JPH10321809A - Semiconductor storage element manufacturing method - Google Patents

Semiconductor storage element manufacturing method

Info

Publication number
JPH10321809A
JPH10321809A JP9128450A JP12845097A JPH10321809A JP H10321809 A JPH10321809 A JP H10321809A JP 9128450 A JP9128450 A JP 9128450A JP 12845097 A JP12845097 A JP 12845097A JP H10321809 A JPH10321809 A JP H10321809A
Authority
JP
Japan
Prior art keywords
film
ferroelectric film
ferroelectric
heat treatment
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9128450A
Other languages
Japanese (ja)
Inventor
Nobuhito Ogata
信人 緒方
Yasuyuki Ito
康幸 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP9128450A priority Critical patent/JPH10321809A/en
Publication of JPH10321809A publication Critical patent/JPH10321809A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a ferroelectric film of a dense crystal structure, capable of forming a ferroelectric film of dense crystal structure on the surface of a lower electrode, even in a Bi-layered structure compound, in which coarsened crystal grains are easily generated by separating crystallization steps into a plurality of stages. SOLUTION: A Ti adhesive layer 3 and then a lower Pt electrode 4 are formed on a silicon substrate 1, having a silicon oxide film 2 formed by thermal oxidation. Next, on the lower Pt electrode 4, a layer of an MOD solution of SrBi2 Ta2 O9 is coated. After having been subjected to a dry step, the SrBi2 Ta2 O9 film is crystallized by a heat treatment at a substrate temperature of 600 deg.C under a reduced pressure and oxygen atmosphere. Thereafter, coating and drying steps are repeatedly conducted three times on the SrBi2 Ta2 O9 film 6 to provide the SrBi2 Ta2 O9 film 6 with a desired film thickness by the MOD method and to turn the film 6 into an amorphous or microcrystal state by heat treatment. After an upper Pt electrode 9 is formed on the SrBi2 Ta2 O9 film 7, the heat treatment is conducted at a substrate temperature of 600 deg.C under a reduced pressure and oxygen atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、強誘電体薄膜を用
いた不揮発性半導体記憶素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonvolatile semiconductor memory using a ferroelectric thin film.

【0002】[0002]

【従来の技術】近年、不揮発性メモリであるEPROM
やEEPROM、フラッシュメモリ等は読み出し時間こ
そDRAM並であるが、書き込み時間が長く高速度動作
は期待できない。これに対して、強誘電体キャパシタを
用いた不揮発性メモリである強誘電体メモリは、読み出
し、書き込み共にDRAM並であり、高速動作の期待で
きる不揮発性メモリである。デバイス構造は、強誘電体
キャパシタ1つと選択トランジスタ1つで1セルを構成
するのが一般的である。
2. Description of the Related Art In recent years, an EPROM which is a nonvolatile memory
The read time of an EEPROM, an EEPROM, a flash memory, or the like is comparable to that of a DRAM, but the write time is long and high-speed operation cannot be expected. On the other hand, a ferroelectric memory, which is a nonvolatile memory using a ferroelectric capacitor, is comparable to a DRAM in both reading and writing, and can be expected to operate at high speed. The device structure generally comprises one cell with one ferroelectric capacitor and one select transistor.

【0003】強誘電体キャパシタに用いる強誘電体材料
として、これまでよく検討されてきたPZTに比べて疲
労特性がよく、低電圧駆動が可能なビスマス(Bi)系
層状構造化合物が注目され、現在盛んに検討されてい
る。例えば、Bi4Ti312、SrBi2Ta29、S
rBi2Nb29、SrBi2(Ta1-xNbx)O9、B
aBi2Nb29、BaBi2Ta29、PbBi2Nb2
9、PbBi2Ta29、PbBi4Ti415、SrB
4Ti415、BaBi4Ti415、Sr2Bi4Ti5
18、Ba2Bi4Ta518、Pb2Bi4Ti518、P
2Bi4Ti518、Na0.5Bi4.5Ti415、K0.5
Bi4.5Ti415等が挙げられ、中でもSrBi2Ta2
9やSrBi2(Ta1-xNbx29(0<x≦1)が
好ましい。
As a ferroelectric material used for a ferroelectric capacitor, a bismuth (Bi) -based layered structure compound which has better fatigue characteristics and can be driven at a lower voltage than PZT, which has been well studied, has attracted attention. It is being actively studied. For example, Bi 4 Ti 3 O 12 , SrBi 2 Ta 2 O 9 , S
rBi 2 Nb 2 O 9 , SrBi 2 (Ta 1-x Nb x ) O 9 , B
aBi 2 Nb 2 O 9 , BaBi 2 Ta 2 O 9 , PbBi 2 Nb 2
O 9 , PbBi 2 Ta 2 O 9 , PbBi 4 Ti 4 O 15 , SrB
i 4 Ti 4 O 15 , BaBi 4 Ti 4 O 15 , Sr 2 Bi 4 Ti 5
O 18 , Ba 2 Bi 4 Ta 5 O 18 , Pb 2 Bi 4 Ti 5 O 18 , P
b 2 Bi 4 Ti 5 O 18 , Na 0.5 Bi 4.5 Ti 4 O 15 , K 0.5
Bi 4.5 Ti 4 O 15 and the like, among which SrBi 2 Ta 2
O 9 and SrBi 2 (Ta 1-x Nb x ) 2 O 9 (0 <x ≦ 1) are preferred.

【0004】これらのBi系層状構造化合物材料はPZ
T等の強誘電体と異なり、MOD法、ゾル−ゲル法、M
OCVD法、スパッタリング法等のいずれの方法を用い
ても、700〜800℃程度の高温の熱処理で強誘電体
を結晶化させる必要がある。しかしながら、上述のよう
な高温の熱処理は、スイッチング用MOSFETのトラ
ンジスタ特性の劣化、層間絶縁膜やキャパシタ電極の剥
離など、悪影響を与えるという問題点がある。特に強誘
電体メモリを高集積化するためにはスタック型構造の実
現が不可欠であるが、下部電極とのコンタクトにポリシ
リコンプラグを用いる場合、高温プロセスでの酸化が問
題となる。
[0004] These Bi-based layered structure compound materials are PZ
Unlike ferroelectrics such as T, MOD method, sol-gel method, M
Regardless of which method such as the OCVD method or the sputtering method is used, it is necessary to crystallize the ferroelectric by a heat treatment at a high temperature of about 700 to 800 ° C. However, there is a problem that the above-described high-temperature heat treatment has an adverse effect such as deterioration of the transistor characteristics of the switching MOSFET and peeling of the interlayer insulating film and the capacitor electrode. In particular, in order to highly integrate a ferroelectric memory, realization of a stacked structure is indispensable. However, when a polysilicon plug is used for contact with a lower electrode, oxidation in a high-temperature process becomes a problem.

