JPH1050151A - Compound superconductive wire - Google Patents

Compound superconductive wire

Info

Publication number
JPH1050151A
JPH1050151A JP9122806A JP12280697A JPH1050151A JP H1050151 A JPH1050151 A JP H1050151A JP 9122806 A JP9122806 A JP 9122806A JP 12280697 A JP12280697 A JP 12280697A JP H1050151 A JPH1050151 A JP H1050151A
Authority
JP
Japan
Prior art keywords
superconductor
oxide superconductor
silver
raw materials
wire material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9122806A
Other languages
Japanese (ja)
Inventor
Hisashi Yoshino
久士 芳野
Akira Murase
暁 村瀬
Minoru Yamada
穣 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9122806A priority Critical patent/JPH1050151A/en
Publication of JPH1050151A publication Critical patent/JPH1050151A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily process a wire material and stably produce oxide superconductive wire material with stable properties by producing a superconductive wire material constituted of an oxide superconductor and a sheath material of silver or a silver alloy surrounding the superconductor. SOLUTION: As raw materials to constitute an oxide superconductor, materials to produce a lamella perovskite oxide superconductor, for example, La, Y, Sc, M, Cu single elements or oxides, are used and these elements or oxides are mixed in stoichiometric ratios to give raw materials 2. The raw materials are buried in the inside of a sheath member 3 made of silver or an alloy mainly containing silver and the diameter of the resultant member 3 is decreased by a method such as extrusion method to give a wire material with a desired diameter. Then, the wire material is heated and the raw materials 2 packed in the inside of the member 3 are converted into a continuous compound superconductor 1. Consequently, a compound type superconductor wire of a lamella perovskite type oxide superconductor with high critical temperature can be stably produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、化合物超伝導線に
係り、特に酸化物超伝導体を用いた化合物超伝導線の構
造に関する。
The present invention relates to a compound superconducting wire, and more particularly to a structure of a compound superconducting wire using an oxide superconductor.

【0002】[0002]

【従来の技術】化合物超伝導体としては金属系のA15
型、B1型、シェブレル型、ラーベス型、また酸化物セ
ラミック系のペロブスカイト型、層状ペロブスカイト型
等の結晶構造に属するものが知られている。これらの中
でもLa−Ba−Cu−O系に代表される層状ペロブス
カイト型等の酸化物超伝導体では臨界温度が30K以
上、またY−Ba−Cu−O系のようなペロブスカイ
ト,層状ペロブスカイト等の多相からなる酸化物超伝導
体では臨界温度90Kを超えるものが得られるため非常
に有望な材料である。しかしながらこれらの酸化物超伝
導体は従来、焼結によるペレット状のものしかできなか
った。また超電導マグネット等の応用を考慮した場合は
超伝導体の線材化が必要である。
2. Description of the Related Art As a compound superconductor, a metallic A15 is used.
A type belonging to a crystal structure such as a type, a B1 type, a Chevrel type, a Laves type, or an oxide ceramic type perovskite type or a layered perovskite type is known. Among these, a layered perovskite-type oxide superconductor represented by La-Ba-Cu-O system has a critical temperature of 30K or more, and a perovskite such as Y-Ba-Cu-O system, layered perovskite, etc. An oxide superconductor composed of multiple phases is a very promising material because a material having a critical temperature exceeding 90 K can be obtained. However, these oxide superconductors have heretofore been produced only in the form of pellets obtained by sintering. In addition, when the application of a superconducting magnet or the like is considered, it is necessary to use a superconductor as a wire.

【0003】ところで、このような酸化物超伝導体の線
材化に対して、従来のNb3 SnやNbTi等の超伝導
線材の安定化材として通常用いられていた、例えば銅や
銅合金等をシース材として用い、酸化物超伝導体を銅製
シース内に形成することが考えられる。
[0003] By the way, in order to make such an oxide superconductor into a wire, for example, copper or a copper alloy, which is usually used as a stabilizer for a conventional superconducting wire such as Nb 3 Sn or NbTi, is used. It is conceivable that the oxide superconductor is formed in a copper sheath by using it as a sheath material.

