JP2004119248A - Reforming method of bismuth group oxide superconductive wire material - Google Patents

Reforming method of bismuth group oxide superconductive wire material Download PDF

Info

Publication number
JP2004119248A
JP2004119248A JP2002282602A JP2002282602A JP2004119248A JP 2004119248 A JP2004119248 A JP 2004119248A JP 2002282602 A JP2002282602 A JP 2002282602A JP 2002282602 A JP2002282602 A JP 2002282602A JP 2004119248 A JP2004119248 A JP 2004119248A
Authority
JP
Japan
Prior art keywords
phase
superconducting wire
oxide superconducting
temperature
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002282602A
Other languages
Japanese (ja)
Other versions
JP3735092B2 (en
Inventor
Tetsuyuki Kaneko
兼子 哲幸
Hiroyasu Yumura
湯村 洋康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Superconductivity Technology Center
Sumitomo Electric Industries Ltd
Original Assignee
International Superconductivity Technology Center
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Superconductivity Technology Center, Sumitomo Electric Industries Ltd filed Critical International Superconductivity Technology Center
Priority to JP2002282602A priority Critical patent/JP3735092B2/en
Publication of JP2004119248A publication Critical patent/JP2004119248A/en
Application granted granted Critical
Publication of JP3735092B2 publication Critical patent/JP3735092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bismuth group oxide superconductive wire material capable of improving critical current density (Jc) at a low temperature of the order of 20K. <P>SOLUTION: The reforming method of the bismuth group oxide superconductive wire material is to anneal an oxide superconductive wire material 5 with an oxide superconductor 1 containing a Bi2223 phase as a main component and also a Bi2212 phase coated with a metal coating material 2 composed of a material with silver as a main component in an atmosphere containing oxygen at a temperature range of 300°C or higher and 600°C or lower. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ビスマス系酸化物超電導線材の改質方法に関するものである。
【0002】
【従来の技術】
従来、酸化物超電導線材の1つとして、ビスマス(Bi)系の酸化物超電導線材が知られている。このBi系の酸化物超電導線材は、液体窒素温度での使用が可能であり、比較的高い臨界電流密度を得ることができる。また、このBi系の酸化物超電導線材は、長尺化が比較的容易なため、超電導ケーブルやマグネットへの応用が期待されている。
【0003】
このようなBi系の酸化物超電導材料においては、粉末を熱処理した後に金属シースにて被覆し、伸線加工および圧延加工を施した後、さらに熱処理することにより、高い臨界電流密度を有する単芯の酸化物超電導線材が得られている。
【0004】
また、酸化物超電導材料を主成分とする粉末を熱処理した後に金属シースにて被覆し、伸線加工を施した後嵌合して多芯線とし、伸線加工および圧延加工を施した後、さらに熱処理することにより、同様に高い臨界電流密度を有する酸化物超電導多芯線材が得られている。
【0005】
さらに、従来、このような酸化物超電導線材の製造において、圧延加工および熱処理のステップを複数回繰返すことにより、より高い臨界電流密度を有する酸化物超電導線材が得られることが知られている。
【0006】
なお、超電導線材は、たとえば以下の非特許文献1〜3に開示されている。
【0007】
【非特許文献1】
綾井、他6名、「シリコン単結晶引上炉マグネット用高温超電導線材の開発」、SEIテクニカルレビュー、2001年9月、第159号、p.123−128
【0008】
【非特許文献2】
小沼、松本著、「超電導材料と線材化技術」、工学図書株式会社、1995年10月
【0009】
【非特許文献3】
マエダ(Hiroshi Maeda)、トガノ(Kazumasa Togano)編、「ビスマス−ベースト ハイテンペラチュア スーパーコンダクターズ(Bismuth−based High−temperature Superconductors)」、(米国)、マーセルデッカー(Marcel Dekker,
Inc.)、1996年
【0010】
【発明が解決しようとする課題】
しかしながら、従来のBi系酸化物超電導線材は、20K程度の低温における臨界電流密度(Jc)が低いため、低温で高性能が必要とされる用途には適さないという問題点があった。
【0011】
それゆえ本発明の目的は、20K程度の低温における臨界電流密度(Jc)を向上できるBi系酸化物超電導線材の改質方法を提供することである。
【0012】
【課題を解決するための手段】
本発明のビスマス系酸化物超電導線材の改質方法は、Bi2223相を主体として含みかつBi2212相を含む酸化物超電導体を、銀を主体とする材質よりなる金属被覆材で被覆した酸化物超電導線材を、酸素を含む雰囲気中で300℃以上600℃以下の温度でアニールすることを特徴とするものである。
【0013】
本願発明者らは、Bi2223相を主体とする酸化物超電導体にBi2212相が含まれていることに着目し、鋭意検討した結果、酸素雰囲気中でアニールすることによりそのBi2212相の酸素含有量が変化することで、20K程度の低温における臨界電流密度が向上することを見出した。以下、20K程度の低温において臨界電流密度が向上することの原理について説明する。
【0014】
酸化物超電導線材の酸化物超電導体(超電導フィラメント部)中には、Bi2223相を主体としてBi2212相が含まれている(酸化物超電導体の100%を2223相とした線材は現状では実現されていない)。このような線材に酸素雰囲気中でアニールを施し、Bi2212相に酸素を吸収させると、下記のような性質によって線材の低温特性が向上する。
【0015】
(1)Bi2212相について
Bi2212相では、酸素雰囲気中でアニールすることにより、酸素の含有量が大きく変化する。つまり、酸素雰囲気中でアニールすることにより、(BiPb)SrCaCu8+zのzが変化し、Bi2212相の臨界温度(Tc)や臨界電流密度(Jc)が変化する。具体的には、zが大きくなると、臨界温度Tcは低下する(70K〜90Kの範囲で変化する)。また、20K程度の低温での臨界電流密度Jcが上がり、77K程度の高温での臨界電流密度Jcが下がる。
【0016】
このような変化が生じる理由は、Bi2212相中の酸素量が増えると伝導を担うキャリア(ホール)濃度が増えることに起因している。つまり、臨界温度Tcに関しては、Tcが高くなる最適なホール濃度が存在するため、酸素を入れ過ぎると臨界温度Tcは低下するが、臨界温度Tcより十分低温での臨界電流密度Jcに関しては、キャリア濃度が高いほど電気伝導が良くなるため臨界電流密度Jcは向上する。また、高温での臨界電流密度Jcに関しては、臨界温度Tc(たとえば77K:Bi2212相の臨界温度Tcがそれに近くあるいはそれ以下となるため)が下がるため、臨界電流密度Jcも低下することになる。
【0017】
(2)Bi2223相について
Bi2223相は、酸素を吸収したり、排出することは非常に少なく、酸素雰囲気中でアニールしても酸素含有量が変化することはほとんどない。つまり、(BiPb)SrCaCu10+zのzはほとんどゼロから変化しない。よって、酸素雰囲気中でアニールしてもBi2223相の臨界温度Tcや臨界電流密度Jcが変化することはない。
【0018】
上記をまとめると下の表1のようになり、その表1にあるように酸素雰囲気中でのアニールによってBi2223相の性質が変化しないのに対し、Bi2212相は酸素を含有してその性質を変化させるため、線材全体として20K程度の低温での臨界電流密度Jcが向上することになる。
【0019】
【表1】