【0005】これを解決する方法の一つとして、SrB
2Ta29の結晶化のための熱処理を減圧下(10T
orr以下)の酸素雰囲気中で行う方法(Jpn.J.
Appl.Phys.Vol.35(1996)pp.
4925〜4929)がある。この方法によれば、ウエ
ハ温度が550〜600℃程度の温度でSrBi2Ta2
9を結晶化させることができる。
As one of the methods for solving this, SrB
The heat treatment for crystallization of i 2 Ta 2 O 9 was performed under reduced pressure (10 T
or less) in an oxygen atmosphere (Jpn.J.
Appl. Phys. Vol. 35 (1996) pp.
4925-4929). According to this method, when the wafer temperature is about 550 to 600 ° C., SrBi 2 Ta 2
O 9 can be crystallized.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述の
ような低圧力下での低温熱処理においてもSrBi2
29等のBi系層状構造化合物の粗大結晶粒による大
きなリーク電流や低い耐圧が問題となっている。この粗
大結晶粒の成長は膜を所望膜厚までアモルファスまたは
微結晶粒の状態で堆積した後、一括で結晶化させる際に
生じると考えられ、結晶粒間にピンホール等の隙間がで
きることが大きなリーク電流や低い絶縁耐圧の原因と思
われる。
However, even in the low-temperature heat treatment under low pressure as described above, SrBi 2 T
A large leak current and a low withstand voltage due to coarse crystal grains of a Bi-based layered structure compound such as a 2 O 9 have become problems. It is considered that the growth of the coarse crystal grains occurs when the film is deposited in a state of amorphous or fine crystal grains to a desired film thickness and then crystallized at once, and a gap such as a pinhole is formed between the crystal grains. It seems to be the cause of leakage current and low dielectric strength.

【0007】[0007]

【課題を解決するための手段】請求項1記載の本発明の
半導体記憶素子の製造方法は、基板上に下部電極、所望
の膜厚の強誘電体膜及び上部電極から成る強誘電体キャ
パシタを有する半導体記憶素子の製造方法において、上
記下部電極上に所定の膜厚の上記強誘電体膜材料を成膜
し、熱処理することにより、上記強誘電体膜を結晶化
し、該結晶化された強誘電体膜上に、所望の膜厚になる
まで強誘電体膜材料を成膜し、熱処理することにより、
該強誘電体膜材料をアモルファス状態又は一部に結晶状
態が存在するアモルファス状態にし、該強誘電体膜上に
上記上部電極を形成した後、該強誘電体膜の結晶化のた
めの熱処理をすることを特徴とするものである。
According to a first aspect of the present invention, there is provided a method of manufacturing a semiconductor memory device, comprising: forming a ferroelectric capacitor comprising a lower electrode, a ferroelectric film having a desired thickness and an upper electrode on a substrate. In the method for manufacturing a semiconductor memory device having the above, the ferroelectric film material having a predetermined thickness is formed on the lower electrode, and the heat treatment is performed to crystallize the ferroelectric film. By forming a ferroelectric film material on the dielectric film until a desired film thickness is reached and performing a heat treatment,
The ferroelectric film material is changed to an amorphous state or an amorphous state in which a crystalline state exists partially, and after forming the upper electrode on the ferroelectric film, a heat treatment for crystallization of the ferroelectric film is performed. It is characterized by doing.

【0008】また、請求項2記載の本発明の半導体記憶
素子の製造方法は、基板上に下部電極、所望の膜厚の強
誘電体膜及び上部電極から成る強誘電体キャパシタを有
する半導体記憶素子の製造方法において、上記下部電極
上に所定の膜厚の上記強誘電体膜材料を成膜し、熱処理
することにより、上記強誘電体膜を結晶化し、該結晶化
された強誘電体膜上に、所定の膜厚の強誘電体膜材料を
成膜し、熱処理することにより、該強誘電体膜を結晶化
する工程を一又は複数回繰り返すことにより、所望の膜
厚の強誘電体膜を形成し、該強誘電体膜上に上記上部電
極を形成した後、該強誘電体膜の結晶化のための熱処理
をすることを特徴とするものである。
According to a second aspect of the present invention, there is provided a semiconductor memory device having a ferroelectric capacitor comprising a lower electrode, a ferroelectric film having a desired thickness and an upper electrode on a substrate. In the manufacturing method, the ferroelectric film material having a predetermined thickness is formed on the lower electrode, and the heat treatment is performed to crystallize the ferroelectric film, and the ferroelectric film is crystallized on the crystallized ferroelectric film. A ferroelectric film material having a desired thickness is formed by repeating a step of crystallizing the ferroelectric film one or more times by forming a ferroelectric film material having a predetermined thickness and performing heat treatment. After forming the upper electrode on the ferroelectric film, a heat treatment for crystallization of the ferroelectric film is performed.

【0009】また、請求項3記載の半導体素子の製造方
法は、上記結晶化のための熱処理を圧力を1Torr以
上且つ10Torr以下、基板温度を500℃以上且つ
700℃以下として行うことを特徴とする、請求項1又
は請求項2記載の半導体記憶素子の製造方法である。
In a third aspect of the present invention, the heat treatment for crystallization is performed at a pressure of 1 Torr to 10 Torr and a substrate temperature of 500 ° C. to 700 ° C. A method for manufacturing a semiconductor memory device according to claim 1 or 2.

【0010】また、請求項4記載の半導体素子の製造方
法は、上記強誘電体膜材料がビスマス系層状構造化合物
であることを特徴とする、請求項1又は請求項2又は請
求項3記載の半導体記憶素子の製造方法である。
Further, in the method of manufacturing a semiconductor device according to the present invention, the ferroelectric film material is a bismuth-based layered structure compound. This is a method for manufacturing a semiconductor storage element.

【0011】更に、請求項5記載の半導体素子の製造方
法は、上記ビスマス系層状構造化合物がSrBi2(T
1-xNbx29(0<x≦1)であることを特徴とす
る、請求項4記載の半導体素子の製造方法である。
Further, in the method of manufacturing a semiconductor device according to the present invention, the bismuth-based layer structure compound may be SrBi 2 (T
5. The method according to claim 4, wherein a 1-x Nb x ) 2 O 9 (0 <x ≦ 1).