【0004】しかしながら、本発明者等の各種実験によ
れば、銅製シース材を用いた場合には、酸化物超伝導体
の原料の調合具合、加熱処理条件等によっては酸化物超
伝導体が所定の超伝導特性を発揮するのに必要な化学量
論比から、酸素が不足した形となる場合があり、その結
果、安定した特性を有する酸化物超伝導線材を安定的に
得ることが困難であるといった問題点を有している。
However, according to various experiments conducted by the present inventors, when a copper sheath material is used, the oxide superconductor may not be at a predetermined level depending on the degree of preparation of the oxide superconductor raw material, heat treatment conditions, and the like. Due to the stoichiometric ratio required to exhibit the superconducting properties of oxygen, oxygen may be in a shortage form, and as a result, it is difficult to obtain an oxide superconducting wire having stable properties stably. There is a problem that there is.

【0005】[0005]

【発明が解決しようとする課題】このように酸化物超伝
導体は非常に有望な材料であるが、線材への加工が困難
であり、たとえ銅製のシース等を用いたとしても、安定
した特性を有する酸化物超伝導線材を安定的に得ること
が困難であるといった問題点を有しているために超電導
マグネット等への応用が困難であった。
As described above, the oxide superconductor is a very promising material, but it is difficult to process it into a wire, and even if a copper sheath or the like is used, it has stable characteristics. However, it is difficult to stably obtain an oxide superconducting wire having the following problems, and it has been difficult to apply it to a superconducting magnet or the like.

【0006】そこで本発明は、線材等への加工が容易
で、かつ安定した特性を有する酸化物超伝導線材を安定
的に得ることが可能な化合物超伝導線を提供することを
目的とする。
Accordingly, an object of the present invention is to provide a compound superconducting wire which can be easily processed into a wire or the like and can stably obtain an oxide superconducting wire having stable characteristics.

【0007】[0007]

【課題を解決するための手段】本発明の化合物超伝導線
にあっては、酸化物超伝導体と、この酸化物超伝導体を
取り囲む銀あるいは銀合金から成るシース材とを具備し
たことを特徴としている。
According to the present invention, there is provided a compound superconducting wire having an oxide superconductor and a sheath material made of silver or a silver alloy surrounding the oxide superconductor. Features.

【0008】本発明の化合物超伝導線材について第1図
を用いて詳細に説明する。第1図は本発明の化合物超伝
導線材の製造工程の一例を示すための各工程を示す線材
の断面図である。
The compound superconducting wire of the present invention will be described in detail with reference to FIG. FIG. 1 is a cross-sectional view of a wire showing respective steps for illustrating an example of a manufacturing process of the compound superconducting wire of the present invention.

【0009】本発明の酸化物超伝導体を構成するための
原料としては、例えばLa−Sr−Cu−O,La−B
a−Cu−O系に代表される層状ペロブスカイト型(L
1-x M)2 CuO4 (M;Ba,Sr,Ca)の
他、Y−Ba−Cu−O系,Sc−Ba−Cu−O系等
の連続した酸化物超伝導体が形成できればどのようなも
のでも良い。例えば、La、Y,Sc、M、Cu単体若
しくは酸化物、さらには加熱により酸化物に転じる炭酸
塩、硝酸塩、水酸化物等を用い、これらを化学量論比に
合うように混合したものを原料として用いることができ
る。またこの混合物を仮焼し粉砕したものを原料として
用いても良い。
As raw materials for constituting the oxide superconductor of the present invention, for example, La-Sr-Cu-O, La-B
Layered perovskite type represented by a-Cu-O type (L
a 1-x M) 2 CuO 4 (M; Ba, Sr, Ca) as well as a continuous oxide superconductor such as Y—Ba—Cu—O or Sc—Ba—Cu—O Anything is fine. For example, La, Y, Sc, M, Cu alone or an oxide, or a carbonate, a nitrate, a hydroxide, or the like, which is converted into an oxide by heating, is used by mixing them in a stoichiometric ratio. It can be used as a raw material. A mixture obtained by calcining and pulverizing this mixture may be used as a raw material.

【0010】この原料を銀あるいは銀を主体とした合金
から成るシース材内部に埋め込む(第1の工程:第1
図)(a))。銀あるいは銀合金は、電気抵抗が低く、
熱伝導性に優れており、このシース材は超伝導線を形成
した場合の安定化材となる。また埋め込む原料の形態で
あるが、粉体でもよいし線状でも良い。例えばLa,B
a,Cuの夫々の金属線を同時に埋め込むこともでき
る。
This raw material is embedded in a sheath material made of silver or an alloy mainly composed of silver (first step: first step).
Figure) (a)). Silver or silver alloy has low electric resistance,
It has excellent thermal conductivity, and this sheath material becomes a stabilizing material when a superconducting wire is formed. The form of the raw material to be embedded may be a powder or a linear form. For example, La, B
The respective metal lines of a and Cu can be buried at the same time.