Figure 2004119248
【0020】
またアニール温度を300℃以上600℃以下としたことにより、Bi2212相に効果的に酸素を含有できるとともに、Bi2223相の分解を防止することができる。つまり、300℃未満では、Bi2212相への酸素の出入りが起こらず、700℃を超えると、主相であるBi2223相が分解してしまう。
【0021】
上記のビスマス系酸化物超電導線材の改質方法において好ましくは、酸素を含む雰囲気は酸素が100mol%の雰囲気である。
【0022】
上記のビスマス系酸化物超電導線材の改質方法において好ましくは、20mol%以下の酸素濃度を有する雰囲気下で、かつ800℃以上の温度で熱処理された酸化物超電導線材に前記アニールが行なわれる。
【0023】
上記のビスマス系酸化物超電導線材の改質方法において好ましくは、酸化物超電導体におけるBi2212相の量は5mol%以上20mol%以下である。
【0024】
酸素雰囲気中におけるアニールによる臨界電流密度Jcの変化率(アニール後のJc/アニール前のJc)だけを考えれば、Bi2212相が多いほうがよいが(極端に言えばBi2212相が100%)、絶対値を比較した場合Bi2223相が主相であるほうが臨界電流密度Jcの絶対値は大きくなる。そのため、Bi2212相の量の最適範囲は5mol%以上20mol%以下である。
【0025】
なお、本願明細書中において「Bi2223相」とは、ビスマスと鉛とストロンチウムとカルシウムと銅とを含み、その原子比として(ビスマスと鉛):ストロンチウム:カルシウム:銅が2:2:2:3と近似して表されるBi−Pb−Sr−Ca−Cu−O系の酸化物超電導相であり、具体的には(BiPb)SrCaCu10+z超電導相のことである。
【0026】
また、「Bi2212相」とは、ビスマスと鉛とストロンチウムとカルシウムと銅とを含み、その原子比として(ビスマスと鉛):ストロンチウム:カルシウム:銅が2:2:1:2と近似して表されるBi−Pb−Sr−Ca−Cu−O系の酸化物超電導相であり、具体的には(BiPb)SrCaCu8+z超電導相のことである。
【0027】
【発明の実施の形態】
以下、本発明の実施の形態について図に基づいて説明する。
【0028】
図1は、本発明の一実施の形態における酸化物超電導線材の製造方法および改質方法を示す図である。図1を参照して、Bi、Pb、Sr、CaおよびCuが所定の組成比になるように、酸化物あるいは炭酸化物の原料粉が混合される。この混合粉に700〜860℃程度の熱処理が複数回施され、(BiPb)SrCaCu8+z(Bi2212相)と(BiPb)SrCaCu10+z(Bi2223相)と非超電導相とから構成される充填用粉末が用意される。本粉末が銀パイプに充填され伸線による縮径加工が施される。この線が切断され、61本の嵌合用素線が形成される。この61本の素線が別の素線挿入用の銀パイプ内に挿入され、61芯を持つ多芯構造が形成される。この多芯母材にさらに伸線加工が施され、長尺材とされた後、圧延加工が施されて、外径サイズがたとえば幅4.2mm、厚さ0.24mmで、銀比(線材の横断面における酸化物超電導体部分の面積に対する金属被覆材部分の面積の比)がたとえば1.5のテープ形状の線材が形成される(ステップS1)。
【0029】
このテープ形状の線材に、大気中800℃以上の熱処理が施される。この後、テープ形状の線材に再度圧延処理が施され、さらに大気中で800℃以上の熱処理が施されることによって酸化物超電導線材が形成される(ステップS2)。
【0030】
このようにして得られた酸化物超電導線材に、改質処理が施される。この改質処理は、酸化物超電導線材に酸素を含む雰囲気中にて300℃以上600℃以下の温度でアニールを施すことにより行なわれる(ステップS3)。これにより、図2に示す改質された酸化物超電導線材5が得られる。
【0031】
上記アニールを行う際の酸素を含む雰囲気は、酸素が100mol%の雰囲気であることが好ましい。また、20mol%以下の酸素濃度を有する雰囲気下で、かつ800℃以上の温度で熱処理された酸化物超電導線材に上記アニールが行なわれることが好ましい。
【0032】
図2を参照して、本発明の酸化物超電導線材5は、複数本の酸化物超電導体(超電導フィラメント)1と、複数本の酸化物超電導体1の表面を被覆しかつ銀を主体とする材質よりなる金属被覆材2とを有している。酸化物超電導体1は、Bi2223相を主体として含み、かつBi2212相を含んでいる。この酸化物超電導体1におけるBi2212相の含有量は5mol%以上20mol%以下であることが好ましい。また金属被覆材2は、たとえば銀よりなっている。
【0033】
なお、上記においては多芯構造の酸化物超電導線材について説明したが、1本の酸化物超電導体(超電導フィラメント)を、銀を主体とする材質よりなる金属被覆材で被覆した単芯構造の酸化物超電導線材についても本発明を適用することができる。
【0034】
【実施例】
以下、本発明の実施例について説明する。
【0035】
まず、図1を用いて説明した方法により、61芯を持つ多芯構造で、外径サイズが幅4.2mm、厚さ0.24mmで、銀比が1.5のテープ形状のBi系酸化物超電導線材を作成した。
【0036】
図1におけるアニール(ステップS3)は、酸素気流中で行ない、アニール時間を20時間とし、下の表2に示すようにアニール温度を変化させて行なった。また、酸化物超電導体1中のBi2212相の量も変化させた。各試料のアニール前の77Kおよび20Kでの各臨界電流値Icとアニール後の77Kおよび20Kでの各臨界電流値Icとを表2に併せて示す。
【0037】
なお、使用した線材は同一ロットから選択し、各線材中の超電導部の断面積はすべて同じとする。よって、下の表1における臨界電流値Icの大きさは臨界電流密度Jc(Jc=Ic/超電導部断面積)に比例する。
【0038】
【表2】
Figure 2004119248
【0039】
表2の結果より、酸素雰囲気中で300℃以上600℃以下の温度でアニールを行なうことにより、低温(20K)での臨界電流値Ic(臨界電流密度Jc)がアニール前よりも向上していることがわかる。また、酸化物超電導体1中のBi2212相の量を5mol%以上20mol%以下とすることにより、アニール後の臨界電流値Icが530A以上となっており、臨界電流値Ic(臨界電流密度Jc)の絶対値が大きくなっていることがわかる。
【0040】
また、アニールを行なう前と500℃の温度でアニールを行なった後との酸化物超電導線材の各温度(K)における臨界電流値Icを調べた。その結果を図3に示す。
【0041】
図3の結果より、20K程度以下から臨界電流値Icは、アニール後の試料のほうがアニール前の試料よりも高くなっていることがわかる。
【0042】
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0043】
【発明の効果】
以上説明したように本発明のビスマス系酸化物超電導線材の改質方法によれば、酸素雰囲気中でアニールすることによりそのBi2212相の酸素含有量が変化するため、20K程度の低温における臨界電流密度が向上する。
【図面の簡単な説明】
【図1】本発明の一実施の形態における酸化物超電導線材の製造方法および改質方法を示す図である。
【図2】図1に示すプロセスを経て形成された多芯構造の酸化物超電導線材の構成を示す断面図である。
【図3】アニールを行なう前と500℃の温度でアニールを行なった後との酸化物超電導線材の各温度(K)における臨界電流値Icを示す図である。
【符号の説明】
1 酸化物超電導体、2 金属被覆材、5 酸化物超電導線材。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for modifying a bismuth-based oxide superconducting wire.
[0002]
[Prior art]