【0012】[0012]

【実施の形態】以下、実施の形態に基づいて本発明につ
いて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments.

【0013】図1は本発明の第1の実施の形態の半導体
記憶素子の製造工程図であり、図2は本発明の第2の実
施の形態の半導体記憶素子の前半の製造工程図であり、
図3は本発明の第2の実施の形態の半導体記憶素子の後
半の製造工程図であり、図4は従来の強誘電体キャパシ
タを有する半導体記憶素子の製造工程図である。
FIG. 1 is a manufacturing process diagram of a semiconductor memory device according to a first embodiment of the present invention, and FIG. 2 is a manufacturing process diagram of a first half of a semiconductor memory device according to a second embodiment of the present invention. ,
FIG. 3 is a manufacturing process diagram of the second half of the semiconductor memory device according to the second embodiment of the present invention, and FIG. 4 is a manufacturing process diagram of a conventional semiconductor memory device having a ferroelectric capacitor.

【0014】本発明のおける強誘電体キャパシタを有す
る半導体記憶素子に用いる基板は、通常半導体装置や集
積回路等の基板として使用することができる基板であれ
ば、特に限定されるものではなく、シリコン等の半導体
基板、MgO等の酸化物結晶基板、硝子基板、形成しよ
うとする素子の種類、用途に応じて適宜選択することが
できるが、中でもシリコン基板が望ましい。この基板上
には、Bi系層状化合物の強誘電体薄膜が形成されてい
る。
The substrate used for the semiconductor memory device having a ferroelectric capacitor according to the present invention is not particularly limited as long as it can be used as a substrate for a semiconductor device or an integrated circuit. And the like, an oxide crystal substrate such as MgO, a glass substrate, the type of element to be formed, and the purpose of use. Among them, a silicon substrate is preferable. A ferroelectric thin film of a Bi-based layered compound is formed on this substrate.

【0015】また、強誘電体膜は、Bi系層状構造化合
物であるが、例えば、Bi4Ti312、SrBi2Ta2
9、SrBi2Nb29、SrBi2(Ta1-xNbx
9、BaBi2Nb29、BaBi2Ta29、PbB
2Nb29、PbBi2Ta29、PbBi4Ti
415、SrBi4Ti415、BaBi4Ti415、S
2Bi4Ti518、Ba2Bi4Ta518、Pb2Bi4
Ti518、Pb2Bi4Ti518、Na0.5Bi4.5Ti
415、K0.5Bi4.5Ti415等が挙げられ、中でもS
rBi2Ta29やSrBi2(Ta1-xNbx29(0
<x≦1)が好ましい。
The ferroelectric film is a Bi-based layered structure compound, for example, Bi 4 Ti 3 O 12 , SrBi 2 Ta 2
O 9 , SrBi 2 Nb 2 O 9 , SrBi 2 (Ta 1-x Nb x )
O 9 , BaBi 2 Nb 2 O 9 , BaBi 2 Ta 2 O 9 , PbB
i 2 Nb 2 O 9 , PbBi 2 Ta 2 O 9 , PbBi 4 Ti
4 O 15 , SrBi 4 Ti 4 O 15 , BaBi 4 Ti 4 O 15 , S
r 2 Bi 4 Ti 5 O 18 , Ba 2 Bi 4 Ta 5 O 18 , Pb 2 Bi 4
Ti 5 O 18, Pb 2 Bi 4 Ti 5 O 18, Na 0.5 Bi 4.5 Ti
4 O 15 , K 0.5 Bi 4.5 Ti 4 O 15 and the like.
rBi 2 Ta 2 O 9 or SrBi 2 (Ta 1-x Nb x ) 2 O 9 (0
<X ≦ 1) is preferred.

【0016】これらの強誘電体膜は基板上にゾル−ゲル
法、MOD(Metal Organic Decom
position)法等の塗布成膜法によって形成され
る。この膜形成方法においては、上記薄膜を構成する一
部の元素の塩または金属アルコキシド等を含む有機溶媒
と、他の元素の塩又は金属アルコキシド等を含む有機溶
媒とを混合することによって原料溶液を調製し、この原
料溶液をスピンコート法等により一回の塗布で20〜1
00nm程度の膜厚で塗布し、100〜300℃程度の
乾燥工程を行う。本発明では、強誘電体膜の結晶化焼成
法として、通常の常圧での焼成法に比べて低温で結晶化
させることが可能な圧力(1〜10Torr)の減圧雰
囲気中での焼成を行うことを特徴とする。
These ferroelectric films are formed on a substrate by a sol-gel method or MOD (Metal Organic Decom).
It is formed by a coating film forming method such as a position method. In this film forming method, a raw material solution is prepared by mixing an organic solvent containing a salt or a metal alkoxide of some of the elements constituting the thin film and an organic solvent containing a salt or a metal alkoxide of another element. Prepared, and this raw material solution is coated in a single application by spin coating or the like for 20 to 1
It is applied with a thickness of about 00 nm, and a drying step at about 100 to 300 ° C. is performed. In the present invention, as a method of crystallizing and firing the ferroelectric film, firing is performed in a reduced-pressure atmosphere at a pressure (1 to 10 Torr) at which the crystallization can be performed at a lower temperature than in a normal firing method at normal pressure. It is characterized by the following.

【0017】従来の減圧焼成法では、所望の膜厚まで塗
布、乾燥を繰り返した後に減圧焼成によって強誘電体膜
の結晶化を行っていた。これに対して、本実施の形態に
おいては、まず1〜2回の塗布、乾燥によって20〜8
0nm程度の膜厚で堆積した後、まず最初の減圧焼成を
圧力1Torr以上且つ10Torr以下(以下、「1
〜10Torr」とする)の減圧酸素雰囲気中で基板温
度を500℃以上且つ700℃以下(以下、「500〜
700℃」とする。)の焼成を10〜60分間程度行
う。
In the conventional vacuum firing method, the ferroelectric film is crystallized by vacuum firing after repeated application and drying to a desired film thickness. On the other hand, in the present embodiment, first, the coating and drying are performed once or twice and the coating is performed for 20 to 8 times.
After depositing with a film thickness of about 0 nm, the first baking under reduced pressure is performed at a pressure of 1 Torr or more and 10 Torr or less (hereinafter, “1”).
The substrate temperature is set to 500 ° C. or more and 700 ° C. or less in a reduced-pressure oxygen atmosphere (hereinafter referred to as “500 to 10 Torr”).
700 ° C. ”. B) is performed for about 10 to 60 minutes.

【0018】その後さらに所望の厚さまで塗布、乾燥を
繰り返した後、常圧の酸素、窒素混合雰囲気中で、基板
温度550〜650℃、時間5〜30秒の焼成によりア
モルファス状態又は微結晶状態(一部に結晶状態が存在
するアモルファス状態)にするか、または再度、圧力1
〜10Torrの減圧酸素雰囲気中における、基板温度
500〜700℃、10〜60分間の結晶化焼成を行
う。
Thereafter, the coating and drying are repeated to a desired thickness, and then fired in a mixed atmosphere of oxygen and nitrogen at normal pressure at a substrate temperature of 550 to 650 ° C. for 5 to 30 seconds to form an amorphous state or a microcrystalline state ( (Amorphous state in which a crystalline state exists partially), or pressure 1 again.
The crystallization calcination is performed at a substrate temperature of 500 to 700 ° C. for 10 to 60 minutes in a reduced-pressure oxygen atmosphere of 10 to 10 Torr.

【0019】この後、この強誘電体薄膜上に上部電極と
なるPtを形成、加工後、リーク電流の抑制と強誘電体
薄膜の十分な結晶化を目的とした、やはり圧力1〜10
Torrの減圧酸素雰囲気中における、基板温度500
〜700℃、10〜60分間の焼成を加えることによ
り、強誘電体キャパシタを得る。
Thereafter, Pt to be an upper electrode is formed on the ferroelectric thin film. After processing, the Pt is applied at a pressure of 1 to 10 for the purpose of suppressing leakage current and sufficiently crystallizing the ferroelectric thin film.
A substrate temperature of 500 in a reduced-pressure oxygen atmosphere of Torr
A ferroelectric capacitor is obtained by baking at ~ 700 ° C for 10-60 minutes.

【0020】強誘電体膜形成方法として、このような方
法を用いれば、特に下部電極付近における膜の緻密性が
向上し、リーク電流の増大や絶縁耐圧劣化の原因となる
粗大結晶粒間のピンホール等の発生が抑制され、リーク
電流、絶縁耐圧に優れた強誘電体キャパシタを得ること
ができる。
If such a method is used as a method of forming a ferroelectric film, the denseness of the film particularly near the lower electrode is improved, and the pin between coarse crystal grains which causes an increase in leak current and a deterioration in dielectric strength is reduced. The generation of holes and the like is suppressed, and a ferroelectric capacitor excellent in leak current and dielectric strength can be obtained.

【0021】また、上記強誘電体膜の形成方法は、塗
布、成膜法だけでなく、MOCVD法、スパッタリング
法、レーザーアブレーション法、反応性蒸着法等を用い
て、膜を堆積し、20〜80nm程度堆積した段階で、
減圧焼成による結晶化を行い、さらに上記形成法で所望
膜厚まで堆積後、減圧焼成による結晶化を行う方法を用
いてもよい。但し、容易に均一性の高い膜を形成するに
は、塗布法を用いることが望ましい。
The ferroelectric film can be formed not only by coating and film formation but also by MOCVD, sputtering, laser ablation, reactive evaporation, or the like. At the stage where 80nm is deposited,
A method may be used in which crystallization is performed by firing under reduced pressure, and further, crystallization is performed by firing under reduced pressure after deposition to a desired film thickness by the above formation method. However, in order to easily form a highly uniform film, it is desirable to use a coating method.

【0022】以下、図1を用いて、本発明の一実施の形
態の強誘電体キャパシタを有する半導体記憶素子の製造
工程を説明する。
Hereinafter, a manufacturing process of a semiconductor memory device having a ferroelectric capacitor according to an embodiment of the present invention will be described with reference to FIG.

【0023】まず、熱酸化により膜厚200nmのシリ
コン酸化膜2を形成したシリコン基板1上に、スパッタ
リング法により、Ti密着層3、その後下部Pt電極4
をそれぞれ30nm、200nm形成する。
First, a Ti adhesion layer 3 and then a lower Pt electrode 4 are formed on a silicon substrate 1 on which a silicon oxide film 2 having a thickness of 200 nm is formed by thermal oxidation.
Are formed at 30 nm and 200 nm, respectively.

【0024】次に、この下部Pt電極4上に、強誘電体
材料として、SrBi2Ta29のMOD溶液(組成比
Sr/Bi/Ta=8/24/20)を1層50nm厚
程度塗布し、250℃、5分間の乾燥工程を施した(図
1(a))後、圧力3Torrの減圧酸素雰囲気中にお
いて、基板温度600℃、30分間の熱処理により結晶
化を行った(図1(b))。尚、図1において、符号5
は乾燥工程後のSrBi2Ta29膜を示し、符号6は
結晶化されたSrBi2Ta29膜を示す。
Next, a MOD solution of SrBi 2 Ta 2 O 9 (composition ratio Sr / Bi / Ta = 8/24/20) as a ferroelectric material is formed on the lower Pt electrode 4 to a thickness of about 50 nm. After applying and drying at 250 ° C. for 5 minutes (FIG. 1A), crystallization was performed by heat treatment at a substrate temperature of 600 ° C. for 30 minutes in a reduced-pressure oxygen atmosphere at a pressure of 3 Torr (FIG. 1). (B)). Note that in FIG.
Denotes a SrBi 2 Ta 2 O 9 film after the drying step, and reference numeral 6 denotes a crystallized SrBi 2 Ta 2 O 9 film.

【0025】その後、この結晶化されたSrBi2Ta2
9膜6上に、さらにMOD法による、塗布、乾燥を3
回繰り返して所望膜厚200nm程度とし、常圧の酸素
雰囲気中において、基板温度600℃、5分間の熱処理
でアモルファスまたは微結晶状態とした。そして、この
SrBi2Ta29膜7上に上部Pt電極9を形成(図
1(c))後、圧力3Torrの減圧酸素雰囲気中にお
ける、基板温度600℃、30分間の熱処理を加えた
(図1(d))。尚、図1において、符号7は塗布/乾
燥工程を3回行った後のSrBi2Ta29膜を示す。
Thereafter, the crystallized SrBi 2 Ta 2
On the O 9 film 6, apply and dry by MOD method 3
This was repeated twice to obtain a desired film thickness of about 200 nm, and a heat treatment was performed at a substrate temperature of 600 ° C. for 5 minutes in an oxygen atmosphere at normal pressure to obtain an amorphous or microcrystalline state. Then, after forming the upper Pt electrode 9 on the SrBi 2 Ta 2 O 9 film 7 (FIG. 1C), a heat treatment was performed at a substrate temperature of 600 ° C. for 30 minutes in a reduced-pressure oxygen atmosphere at a pressure of 3 Torr ( FIG. 1 (d)). In FIG. 1, reference numeral 7 denotes the SrBi 2 Ta 2 O 9 film after performing the coating / drying process three times.

【0026】このような工程によりキャパシタ素子を作
製することにより、まずMOD溶液の1層目の塗布段階
での強誘電体膜(SrBi2Ta29膜)を結晶化させ
ているので、この段階で粗大な結晶粒が成長しにくく、
特に下部Pt電極付近での膜の緻密性が向上し、リーク
電流が抑制され、絶縁耐圧が向上する。
Since the ferroelectric film (SrBi 2 Ta 2 O 9 film) in the step of applying the first layer of the MOD solution is first crystallized by manufacturing the capacitor element by such a process, It is difficult for coarse crystal grains to grow at the stage,
In particular, the density of the film near the lower Pt electrode is improved, the leakage current is suppressed, and the dielectric strength is improved.

【0027】次に、上述の第1の実施の形態に示す本発
明の製造工程により作製されたキャパシタ素子と、以下
に示す従来技術により作製されたキャパシタ素子とを比
較する。
Next, the capacitor element manufactured by the manufacturing process of the present invention shown in the above-described first embodiment and the capacitor element manufactured by the following conventional technique will be compared.

【0028】従来技術による方法としては、まず、上述
の実施の形態と同様にシリコン基板11上にシリコン酸
化膜12、Ti密着層13、下部Pt電極14を順次形
成し、その下部Pt電極14上にSrBi2Ta29
MOD溶液(組成比Sr/Bi/Ta=8/24/2
0)を4回塗布、乾燥を繰り返し、200nm程度の膜
厚とした(図4(a))後、常圧の酸素雰囲気中におい
て、基板温度600℃、5分間の熱処理でアモルファ
ス、または微結晶状態にした。尚、図3における符号2
0は4回塗布、乾燥を繰り返した後のSrBi2Ta2
9膜を示す。そして、このSrBi2Ta29膜上に上部
Pt電極19を形成した(図4(b))後、圧力3To
rrの減圧酸素雰囲気中における、基板温度600℃、
30分間の熱処理を加えた(図4(c))。図3におけ
る符号21は結晶されたSrBi2Ta29膜を示す。
As a method according to the prior art, first, a silicon oxide film 12, a Ti adhesion layer 13, and a lower Pt electrode 14 are sequentially formed on a silicon substrate 11 in the same manner as in the above-described embodiment. MOD solution of SrBi 2 Ta 2 O 9 (composition ratio Sr / Bi / Ta = 8/24/2)
4) is repeated four times and dried to obtain a film thickness of about 200 nm (FIG. 4 (a)). State. Note that reference numeral 2 in FIG.
0 is SrBi 2 Ta 2 O after repeating coating and drying four times.
Shows 9 membranes. After the upper Pt electrode 19 was formed on the SrBi 2 Ta 2 O 9 film (FIG. 4B), the pressure was 3 To.
substrate temperature 600 ° C. in a reduced pressure oxygen atmosphere of rr,
Heat treatment was applied for 30 minutes (FIG. 4 (c)). Reference numeral 21 in FIG. 3 indicates a crystallized SrBi 2 Ta 2 O 9 film.

【0029】これら、上述の実施の形態と比較例のキャ
パシタ素子の上部電極面積は1×10-4cm2とした。
この2つの素子のリーク電流と絶縁耐圧を評価した結果
を表1に示す。
The upper electrode area of the capacitor element of the above embodiment and the comparative example was 1 × 10 −4 cm 2 .
Table 1 shows the results of evaluating the leakage current and the dielectric strength of these two devices.

【0030】[0030]

【表1】 [Table 1]

【0031】これにより、本実施の形態におけるキャパ
シタ素子は、従来法のもにより、リーク電流、絶縁耐圧
ともに改善されていることが分かる。また、上記強誘電
体膜は、SrBi2Ta29膜を用いているが、これ
に、Nbを置換したSrBi2(Ta1-xNbx2
9(0<x≦1)でも同様の効果が得られる。
From this, it can be seen that the capacitor element in the present embodiment has improved both the leak current and the dielectric strength with the conventional method. Further, the ferroelectric film uses an SrBi 2 Ta 2 O 9 film, which is replaced with SrBi 2 (Ta 1-x Nb x ) 2 O in which Nb is substituted.
9 (0 <x ≦ 1) provides the same effect.

【0032】次に、本発明の第2の実施の形態について
説明する。尚、本第2の実施の形態に用いる基板、強誘
電体材料は、第1の実施の形態と同様であり、また、強
誘電体膜の形成方法も、第1の実施の形態と同様、ソル
−ゲル法、MOD法の塗布法により行われる。
Next, a second embodiment of the present invention will be described. The substrate and the ferroelectric material used in the second embodiment are the same as those in the first embodiment, and the method of forming the ferroelectric film is the same as in the first embodiment. It is performed by a coating method such as a sol-gel method or a MOD method.

【0033】第2の実施の形態では、1回の塗布で、2
0〜80nm程度の膜厚で堆積し、各塗布、乾燥工程毎
に減圧焼成を圧力1〜10Torrの減圧酸素雰囲気中
で基板温度500〜700℃の焼成を10〜60分間程
度行い、これを所望の膜厚が得られるまで繰り返す。こ
の減圧焼成工程の直前に一旦、500〜600℃程度の
常圧酸素または酸素窒素混合雰囲気中での熱処理を行っ
てもよい。
In the second embodiment, one application is performed for 2 times.
Deposited in a film thickness of about 0 to 80 nm, baking under reduced pressure for each coating and drying step, baking at a substrate temperature of 500 to 700 ° C. for about 10 to 60 minutes in a reduced pressure oxygen atmosphere at a pressure of 1 to 10 Torr. Repeat until a film thickness of Immediately before this reduced pressure firing step, a heat treatment may be performed once in a mixed atmosphere of normal pressure oxygen or oxygen nitrogen at about 500 to 600 ° C.

【0034】その後、この強誘電体膜上に上部電極とな
るPtを形成、加工後、リーク電流の抑制と強誘電体膜
の十分な結晶化を目的とした、圧力1〜10Torrの
減圧酸素雰囲気中における、基板温度500〜700
℃、10〜60分間の焼成を加えることにより、強誘電
体膜キャパシタを得る。
Thereafter, Pt to be an upper electrode is formed on the ferroelectric film, and after processing, a reduced pressure oxygen atmosphere at a pressure of 1 to 10 Torr for the purpose of suppressing leakage current and sufficiently crystallizing the ferroelectric film. Substrate temperature in the range of 500 to 700
A ferroelectric film capacitor is obtained by baking at 10 ° C. for 10 to 60 minutes.

【0035】強誘電体膜形成法として、このような方法
を用いれば、膜全体の緻密性が向上し、第1の実施の形
態の場合以上に、リーク電流抑制、絶縁耐圧向上に優れ
た強誘電体キャパシタを得ることができる。
When such a method is used as a method of forming a ferroelectric film, the denseness of the entire film is improved, and a ferroelectric film excellent in suppressing leakage current and improving dielectric breakdown voltage is more effective than in the first embodiment. A dielectric capacitor can be obtained.

【0036】以下、図2及び図3を用いて、第2の実施
の形態に示す強誘電体キャパシタを有する半導体記憶素
子の製造工程を説明する。
Hereinafter, a manufacturing process of the semiconductor memory device having the ferroelectric capacitor according to the second embodiment will be described with reference to FIGS.

【0037】まず、熱酸化により膜厚200nmのシリ
コン酸化膜2を形成したシリコン基板1上に、スパッタ
リング法により、Ti密着層3、その後下部Pt電極4
をそれぞれ30nm、200nm形成する。
First, a Ti adhesion layer 3 and then a lower Pt electrode 4 are formed on a silicon substrate 1 on which a 200 nm-thick silicon oxide film 2 is formed by thermal oxidation.
Are formed at 30 nm and 200 nm, respectively.

【0038】次に、この下部Pt電極4上に、強誘電体
材料として、SrBi2Ta29のMOD溶液(組成比
Sr/Bi/Ta=8/24/20)を1層50nm厚
程度塗布し、250℃、5分間の乾燥工程を施した(図
2(a))後、圧力3Torrの減圧酸素雰囲気中にお
いて、基板温度600℃、30分間の熱処理により結晶
化を行った(図2(b))。尚、図2において、符号5
aは塗布/乾燥工程後のSrBi2Ta29膜を示し、
符号6aは結晶化されたSrBi2Ta29膜を示す。
Next, a MOD solution of SrBi 2 Ta 2 O 9 (composition ratio Sr / Bi / Ta = 8/24/20) is formed on the lower Pt electrode 4 as a ferroelectric material to a thickness of about 50 nm. After coating and performing a drying process at 250 ° C. for 5 minutes (FIG. 2A), crystallization was performed by heat treatment at a substrate temperature of 600 ° C. for 30 minutes in a reduced-pressure oxygen atmosphere at a pressure of 3 Torr (FIG. 2). (B)). Incidentally, in FIG.
a shows the SrBi 2 Ta 2 O 9 film after the coating / drying step,
Reference numeral 6a indicates a crystallized SrBi 2 Ta 2 O 9 film.

【0039】その後、このSrBi2Ta29膜6aを
1層塗布して結晶化させた基板上に、さらにMOD法に
よる、塗布、乾燥、減圧焼成の工程を3回繰り返して所
望膜厚200nm程度とした(図2(c)〜図3
(c))。そして、このSrBi2Ta29膜6d上に
上部Pt電極9を形成後、圧力3Torrの減圧酸素雰
囲気中における、基板温度600℃、30分間の熱処理
を加えた(図3(d))。尚、図2において、符号5
b、5c、5dは塗布/乾燥工程後のSrBi2Ta2
9膜を示し、符号6b、6c、6dは結晶化されたSr
Bi2Ta29膜を示す。また、キャパシタ素子の上部
Pt電極面積は1×10-4cm2とした。
After that, the SrBi 2 Ta 2 O 9 film 6a is coated on one layer and crystallized on the substrate, and the steps of coating, drying and baking under reduced pressure by the MOD method are repeated three times to obtain a desired film thickness of 200 nm. (FIGS. 2C-3)
(C)). Then, after forming the upper Pt electrode 9 on the SrBi 2 Ta 2 O 9 film 6d, a heat treatment was performed at a substrate temperature of 600 ° C. for 30 minutes in a reduced-pressure oxygen atmosphere at a pressure of 3 Torr (FIG. 3D). Incidentally, in FIG.
b, 5c and 5d are SrBi 2 Ta 2 O after the coating / drying step.
9 film indicates, reference numeral 6b, 6c, 6d was crystallized Sr
2 shows a Bi 2 Ta 2 O 9 film. The area of the upper Pt electrode of the capacitor element was 1 × 10 −4 cm 2 .

【0040】この第2の実施の形態に示す方法により作
製されたキャパシタ素子のリーク電流、絶縁耐圧の評価
を表1に示す。この表1に示すように、第2の実施の形
態に示す方法で作製されたキャパシタ素子が最もリーク
電流抑制及び絶縁耐圧に優れている。また、上記強誘電
体膜は、SrBi2Ta29膜を用いているが、これ
に、Nbを置換したSrBi2(Ta1-xNbx2
9(0<x≦1)でも同様の効果が得られる。
Table 1 shows the evaluation of the leak current and the dielectric strength of the capacitor element manufactured by the method shown in the second embodiment. As shown in Table 1, the capacitor element manufactured by the method described in the second embodiment is most excellent in the suppression of the leak current and the withstand voltage. Further, the ferroelectric film uses an SrBi 2 Ta 2 O 9 film, which is replaced with SrBi 2 (Ta 1-x Nb x ) 2 O in which Nb is substituted.
9 (0 <x ≦ 1) provides the same effect.

【0041】[0041]

【発明の効果】以上、詳細に説明したように、本発明を
用いることにより、下部電極表面上には結晶構造の緻密
な強誘電体膜が形成でき、粗大結晶粒の生じやすいBi
系層状構造化合物においても、結晶化を複数段階に分け
て行うことにより、結晶構造の緻密な強誘電体膜を得る
ことができる。
As described in detail above, by using the present invention, a dense ferroelectric film having a crystal structure can be formed on the surface of the lower electrode, and Bi is likely to form coarse crystal grains.
Even in the system layered structure compound, by performing crystallization in a plurality of stages, a ferroelectric film having a dense crystal structure can be obtained.

【0042】また、請求項2に記載の発明を用いること
により、より強誘電体膜の緻密性が向上する。
Further, by using the invention described in claim 2, the denseness of the ferroelectric film is further improved.

【0043】また、請求項3に記載の本発明を用いるこ
とにより、下部電極とのコンタクトプラグにポリシリコ
ンを用いる場合の、高温プロセスでの酸化の問題が解消
される。
By using the present invention, the problem of oxidation in a high-temperature process when polysilicon is used for the contact plug with the lower electrode is eliminated.

【0044】また、請求項4及び請求項5に記載の本発
明を用いることにより、疲労耐性に優れ、低電圧駆動が
可能な半導体メモリ素子が得られる。
Further, by using the present invention according to the fourth and fifth aspects, a semiconductor memory element which is excellent in fatigue resistance and can be driven at a low voltage can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の強誘電体キャパシ
タを有する半導体記憶素子の製造工程図である。
FIG. 1 is a manufacturing process diagram of a semiconductor memory device having a ferroelectric capacitor according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態の強誘電体キャパシ
タを有する半導体記憶素子の前半の製造工程図である。
FIG. 2 is a manufacturing process diagram of a first half of a semiconductor memory device having a ferroelectric capacitor according to a second embodiment of the present invention.

【図3】本発明の第2の実施の形態の強誘電体キャパシ
タを有する半導体記憶素子の後半の製造工程図である。
FIG. 3 is a manufacturing process diagram of a second half of a semiconductor memory device having a ferroelectric capacitor according to a second embodiment of the present invention.

【図4】従来技術を用いた強誘電体キャパシタを有する
半導体記憶素子の製造工程図である。
FIG. 4 is a manufacturing process diagram of a semiconductor memory device having a ferroelectric capacitor using a conventional technique.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 シリコン酸化膜 3 Ti密着層 4 下部Pt電極 5、5a、5b、5c、5d 塗布/乾燥工程後のSr
Bi2Ta29膜 6、6a、6b、6c、6d、8 結晶化されたSrB
2Ta29膜 7 塗布/乾燥工程を3回繰り返した後のSrBi2
29膜 9 上部Pt電極
Reference Signs List 1 silicon substrate 2 silicon oxide film 3 Ti adhesion layer 4 lower Pt electrode 5, 5a, 5b, 5c, 5d Sr after coating / drying process
Bi 2 Ta 2 O 9 film 6, 6a, 6b, 6c, 6d, 8 Crystallized SrB
i 2 Ta 2 O 9 film 7 SrBi 2 T after repeating coating / drying process three times
a 2 O 9 film 9 Upper Pt electrode

フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/8247 29/788 29/792 Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 21/8247 29/788 29/792

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板上に下部電極、所望の膜厚の強誘電
体膜及び上部電極から成る強誘電体キャパシタを有する
半導体記憶素子の製造方法において、 上記下部電極上に所定の膜厚の上記強誘電体膜材料を成
膜し、熱処理することにより、上記強誘電体膜を結晶化
し、 該結晶化された強誘電体膜上に、所望の膜厚になるまで
強誘電体膜材料を成膜し、熱処理することにより、該強
誘電体膜材料をアモルファス状態又は一部に結晶状態が
存在するアモルファス状態にし、該強誘電体膜上に上記
上部電極を形成した後、該強誘電体膜の結晶化のための
熱処理をすることを特徴とする、半導体記憶素子の製造
方法。
1. A method for manufacturing a semiconductor memory device having a ferroelectric capacitor comprising a lower electrode, a ferroelectric film of a desired thickness and an upper electrode on a substrate, comprising: By forming a ferroelectric film material and performing a heat treatment, the ferroelectric film is crystallized, and a ferroelectric film material is formed on the crystallized ferroelectric film until a desired film thickness is obtained. Forming a ferroelectric film material in an amorphous state or an amorphous state in which a crystalline state exists partially, and forming the upper electrode on the ferroelectric film. Performing a heat treatment for crystallization of the semiconductor memory device.
【請求項2】 基板上に下部電極、所望の膜厚の強誘電
体膜及び上部電極から成る強誘電体キャパシタを有する
半導体記憶素子の製造方法において、 上記下部電極上に所定の膜厚の上記強誘電体膜材料を成
膜し、熱処理することにより、上記強誘電体膜を結晶化
し、 該結晶化された強誘電体膜上に、所定の膜厚の強誘電体
膜材料を成膜し、熱処理することにより、該強誘電体膜
を結晶化する工程を一又は複数回繰り返すことにより、
所望の膜厚の強誘電体膜を形成し、 該強誘電体膜上に上記上部電極を形成した後、該強誘電
体膜の結晶化のための熱処理をすることを特徴とする、
半導体記憶素子の製造方法。
2. A method of manufacturing a semiconductor memory device having a ferroelectric capacitor comprising a lower electrode, a ferroelectric film of a desired thickness and an upper electrode on a substrate, wherein the semiconductor device has a predetermined thickness on the lower electrode. A ferroelectric film material is formed and heat-treated to crystallize the ferroelectric film, and a ferroelectric film material having a predetermined thickness is formed on the crystallized ferroelectric film. By heat treatment, by repeating the step of crystallizing the ferroelectric film one or more times,
Forming a ferroelectric film of a desired thickness, forming the upper electrode on the ferroelectric film, and then performing a heat treatment for crystallization of the ferroelectric film,
A method for manufacturing a semiconductor storage element.
【請求項3】 上記結晶化のための熱処理を圧力を1T
orr以上且つ10Torr以下、基板温度を500℃
以上且つ700℃以下として行うことを特徴とする、請
求項1又は請求項2記載の半導体記憶素子の製造方法。
3. The heat treatment for crystallization is performed at a pressure of 1T.
Torr or more and 10 Torr or less, substrate temperature of 500 ° C.
3. The method for manufacturing a semiconductor memory device according to claim 1, wherein the method is performed at a temperature of 700 ° C. or less.
【請求項4】 上記強誘電体膜材料がビスマス系層状構
造化合物であることを特徴とする、請求項1又は請求項
2又は請求項3記載の半導体記憶素子の製造方法。
4. The method for manufacturing a semiconductor memory device according to claim 1, wherein said ferroelectric film material is a bismuth-based layered compound.
【請求項5】 上記ビスマス系層状構造化合物がSrB
2(Ta1-xNbx29(0<x≦1)であることを
特徴とする、請求項4記載の半導体素子の製造方法。
5. The method according to claim 1, wherein the bismuth-based layer structure compound is SrB.
characterized in that i is 2 (Ta 1-x Nb x ) 2 O 9 (0 <x ≦ 1), The method as claimed in claim 4, wherein.
JP9128450A 1997-05-19 1997-05-19 Semiconductor storage element manufacturing method Pending JPH10321809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9128450A JPH10321809A (en) 1997-05-19 1997-05-19 Semiconductor storage element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9128450A JPH10321809A (en) 1997-05-19 1997-05-19 Semiconductor storage element manufacturing method

Publications (1)

Publication Number Publication Date
JPH10321809A true JPH10321809A (en) 1998-12-04

Family

ID=14985021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9128450A Pending JPH10321809A (en) 1997-05-19 1997-05-19 Semiconductor storage element manufacturing method

Country Status (1)

Country Link
JP (1) JPH10321809A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184044B1 (en) 1997-12-10 2001-02-06 Nec Corporation Thin film capacitor including perovskite-type oxide layers having columnar structure and granular structure
US6338970B1 (en) 1998-12-24 2002-01-15 Hyundai Electronics Industries Co., Ltd, Ferroelectric capacitor of semiconductor device and method for fabricating the same
KR100321699B1 (en) * 1998-12-30 2002-03-08 박종섭 A method for forming ferroelectric capacitor using niobium-tantalum alloy glue layer
KR100333662B1 (en) * 1999-06-28 2002-04-24 박종섭 Method for forming ferroelectric capacitor
EP1150344A3 (en) * 2000-04-28 2004-07-14 Sharp Kabushiki Kaisha Semiconductor device having ferroelectric thin film and fabricating method therefor
WO2005074032A1 (en) * 2004-01-28 2005-08-11 Fujitsu Limited Semiconductor device and its manufacturing method
US6964873B2 (en) 1999-10-29 2005-11-15 Fujitsu Limited Semiconductor device having a ferroelectric capacitor and a fabrication process thereof
KR100540256B1 (en) * 1998-12-30 2006-05-16 주식회사 하이닉스반도체 Ferroelectric Capacitor Formation Method for Nonvolatile Memory Devices
KR100600054B1 (en) * 2000-06-30 2006-07-13 주식회사 하이닉스반도체 Method for forming FeRAM capable of preventing oxidation of polysilicon plug during ferroelectric crystallization process
JP2009105228A (en) * 2007-10-23 2009-05-14 Fujitsu Microelectronics Ltd Manufacturing method of semiconductor device
US7816150B2 (en) 2006-11-13 2010-10-19 Fujitsu Semiconductor Limited Fabrication process of semiconductor device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184044B1 (en) 1997-12-10 2001-02-06 Nec Corporation Thin film capacitor including perovskite-type oxide layers having columnar structure and granular structure
KR100324589B1 (en) * 1998-12-24 2002-04-17 박종섭 Method for fabricating ferroelectric capacitor in semiconductor device
US6338970B1 (en) 1998-12-24 2002-01-15 Hyundai Electronics Industries Co., Ltd, Ferroelectric capacitor of semiconductor device and method for fabricating the same
KR100540256B1 (en) * 1998-12-30 2006-05-16 주식회사 하이닉스반도체 Ferroelectric Capacitor Formation Method for Nonvolatile Memory Devices
KR100321699B1 (en) * 1998-12-30 2002-03-08 박종섭 A method for forming ferroelectric capacitor using niobium-tantalum alloy glue layer
KR100333662B1 (en) * 1999-06-28 2002-04-24 박종섭 Method for forming ferroelectric capacitor
US6964873B2 (en) 1999-10-29 2005-11-15 Fujitsu Limited Semiconductor device having a ferroelectric capacitor and a fabrication process thereof
EP1150344A3 (en) * 2000-04-28 2004-07-14 Sharp Kabushiki Kaisha Semiconductor device having ferroelectric thin film and fabricating method therefor
US6936876B2 (en) 2000-04-28 2005-08-30 Sharp Kabushiki Kaisha Semiconductor device having ferroelectric thin film and fabricating method therefor
KR100600054B1 (en) * 2000-06-30 2006-07-13 주식회사 하이닉스반도체 Method for forming FeRAM capable of preventing oxidation of polysilicon plug during ferroelectric crystallization process
WO2005074032A1 (en) * 2004-01-28 2005-08-11 Fujitsu Limited Semiconductor device and its manufacturing method
US7816150B2 (en) 2006-11-13 2010-10-19 Fujitsu Semiconductor Limited Fabrication process of semiconductor device
JP2009105228A (en) * 2007-10-23 2009-05-14 Fujitsu Microelectronics Ltd Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
JP3188179B2 (en) Method of manufacturing ferroelectric thin film element and method of manufacturing ferroelectric memory element
JP2000208725A (en) Semiconductor device and its manufacture
JP2001007299A (en) Lead germanate ferroelectric structure of multilayer electrode and deposition method thereof
US7473565B2 (en) Semiconductor device and method of manufacturing the same
JP2002170938A (en) Semiconductor device and manufacturing method thereof
KR100378276B1 (en) Insulating material, substrate covered with an insulating film, method of producing the same, and thin-film device
JPH10321809A (en) Semiconductor storage element manufacturing method
JPH09252094A (en) Thin film capacitor and semiconductor device
Kawakubo et al. Novel ferroelectric epitaxial (Ba, Sr) TiO/sub 3/capacitor for deep sub-micron memory applications
JPH10173140A (en) Manufacture of ferroelectric capacitor and manufacture of ferroelectric memory device
JP2002057156A (en) Vapor growth method of metallic oxide dielectric film
US6309896B1 (en) Method of manufacturing a ferroelectric film
JP3294214B2 (en) Thin film capacitors
JP3543916B2 (en) Method of forming ferroelectric capacitor and method of manufacturing nonvolatile semiconductor memory device
JPH11233734A (en) Semiconductor memory element and its manufacture
JP3914171B2 (en) Semiconductor device and manufacturing method thereof
JP2001139313A (en) Method for manufacturing oxide film and method for manufacturing ferroelectric memory
JP3085285B2 (en) Method of forming ferroelectric film
JPH09321234A (en) Ferroelectric thin film device, manufacture thereof and ferroelectric memory device
JP2001338834A (en) Method of manufacturing dielectric capacitor
JP4315676B2 (en) Semiconductor memory device and manufacturing method thereof
JPH10223847A (en) Manufacture of ferroelectric thin film element, ferroelectric thin film element and ferroelectric memory device
JP2001028426A (en) Semiconductor device and manufacture thereof
KR19990005439A (en) Ferroelectric capacitor of semiconductor device and manufacturing method thereof
US6440751B1 (en) Method of manufacturing thin film and thin film capacitor