【0011】次に第2の工程である。ここでは第1の工
程で得られた部材に、押し出し、スェージング、線引き
等の手法で減面加工を施し、所望の線径の線材を得る
(第1図(b))。なお超伝導線の形態としては断面円
形に限らず、リボン状等種々の形態が考えられる。
Next is a second step. Here, the member obtained in the first step is subjected to surface reduction by a method such as extrusion, swaging, or drawing to obtain a wire having a desired wire diameter (FIG. 1 (b)). The form of the superconducting wire is not limited to a circular cross section, and various forms such as a ribbon shape can be considered.

【0012】次に第3の工程である。この工程では第2
の工程で所望の線径に減面加工が為された部材に加熱処
理を施し、シース材内部に充填された原料を連続した化
合物超伝導体とする(第1図(c))。この加熱処理温
度は酸化物超伝導体が形成できるように適宜設定できる
が、シース材の融点が実質的な上限温度となる。また下
限は特に設定しないが、酸化物超伝導体を形成するため
には、実用上500℃以上が必要である。
Next is a third step. In this step, the second
The member subjected to the surface reduction processing to the desired wire diameter in the step is subjected to a heat treatment, and the raw material filled in the sheath material is made into a continuous compound superconductor (FIG. 1 (c)). This heat treatment temperature can be appropriately set so that an oxide superconductor can be formed, but the melting point of the sheath material becomes a substantial upper limit temperature. Although the lower limit is not particularly set, a temperature of 500 ° C. or higher is practically required to form an oxide superconductor.

【0013】以上安定化材となるシース材内部に一つの
超伝導体を含む単芯線について説明したが、シース材内
部に複数の穴を設けて夫々に原料を埋め込んでも良い
し、単芯線を更に複数本束ねて再度安定化材に組み込ん
で多芯線を構成しても良い。
The single core wire including one superconductor in the sheath material serving as the stabilizing material has been described above, but a plurality of holes may be provided in the sheath material to embed the raw materials in each. A multi-core wire may be configured by bundling a plurality of them and reassembling them into the stabilizing material.

【0014】なお本発明ではシース材としてAg(銀)
又はAg(銀)合金を用いているため、Agが酸素を拡
散し易く、かつAg自体は酸化しにくいため、加熱処理
時に外部から原料に十分な酸素を供給できる。したがっ
て、シース材として銅等を用いた場合と比較して次のよ
うな作用・効果を得ることができる。
In the present invention, Ag (silver) is used as the sheath material.
Alternatively, since an Ag (silver) alloy is used, Ag easily diffuses oxygen and Ag itself is not easily oxidized, so that sufficient oxygen can be supplied to the raw material from the outside during the heat treatment. Therefore, the following operation and effect can be obtained as compared with the case where copper or the like is used as the sheath material.

【0015】つまり、シース材として銅等を用いた場合
には原料の調合具合、加熱処理条件等によっては酸化物
超伝導体が所定の超伝導特性を発揮するのに必要な化学
量論比から、酸素が不足した形となる場合がある。しか
し、銀又は銀合金を用いた場合には、銀が酸素を拡散し
易く、かつ銀自体は酸化しにくいため、加熱処理時に外
部から原料に十分な酸素を供給でき上記の様な不具合は
生じない。
That is, when copper or the like is used as the sheath material, the stoichiometric ratio required for the oxide superconductor to exhibit the predetermined superconducting characteristics depends on the degree of preparation of the raw materials, the heat treatment conditions, and the like. In some cases, oxygen may be insufficient. However, when silver or a silver alloy is used, since silver easily diffuses oxygen and silver itself is hardly oxidized, sufficient oxygen can be supplied to the raw material from the outside during the heat treatment, and the above-described problem occurs. Absent.

【0016】なおさらに、原料に十分な酸素を供給でき
るように、シース材の一部を線材の長手方向に沿って削
除し、原料が加熱処理時に外部の酸化性雰囲気と接触で
きるようにしたり(第2図)することもできる。
Furthermore, in order to supply sufficient oxygen to the raw material, a part of the sheath material is deleted along the longitudinal direction of the wire so that the raw material can be brought into contact with an external oxidizing atmosphere during the heat treatment ( (Fig. 2).

【0017】このように銀あるいは銀合金から成るシー
スを用いた場合は、酸素雰囲気、大気中等の酸化性雰囲
気中、500〜940℃程度で前記加熱処理を行なうこ
とが好ましい。あまり加熱処理温度が低いと酸素の拡散
が遅く、あまり高温の加熱処理では素材が変形し易くな
る。
When a sheath made of silver or a silver alloy is used as described above, the heat treatment is preferably performed at about 500 to 940 ° C. in an oxidizing atmosphere such as an oxygen atmosphere or the air. If the heat treatment temperature is too low, diffusion of oxygen is slow, and if the heat treatment is too high, the material is easily deformed.

【0018】[0018]

【発明の実施の形態】以下に本発明の実施例を説明す
る。
Embodiments of the present invention will be described below.

【0019】実施の形態−1 Ag製のシース材に、La,Sr,Cuを(La0.9
0.1 2 CuO4 の組成式で表される層状ペロブスカ
イト型の酸化物超伝導体となるよう比率で混合した原料
を充填して、シース材の量端を閉塞した。その後、減面
加工により細線化した後、700℃大気中7日間の酸化
熱処理を行った結果(La0.9 Sr0.12 CuO4
組成式で表される層状ペロブスカイト型の酸化物超伝導
体の連続体がシース材の内部に生成された。
Embodiment 1 La, Sr, and Cu were added to an Ag sheath material (La 0.9 S
Raw materials mixed at a ratio so as to become a layered perovskite-type oxide superconductor represented by a composition formula of r 0.1 ) 2 CuO 4 were filled, and the end of the sheath material was closed. Then, after thinning by surface reduction processing, the resultant was subjected to an oxidizing heat treatment in the atmosphere at 700 ° C. for 7 days. As a result, a lamellar perovskite-type oxide superconductor represented by a composition formula of (La 0.9 Sr 0.1 ) 2 CuO 4 was obtained. A continuum was created inside the sheath material.

【0020】臨界温度は35K、臨界電流は10Aと良
好な特性を示した。
The critical temperature was 35 K, and the critical current was 10 A, showing good characteristics.

【0021】実施の形態−2 実施の形態−1におけるSrの代わりにBaを用いて同
様に超伝導線を製造した。
Embodiment 2 A superconducting wire was manufactured in the same manner as in Embodiment 1 except that Ba was used instead of Sr.

【0022】臨界温度は29K、臨界電流は5Aと良好
な特性を示した。
The critical temperature was 29 K and the critical current was 5 A, showing good characteristics.

【0023】実施の形態−3 実施の形態−1におけるSrの代わりにCaを用いて同
様に超伝導線を製造した。
Embodiment 3 A superconducting wire was manufactured in the same manner as in Embodiment 1 except that Ca was used instead of Sr.

【0024】臨界温度は29K、臨界電流は5Aと良好
な特性を示した。
The critical temperature was 29 K and the critical current was 5 A, showing good characteristics.

【0025】実施の形態−4 実施の形態−1のLa,Sr,Cuの代わりにY,B
a,Cuを用いて(Y0.4 Ba0.6 )CuO3 の比率と
なるように混合し、同様に超伝導線を製造した。
Embodiment 4 Instead of La, Sr, and Cu in Embodiment 1, Y, B
a and Cu were mixed at a ratio of (Y 0.4 Ba 0.6 ) CuO 3 to produce a superconducting wire in the same manner.

【0026】臨界温度は96K、臨界電流は10Aと良
好な特性を示した。
The critical temperature was 96 K, and the critical current was 10 A, showing good characteristics.

【0027】実施の形態−5 実施の形態−1のLa,Sr,Cuの代わりに(Y0.9
Ba0.1 )CuO3 の比率となるようにY2 3 ,Ba
O,CuOを用い混合し、同様に超伝導線を製造した。
Embodiment-5 Instead of La, Sr, and Cu in Embodiment 1, (Y 0.9
Ba 0.1) such that the ratio of CuO 3 Y 2 O 3, Ba
O and CuO were mixed and a superconducting wire was similarly manufactured.

【0028】臨界温度は80K、臨界電流は12Aと良
好な特性を示した。
The critical temperature was 80 K and the critical current was 12 A, showing good characteristics.

【0029】[0029]

【発明の効果】以上説明したように本発明によれば、臨
界温度が高い層状ペロブスカイト型等の酸化物超伝導体
を用いた化合物超伝導線を安定して得ることができ、超
電導マグネット等への応用に寄与するところ大である。
As described above, according to the present invention, a compound superconducting wire using a layered perovskite type oxide superconductor having a high critical temperature can be stably obtained, and a superconducting magnet or the like can be obtained. It greatly contributes to the application of.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1図は、本発明超伝導線の断面図。FIG. 1 is a sectional view of a superconducting wire of the present invention.

【図2】第2図は、本発明超伝導線の断面図。FIG. 2 is a cross-sectional view of the superconducting wire of the present invention.

【符号の説明】[Explanation of symbols]

1……超伝導体 2……原料 3……シース材 1 ... superconductor 2 ... raw material 3 ... sheath material

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】酸化物超伝導体と、この酸化物超伝導体を
取り囲む銀あるいは銀合金から成るシース材とを備えた
ことを特徴とする化合物超伝導線。
1. A compound superconducting wire comprising an oxide superconductor and a sheath made of silver or a silver alloy surrounding the oxide superconductor.
【請求項2】前記酸化物超伝導体は、La、Y及びSc
の少なくとも一種と、Ba、Sr及びCaの少なくとも
一種と、Cu及びOとを構成元素とすることを特徴とす
る請求項1記載の化合物超伝導線。
2. The oxide superconductor comprises La, Y and Sc.
The compound superconducting wire according to claim 1, wherein at least one of Ba, Sr, and Ca, and Cu and O are constituent elements.
【請求項3】前記酸化物超伝導体は、層状ペロブスカイ
ト型の結晶構造を有することを特徴とする請求項1記載
の化合物超伝導線。
3. The compound superconducting wire according to claim 1, wherein said oxide superconductor has a layered perovskite crystal structure.
【請求項4】前記シース材の一部を線材の長手方向に沿
って削除したことを特徴とする請求項1記載の化合物超
伝導線。
4. The compound superconducting wire according to claim 1, wherein a part of the sheath material is deleted along a longitudinal direction of the wire material.
【請求項5】前記線材の断面形状を略円形あるいはリボ
ン状に形成したことを特徴とする請求項1記載の化合物
超伝導線。
5. The compound superconducting wire according to claim 1, wherein said wire has a substantially circular or ribbon-shaped cross section.
JP9122806A 1997-04-28 1997-04-28 Compound superconductive wire Pending JPH1050151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9122806A JPH1050151A (en) 1997-04-28 1997-04-28 Compound superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9122806A JPH1050151A (en) 1997-04-28 1997-04-28 Compound superconductive wire

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62056856A Division JP2685751B2 (en) 1987-03-13 1987-03-13 Compound superconducting wire and method for producing compound superconducting wire

Publications (1)

Publication Number Publication Date
JPH1050151A true JPH1050151A (en) 1998-02-20

Family

ID=14845105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9122806A Pending JPH1050151A (en) 1997-04-28 1997-04-28 Compound superconductive wire

Country Status (1)

Country Link
JP (1) JPH1050151A (en)

Similar Documents

Publication Publication Date Title
US20030032560A1 (en) Superconducting article having low AC loss
JP2685751B2 (en) Compound superconducting wire and method for producing compound superconducting wire
AU779553B2 (en) Oxide high-temperature superconducting wire and method of producing the same
JP4605156B2 (en) Superconducting wire manufacturing method
JPH1050151A (en) Compound superconductive wire
JP3078765B2 (en) Compound superconducting wire and method for producing compound superconducting wire
JP2951419B2 (en) Method for manufacturing large-capacity oxide superconducting conductor
JPH05211013A (en) Oxide superconductor and manufacture thereof
JP2735534B2 (en) Compound superconducting wire and method for producing compound superconducting wire
JPH06139848A (en) Manufacture of oxide high-temperature superconducting wire rod
JP3154239B2 (en) Manufacturing method of ceramic superconducting conductor
JP3858830B2 (en) Manufacturing method of oxide superconducting wire
JP2685751C (en)
JPH05211012A (en) Oxide superconductor and manufacture thereof
JP4709455B2 (en) Oxide high-temperature superconducting wire and manufacturing method
JP2637427B2 (en) Superconducting wire manufacturing method
JP4039260B2 (en) Manufacturing method of oxide superconducting wire and raw material powder of oxide superconducting wire
JP2004119248A (en) Reforming method of bismuth group oxide superconductive wire material
JP2599138B2 (en) Method for producing oxide-based superconducting wire
AU2002301594B2 (en) High temperature oxide superconducting wire and method of manufacturing thereof
JP2008186775A (en) Manufacturing method of oxide superconducting wire material
JPH04292814A (en) Manufacture of bismuth-based oxide superconductive wire
JPH08337424A (en) Production of bismuth-containing oxide superconducting wire
JPH0653037A (en) Oxide superconductor current lead
JPH09500351A (en) Non-segregated oxide superconductor silver composite