Conventionally, bismuth (Bi) -based oxide superconducting wires have been known as one of the oxide superconducting wires. This Bi-based oxide superconducting wire can be used at the temperature of liquid nitrogen, and can obtain a relatively high critical current density. Further, since the Bi-based oxide superconducting wire can be relatively easily lengthened, application to a superconducting cable and a magnet is expected.
[0003]
In such a Bi-based oxide superconducting material, a single core having a high critical current density is obtained by subjecting a powder to heat treatment, coating the powder with a metal sheath, performing wire drawing and rolling, and then subjecting to heat treatment. Is obtained.
[0004]
Further, after heat treatment of the powder containing the oxide superconducting material as a main component, coating with a metal sheath, performing wire drawing and then fitting into a multi-core wire, performing wire drawing and rolling, By performing the heat treatment, an oxide superconducting multi-core wire having a similarly high critical current density is obtained.
[0005]
Furthermore, conventionally, in the production of such an oxide superconducting wire, it is known that an oxide superconducting wire having a higher critical current density can be obtained by repeating the steps of rolling and heat treatment a plurality of times.
[0006]
The superconducting wire is disclosed, for example, in the following Non-Patent Documents 1 to 3.
[0007]
[Non-patent document 1]
Ayai and 6 others, "Development of high-temperature superconducting wire for silicon single crystal pulling furnace magnet", SEI Technical Review, September 2001, No. 159, p. 123-128
[0008]
[Non-patent document 2]
Onuma, Matsumoto, "Superconducting Materials and Wire Making Technology", Kogaku Tosho Co., Ltd., October 1995 [0009]
[Non-Patent Document 3]
Maeda (Hiroshi Maeda), edited by Togano (Kazumasa Togano), "Bismuth-based High-temperature Superconductors", Mercer, Kerde, Kerde, U.S.A.
Inc. ), 1996 [0010]
[Problems to be solved by the invention]
However, the conventional Bi-based oxide superconducting wire has a low critical current density (Jc) at a low temperature of about 20K, and thus has a problem that it is not suitable for applications requiring high performance at a low temperature.
[0011]
Therefore, an object of the present invention is to provide a method for modifying a Bi-based oxide superconducting wire that can improve the critical current density (Jc) at a low temperature of about 20K.
[0012]
[Means for Solving the Problems]
The method for modifying a bismuth-based oxide superconducting wire according to the present invention is directed to an oxide superconducting wire obtained by coating an oxide superconductor mainly containing Bi2223 phase and containing Bi2212 phase with a metal coating material mainly composed of silver. Is annealed at a temperature of 300 ° C. or more and 600 ° C. or less in an atmosphere containing oxygen.
[0013]
The inventors of the present application paid attention to the fact that the oxide superconductor mainly composed of the Bi2223 phase contains the Bi2212 phase, and as a result of diligent studies, it was found that the oxygen content of the Bi2212 phase was reduced by annealing in an oxygen atmosphere. It has been found that the change improves the critical current density at a low temperature of about 20K. Hereinafter, the principle that the critical current density is improved at a low temperature of about 20K will be described.
[0014]
The oxide superconductor (superconducting filament portion) of the oxide superconducting wire contains a Bi2223 phase and a Bi2212 phase (a wire having 100% of the oxide superconductor as a 2223 phase is currently realized. Absent). When such a wire is annealed in an oxygen atmosphere and the Bi2212 phase absorbs oxygen, the low-temperature characteristics of the wire are improved by the following properties.
[0015]
(1) Bi2212 phase In the Bi2212 phase, annealing in an oxygen atmosphere greatly changes the oxygen content. That is, by annealing in an oxygen atmosphere, the z of (BiPb) 2 Sr 2 Ca 1 Cu 2 O 8 + z changes, and the critical temperature (Tc) and critical current density (Jc) of the Bi2212 phase change. Specifically, as z increases, the critical temperature Tc decreases (changes in the range of 70K to 90K). In addition, the critical current density Jc at a low temperature of about 20K increases, and the critical current density Jc at a high temperature of about 77K decreases.
[0016]
The reason why such a change occurs is that, when the amount of oxygen in the Bi2212 phase increases, the concentration of carriers (holes) responsible for conduction increases. In other words, as for the critical temperature Tc, there is an optimum hole concentration at which Tc becomes high. Therefore, the critical temperature Tc decreases when oxygen is excessively added, but the critical current density Jc at a sufficiently lower temperature than the critical temperature Tc has a carrier concentration. The higher the concentration is, the better the electric conduction is, so the critical current density Jc is improved. Further, as for the critical current density Jc at a high temperature, the critical temperature Tc (for example, 77K: the critical temperature Tc of the Bi2212 phase becomes close to or lower than that) decreases, so that the critical current density Jc also decreases.
[0017]
(2) Bi2223 phase The Bi2223 phase absorbs and discharges oxygen very little, and the oxygen content hardly changes even when annealed in an oxygen atmosphere. That is, z of (BiPb) 2 Sr 2 Ca 2 Cu 3 O 10 + z hardly changes from zero. Therefore, even if annealing is performed in an oxygen atmosphere, the critical temperature Tc and the critical current density Jc of the Bi2223 phase do not change.
[0018]
The above is summarized in Table 1 below. As shown in Table 1, the properties of the Bi2223 phase are not changed by annealing in an oxygen atmosphere, whereas the properties of the Bi2212 phase are changed by containing oxygen. Therefore, the critical current density Jc at a low temperature of about 20 K is improved as a whole wire.
[0019]
[Table 1]
Figure 2004119248
[0020]
Further, by setting the annealing temperature to 300 ° C. or more and 600 ° C. or less, oxygen can be effectively contained in the Bi2212 phase, and decomposition of the Bi2223 phase can be prevented. That is, when the temperature is lower than 300 ° C., oxygen does not enter / exit the Bi2212 phase, and when the temperature exceeds 700 ° C., the main phase Bi2223 phase is decomposed.
[0021]
In the above-described method for modifying a bismuth-based oxide superconducting wire, the atmosphere containing oxygen is preferably an atmosphere containing 100 mol% of oxygen.
[0022]
In the above-described method for modifying a bismuth-based oxide superconducting wire, preferably, the annealing is performed on the oxide superconducting wire that has been heat-treated at a temperature of 800 ° C or higher in an atmosphere having an oxygen concentration of 20 mol% or less.
[0023]
In the above-mentioned method for modifying a bismuth-based oxide superconducting wire, the amount of the Bi2212 phase in the oxide superconductor is preferably 5 mol% or more and 20 mol% or less.
[0024]
Considering only the rate of change of the critical current density Jc by annealing in an oxygen atmosphere (Jc after annealing / Jc before annealing), it is better to have more Bi2212 phases (extremely speaking, the Bi2212 phase is 100%), but the absolute value is When the Bi2223 phase is the main phase, the absolute value of the critical current density Jc becomes larger. Therefore, the optimal range of the amount of the Bi2212 phase is 5 mol% or more and 20 mol% or less.
[0025]
In the specification of the present application, the “Bi2223 phase” includes bismuth, lead, strontium, calcium, and copper, and has an atomic ratio of (bismuth and lead): strontium: calcium: copper of 2: 2: 2: 3. a BiPb-Sr-Ca-Cu- O -based oxide superconducting phase represented by approximate, specifically that of (BiPb) 2 Sr 2 Ca 2 Cu 3 O 10 + z superconducting phase.
[0026]
The “Bi2212 phase” contains bismuth, lead, strontium, calcium, and copper, and its atomic ratio (bismuth and lead): strontium: calcium: copper is approximated as 2: 2: 1: 2. a BiPb-Sr-Ca-Cu- O -based oxide superconducting phase is, in particular is that of (BiPb) 2 Sr 2 Ca 1 Cu 2 O 8 + z superconducting phase.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0028]
FIG. 1 is a diagram illustrating a method for manufacturing and a method for modifying an oxide superconducting wire according to an embodiment of the present invention. Referring to FIG. 1, raw material powder of oxide or carbonate is mixed so that Bi, Pb, Sr, Ca and Cu have a predetermined composition ratio. This mixed powder is heat-treated at about 700 to 860 ° C. a plurality of times to obtain (BiPb) 2 Sr 2 Ca 1 Cu 2 O 8 + z (Bi 2212 phase) and (BiPb) 2 Sr 2 Ca 2 Cu 3 O 10 + z (Bi 2223 phase). And a non-superconducting phase. This powder is filled in a silver pipe and subjected to diameter reduction by wire drawing. This wire is cut to form 61 fitting wires. These 61 strands are inserted into another silver pipe for inserting a strand to form a multi-core structure having 61 cores. The multi-core base material is further subjected to a wire drawing process to form a long material, and then subjected to a rolling process to have an outer diameter size of, for example, 4.2 mm in width, 0.24 mm in thickness, and a silver ratio (wire material). A tape-shaped wire having a ratio of the area of the metal covering material portion to the area of the oxide superconductor portion in the cross-section (for example) of 1.5 is formed (step S1).
[0029]
This tape-shaped wire is subjected to a heat treatment at 800 ° C. or higher in the atmosphere. Thereafter, the tape-shaped wire is subjected to rolling again, and further subjected to a heat treatment at 800 ° C. or higher in the atmosphere to form an oxide superconducting wire (step S2).
[0030]
The oxide superconducting wire thus obtained is subjected to a modification treatment. This reforming treatment is performed by annealing the oxide superconducting wire in an atmosphere containing oxygen at a temperature of 300 ° C. or more and 600 ° C. or less (step S3). Thereby, the modified oxide superconducting wire 5 shown in FIG. 2 is obtained.
[0031]
The atmosphere containing oxygen at the time of performing the annealing is preferably an atmosphere containing 100 mol% of oxygen. Preferably, the annealing is performed on the oxide superconducting wire that has been heat-treated in an atmosphere having an oxygen concentration of 20 mol% or less and at a temperature of 800 ° C. or more.
[0032]
Referring to FIG. 2, an oxide superconducting wire 5 of the present invention covers a plurality of oxide superconductors (superconducting filaments) 1 and a surface of the plurality of oxide superconductors 1 and is mainly composed of silver. And a metal coating material 2 made of a material. Oxide superconductor 1 mainly contains Bi2223 phase, and also contains Bi2212 phase. The content of the Bi2212 phase in this oxide superconductor 1 is preferably 5 mol% or more and 20 mol% or less. The metal coating 2 is made of, for example, silver.
[0033]
In the above description, the multifilamentary oxide superconducting wire has been described. However, a single-core oxide superconducting wire (superconducting filament) is covered with a metal covering material mainly composed of silver. The present invention can also be applied to a superconducting wire.
[0034]
【Example】
Hereinafter, examples of the present invention will be described.
[0035]
First, according to the method described with reference to FIG. 1, a tape-shaped Bi-based oxide having a multi-core structure having 61 cores, an outer diameter of 4.2 mm, a thickness of 0.24 mm, and a silver ratio of 1.5 is used. Superconducting wire was made.
[0036]
The annealing (step S3) in FIG. 1 was performed in an oxygen stream, the annealing time was 20 hours, and the annealing temperature was changed as shown in Table 2 below. Further, the amount of the Bi2212 phase in the oxide superconductor 1 was also changed. Table 2 also shows the respective critical current values Ic at 77K and 20K before annealing and the respective critical current values Ic at 77K and 20K after annealing of each sample.
[0037]
The wires used are selected from the same lot, and the cross-sectional areas of the superconducting portions in each wire are all the same. Therefore, the magnitude of the critical current value Ic in Table 1 below is proportional to the critical current density Jc (Jc = Ic / cross-sectional area of the superconducting portion).
[0038]
[Table 2]
Figure 2004119248
[0039]
From the results shown in Table 2, by performing annealing at a temperature of 300 ° C. or more and 600 ° C. or less in an oxygen atmosphere, the critical current value Ic (critical current density Jc) at a low temperature (20 K) is higher than before annealing. You can see that. Further, by setting the amount of Bi2212 phase in oxide superconductor 1 to 5 mol% or more and 20 mol% or less, critical current value Ic after annealing becomes 530 A or more, and critical current value Ic (critical current density Jc) It can be seen that the absolute value of has increased.
[0040]
In addition, the critical current values Ic of the oxide superconducting wire at various temperatures (K) before annealing and after annealing at a temperature of 500 ° C. were examined. The result is shown in FIG.
[0041]
From the results of FIG. 3, it is understood that the critical current value Ic is higher in the sample after annealing than in the sample before annealing from about 20 K or less.
[0042]
The embodiments and examples disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
[0043]
【The invention's effect】
As described above, according to the method for modifying a bismuth-based oxide superconducting wire of the present invention, the annealing in an oxygen atmosphere changes the oxygen content of the Bi2212 phase, and thus the critical current density at a low temperature of about 20K. Is improved.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a method for manufacturing and a method for modifying an oxide superconducting wire according to an embodiment of the present invention.
2 is a cross-sectional view showing a configuration of a multifilamentary oxide superconducting wire formed through the process shown in FIG.
FIG. 3 is a diagram showing a critical current value Ic at each temperature (K) of an oxide superconducting wire before annealing and after annealing at a temperature of 500 ° C.
[Explanation of symbols]
1 oxide superconductor, 2 metal coating material, 5 oxide superconducting wire.

Claims (4)

Bi2223相を主体として含み、かつBi2212相を含む酸化物超電導体を、銀を主体とする材質よりなる金属被覆材で被覆した酸化物超電導線材を、酸素を含む雰囲気中で300℃以上600℃以下の温度でアニールすることを特徴とする、ビスマス系酸化物超電導線材の改質方法。An oxide superconductor containing Bi2223 phase as a main component and an oxide superconductor containing Bi2212 phase coated with a metal coating material made of a material mainly composed of silver, in an atmosphere containing oxygen at 300 ° C or higher and 600 ° C or lower. A method for modifying a bismuth-based oxide superconducting wire, comprising annealing at a temperature of: 前記酸素を含む雰囲気は酸素が100mol%の雰囲気であることを特徴とする、請求項1に記載のビスマス系酸化物超電導線材の改質方法。The method for modifying a bismuth-based oxide superconducting wire according to claim 1, wherein the atmosphere containing oxygen is an atmosphere containing 100 mol% of oxygen. 20mol%以下の酸素濃度を有する雰囲気下で、かつ800℃以上の温度で熱処理された前記酸化物超電導線材に前記アニールが行なわれることを特徴とする、請求項1または2に記載のビスマス系酸化物超電導線材の改質方法。The bismuth-based oxidation according to claim 1 or 2, wherein the annealing is performed on the oxide superconducting wire that has been heat-treated in an atmosphere having an oxygen concentration of 20 mol% or less and at a temperature of 800C or more. For modifying superconducting wire. 前記酸化物超電導体におけるBi2212相の含有量は5mol%以上20mol%以下であることを特徴とする、請求項1〜3のいずれかに記載のビスマス系酸化物超電導線材の改質方法。The method for modifying a bismuth-based oxide superconducting wire according to any one of claims 1 to 3, wherein the content of the Bi2212 phase in the oxide superconductor is 5 mol% or more and 20 mol% or less.
JP2002282602A 2002-09-27 2002-09-27 Method for producing bismuth oxide superconducting wire Expired - Fee Related JP3735092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002282602A JP3735092B2 (en) 2002-09-27 2002-09-27 Method for producing bismuth oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002282602A JP3735092B2 (en) 2002-09-27 2002-09-27 Method for producing bismuth oxide superconducting wire

Publications (2)

Publication Number Publication Date
JP2004119248A true JP2004119248A (en) 2004-04-15
JP3735092B2 JP3735092B2 (en) 2006-01-11

Family

ID=32276710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002282602A Expired - Fee Related JP3735092B2 (en) 2002-09-27 2002-09-27 Method for producing bismuth oxide superconducting wire

Country Status (1)

Country Link
JP (1) JP3735092B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216379A (en) * 2005-02-03 2006-08-17 Sumitomo Electric Ind Ltd Bismuth based oxide superconducting wire rod and its manufacturing method
US7514388B2 (en) 2005-02-02 2009-04-07 Sumitomo Electric Industries, Ltd. Method of producing a material of oxide superconductor, method of producing an oxide superconducting wire, and superconducting apparatus
US7784169B2 (en) 2004-06-24 2010-08-31 Sumitomo Electric Industries, Ltd. Method of manufacturing superconducting wire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7784169B2 (en) 2004-06-24 2010-08-31 Sumitomo Electric Industries, Ltd. Method of manufacturing superconducting wire
US7514388B2 (en) 2005-02-02 2009-04-07 Sumitomo Electric Industries, Ltd. Method of producing a material of oxide superconductor, method of producing an oxide superconducting wire, and superconducting apparatus
JP2006216379A (en) * 2005-02-03 2006-08-17 Sumitomo Electric Ind Ltd Bismuth based oxide superconducting wire rod and its manufacturing method
JP4507899B2 (en) * 2005-02-03 2010-07-21 住友電気工業株式会社 Bismuth oxide superconducting wire and method for producing the same, superconducting equipment using the bismuth oxide superconducting wire

Also Published As

Publication number Publication date
JP3735092B2 (en) 2006-01-11

Similar Documents

Publication Publication Date Title
JP3450328B2 (en) Improved processing of oxide superconductors
US20090197771A1 (en) Method of manufacturing oxide superconducting wire, method of modifying oxide superconducting wire and oxide superconducting wire
JPH10512387A (en) Formation of torsional texture of superconducting oxide composite article
WO1991000622A1 (en) Silver doped superconductor composite
JP3735092B2 (en) Method for producing bismuth oxide superconducting wire
WO2006112195A1 (en) Process for producing bismuth-based oxide superconductor, and superconductive wire
EP1780734A1 (en) Method for producing superconducting wire
Motowidlo et al. Multifilament BPSCCO superconductor: fabrication and heat treatment study
JP4039260B2 (en) Manufacturing method of oxide superconducting wire and raw material powder of oxide superconducting wire
JP4507899B2 (en) Bismuth oxide superconducting wire and method for producing the same, superconducting equipment using the bismuth oxide superconducting wire
JP3858830B2 (en) Manufacturing method of oxide superconducting wire
JP4696811B2 (en) Manufacturing method of Bi-based superconductor
JP2006216380A (en) Bismuth based oxide superconducting wire rod and its manufacturing method
EP1865515A1 (en) Re123 oxide superconductor and method for manufacturing same
US6894006B1 (en) Method for forming bismuth-based superconducting ceramics
KR100821209B1 (en) Manufacturing method of high temperature superconductor thick films by using cu-free precursors on ni substrates
JP3614461B2 (en) Heat treatment method for high temperature superconductors
JP4496902B2 (en) Superconducting wire manufacturing method
JP4375134B2 (en) Superconducting wire manufacturing method
JP4261568B2 (en) Manufacturing method of oxide superconducting wire
JP2008218220A (en) Method of manufacturing oxide superconductive wire
JP2008186775A (en) Manufacturing method of oxide superconducting wire material
Galinski et al. The dependence of Jc on bending strain in round multifilament Bi2Sr2CaC2Ox wires sheathed in Ag and Ag alloys
Fischer et al. V3Ga superconductors with a high critical current density
JPH06349348A (en) Oxide superconductive wire material and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees