix, the particles may be uniformly dispersed by adding a light agitation that does not entrap air bubbles after permeation.

【0007】[0007]

【実施例】平均粒径3μm のSiC粒子15gと、これ
に対して体積率10%のSiO2粒子を均一に混合して
混合粉を作った。次にこれを前記図1に示すように鋼製
のルツボに入れ、その上に純Mgのインゴット約70g
を載置した。これを、図2に示すように高周波誘導炉で
700℃で加熱し、20分間保持した。雰囲気はアルゴ
ン、圧力は1気圧とした。冷却後、この材料を取り出
し、顕微鏡観察をおこなったところ、欠陥の少ない組織
をもつ完全な複合材となっていた。なお、比較のためS
iC粒子にSiO2 粒子を混合せずに、全く同じ要領で
処理したところ、SiC粒子の粉末層には、本実施例の
ような浸透は全く起らなかった。
EXAMPLE 15 g of SiC particles having an average particle diameter of 3 μm and SiO 2 particles having a volume ratio of 10% were uniformly mixed to prepare mixed powder. Next, as shown in FIG. 1, this was put into a steel crucible, and about 70 g of a pure Mg ingot was placed on the crucible.
Was placed. This was heated at 700 ° C. in a high frequency induction furnace as shown in FIG. 2 and held for 20 minutes. The atmosphere was argon and the pressure was 1 atm. After cooling, this material was taken out and observed under a microscope to find that it was a complete composite material having a structure with few defects. For comparison, S
When the iC particles were treated in exactly the same manner without mixing the SiO 2 particles, no penetration like the present example occurred in the powder layer of the SiC particles.

【0008】[0008]

【発明の効果】本発明の方法によれば、溶湯攪拌法のよ
うな強い攪拌を必要としないため、雰囲気ガスの巻込み
による機械的性質の劣化を防止することができる。ま
た、浸透助材として用いるSiO2 粉末は安価なためコ
ストの上昇が小さい。本発明の方法は浸透現象を利用す
るため、粒径の小さい強化粒子でも良好な分散状態の複
合材料が得られる。また、溶湯中には微細なMgOが生
成し、これが強化材としての役目をする。
According to the method of the present invention, it is possible to prevent the mechanical properties from being deteriorated due to the entrainment of the atmospheric gas, because strong stirring unlike the molten metal stirring method is not required. Further, since the SiO 2 powder used as the penetration aid is inexpensive, the increase in cost is small. Since the method of the present invention utilizes the infiltration phenomenon, a composite material in a good dispersed state can be obtained even with reinforcing particles having a small particle size. In addition, fine MgO is generated in the molten metal, and this serves as a reinforcing material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る方法の実施例の一部の工程を説明
する図である。
FIG. 1 is a diagram illustrating a part of steps of an embodiment of a method according to the present invention.

【図2】本発明に係る方法の実施例を説明する図であ
る。
FIG. 2 is a diagram illustrating an example of a method according to the present invention.

【図3】従来の方法を説明する図である。FIG. 3 is a diagram illustrating a conventional method.

【符号の説明】[Explanation of symbols]

1 ルツボ 2 混合粉 3 インゴット 6 高周波誘導炉 7 雰囲気置換チャンバー 1 crucible 2 mixed powder 3 ingot 6 high frequency induction furnace 7 atmosphere replacement chamber

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 強化材粉末とマトリックス金属溶湯を接
触させ、この溶湯を強化材粉末に浸透させる複合材料の
製造方法において、強化材粉末に浸透助材を混合するこ
とにより浸透現象を発現させることを特徴とするMg基
複合材料の製造方法。
1. In a method for producing a composite material in which a reinforcing material powder and a molten matrix metal are brought into contact with each other, and the molten metal is allowed to penetrate into the reinforcing material powder, an infiltration phenomenon is expressed by mixing an infiltration aid with the reinforcing material powder. A method for producing a Mg-based composite material, comprising:
【請求項2】 前記強化材にMgと反応しない強化粒子
を用い、前記浸透助材にMg又はMg合金溶湯と発熱を
伴って反応する酸化物を用いることを特徴とする請求項
1に記載のMg基複合材料の製造方法。
2. The reinforcing particles, which do not react with Mg, are used as the reinforcing material, and the oxide, which reacts with the molten Mg or Mg alloy with heat generation, is used as the penetration aid. Method for producing Mg-based composite material.
【請求項3】 前記強化材にSiCを、浸透助材にSi
2 を用い、これら混合粉末中のSiO2 の体積率を1
〜99%としたことを特徴とする請求項1に記載のMg
基複合材料の製造方法。
3. The reinforcing material is SiC and the penetration aid is Si.
O 2 is used, and the volume ratio of SiO 2 in these mixed powders is 1
~ 99%, Mg according to claim 1, characterized in that
Method of manufacturing base composite material.
JP14416494A 1994-03-24 1994-06-27 Production of mg-base composite material Pending JPH07310131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14416494A JPH07310131A (en) 1994-03-24 1994-06-27 Production of mg-base composite material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5242794 1994-03-24
JP6-52427 1994-03-24
JP14416494A JPH07310131A (en) 1994-03-24 1994-06-27 Production of mg-base composite material

Publications (1)

Publication Number Publication Date
JPH07310131A true JPH07310131A (en) 1995-11-28

Family

ID=26393032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14416494A Pending JPH07310131A (en) 1994-03-24 1994-06-27 Production of mg-base composite material

Country Status (1)

Country Link
JP (1) JPH07310131A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5791397A (en) * 1995-09-22 1998-08-11 Suzuki Motor Corporation Processes for producing Mg-based composite materials
EP1477576A1 (en) * 2002-02-15 2004-11-17 TOUDAI TLO, Ltd. Magnesium base composite material and method for production thereof
JP2006299304A (en) * 2005-04-15 2006-11-02 Sumitomo Electric Ind Ltd Magnesium based composite material
JP2010106365A (en) * 2009-12-11 2010-05-13 Sumitomo Electric Ind Ltd Method for producing magnesium-based composite material
JP2010106366A (en) * 2009-12-11 2010-05-13 Sumitomo Electric Ind Ltd Method for producing magnesium-based composite material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5791397A (en) * 1995-09-22 1998-08-11 Suzuki Motor Corporation Processes for producing Mg-based composite materials
EP1477576A1 (en) * 2002-02-15 2004-11-17 TOUDAI TLO, Ltd. Magnesium base composite material and method for production thereof
EP1477576A4 (en) * 2002-02-15 2005-07-13 Toudai Tlo Ltd Magnesium base composite material and method for production thereof
US7052526B2 (en) 2002-02-15 2006-05-30 Toudai Tlo, Ltd. Magnesium base composite material and its manufacturing method
JP2006299304A (en) * 2005-04-15 2006-11-02 Sumitomo Electric Ind Ltd Magnesium based composite material
JP2010106365A (en) * 2009-12-11 2010-05-13 Sumitomo Electric Ind Ltd Method for producing magnesium-based composite material
JP2010106366A (en) * 2009-12-11 2010-05-13 Sumitomo Electric Ind Ltd Method for producing magnesium-based composite material

Similar Documents

Publication Publication Date Title
CN111041319A (en) Tough high-temperature-resistant molybdenum oxide alloy and preparation method thereof
Gui M.-C. et al. Microstructure and mechanical properties of cast (Al–Si)/SiCp composites produced by liquid and semisolid double stirring process
JPH02236249A (en) Thermoforming method for metallic matrix complex and product produced therefrom
JPH01234536A (en) Production of aluminum/magnesium alloy containing refractory particles
JPH07310131A (en) Production of mg-base composite material
US5336291A (en) Method of production of a metallic composite material incorporating metal carbide particles dispersed therein
JPH0881722A (en) Production of mg-base partially reinforced composite member
JP4220598B2 (en) Method for producing metal / ceramic composite material for casting
JP4167317B2 (en) Method for producing metal / ceramic composite material for casting
JPH11170027A (en) Ingot for metal-ceramic composite and production thereof
JPH08325654A (en) Production of magnesium-group composite material
JPH0578708A (en) Production of aluminum-based grain composite alloy
JP3069115B2 (en) Manufacturing method of ceramic dispersion strengthened copper
JPS61104036A (en) Manufacture of composite sintered body consisting of ceramic and metal
JP4381330B2 (en) Method for producing metal matrix composite for casting
JP4279366B2 (en) Method for producing metal-ceramic composite material
KR102155438B1 (en) Metal matrix composite and method thereof
JP4053110B2 (en) Metal-ceramic composite material
JP2571596B2 (en) Manufacturing method of composite material composed of ceramic and metal
JPH1171620A (en) Production of metal-ceramics composite material
JPH079113A (en) Production of composite material
JPH01268830A (en) Manufacture of sic dispersion cast composite material
JPS6077945A (en) Manufacture of metallic material containing dispersed particle
JP4279370B2 (en) Method for producing metal-ceramic composite material
JPH05263177A (en) Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure