JPH10316702A - 微生物由来のキトサンおよびその製造方法 - Google Patents

微生物由来のキトサンおよびその製造方法

Info

Publication number
JPH10316702A
JPH10316702A JP13227197A JP13227197A JPH10316702A JP H10316702 A JPH10316702 A JP H10316702A JP 13227197 A JP13227197 A JP 13227197A JP 13227197 A JP13227197 A JP 13227197A JP H10316702 A JPH10316702 A JP H10316702A
Authority
JP
Japan
Prior art keywords
chitosan
culture
medium
absidia
genus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13227197A
Other languages
English (en)
Inventor
Sukeji Ono
典司 大野
Akio Tomomatsu
昭雄 友松
Junichi Suzuki
順一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rengo Co Ltd
Original Assignee
Rengo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rengo Co Ltd filed Critical Rengo Co Ltd
Priority to JP13227197A priority Critical patent/JPH10316702A/ja
Publication of JPH10316702A publication Critical patent/JPH10316702A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

(57)【要約】 【解決手段】 ユミケカビ属糸状菌を培地中で培養し、
得られる培養菌体を熱苛性処理してキトサンを採取する
ことを含むキトサンの製造方法であって、本培養中の培
養液中溶存酸素濃度が1〜6ppmであることを特徴と
する方法。また、100cP以上の粘度を有するユミケ
カビ属糸状菌由来キトサン。 【効果】 本発明の方法によれば、微生物から高分子量
のキトサンを高い生産効率で製造することができ、高品
質のキトサンを安価に且つ安定に供給することが可能と
なる点で有用である。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、微生物培養による
キトサンの製造方法およびそれによって得ることができ
る高分子量の微生物由来キトサンに関する。
【0002】
【従来の技術】キトサンは、カニ、エビなどの甲殻類や
昆虫類の外骨格を構成するセルロース様高分子化合物で
あるキチンのN−脱アセチル化物である。現在、地球上
で毎年1000億tものキチンおよびキトサンが生産さ
れており、セルロースに次ぐ巨大なバイオマスとして注
目されている。キトサンはアミノ基を持つため、イオン
交換体、固定化酵素やクロマトグラフィーの担体、重金
属吸着剤、核酸やエンドトキシン等の各種酸性物質の除
去剤として、また、生分解性であるため、カチオン系汚
泥凝集剤として用いられている。さらに、近年、高付加
価値の新たな用途が拓けてきている。すなわち、キトサ
ンは反応性に富んだアミノ基を持つので化学修飾による
分子設計が行いやすく、各種誘導体への出発物質として
重要視されており、また、生体適合性がよく毒性もない
ので手術用縫合糸や人工皮膚の素材として利用されてい
る。
【0003】一方、最近はキトサンの食物繊維としての
有用性が注目されてきており、その多くの生理機能(例
えば、血中コレステロール改善作用、腸内代謝改善作
用、血圧上昇抑制作用、免疫増強作用等)を活用した機
能性食品の開発が進められている。この場合の食品用機
能性素材としてのキトサンは、その分子量(一般には一
定濃度のキトサン溶液の粘度を指標とする)、並びに脱
アセチル化度等がきわめて重要な因子となる。これらに
関して、(財)日本健康・栄養食品協会によりキトサン
食品の規格基準が定められている。
【0004】従来、キトサンの工業的生産は、カニやエ
ビ等の甲殻類の外骨格を希酸で脱灰およびアルカリで除
タンパクして、単離したキチンを濃アルカリ中で熱処理
して脱アセチル化することにより行われてきた。しかし
ながら、この方法では、原料の供給が年度や季節に左右
されやすく、また、濫獲による生物資源の枯渇を招く恐
れもある。さらに、漁獲の時期等によって原料の品質が
大きく変動するため、一定品質の原料を安定に供給する
ことはきわめて困難である。また、キチンを脱アセチル
化する工程等で大量に生じるアルカリ性の廃水は、生化
学的酸素要求量(Biochemical Oxygen Demand; BOD)が
高く、周辺環境を汚染する原因となり好ましくない。そ
のために、多大な廃水処理工程が必要となり、結果とし
て生産コストが高くなるといった問題がある。したがっ
て、品質の安定したキトサンを常時効率良く生産するこ
とができ、しかも周辺環境への悪影響の少ないキトサン
の製造方法の開発が望まれていた。
【0005】かかる要望に対する一つの答えとして、微
生物によるキトサンの発酵生産が試みられている。ある
種の微生物や菌類の中には、細胞壁中にキチンとともに
相当量のキトサンを含むものがある。例えば、ケカビ科
(Mucoraceae)に属する糸状菌の細胞壁にキトサンが多
量に含まれていることは、Bartnicki-Garcia, Ann. Re
v. Microbiol., 22: 87 (1968) に既に記載されてい
る。朴らは、この性質に着目して、ケカビ科に属するア
ブシディア・コエルレア(Absidia coerulea)を培養
し、得られる培養菌体からキトサンを単離精製する方法
を開発した(特開平5−199892号公報)。
【0006】しかしながら、これまでに報告されている
微生物培養によるキトサンの製造方法は、いずれも生産
効率が低いために、除タンパク工程で激しい熱苛性処理
を行うことによりできるだけ収率の向上を図る必要があ
った。そのため、結果として得られるキトサンは、粘度
がせいぜい10〜20cP程度であり、「(財)日本健
康・栄養食品協会の定めるキトサン食品規格基準」であ
る100cP以上の粘度を有する高分子量のキトサン
は、発酵法によっては未だに得られていないのが現状で
ある。
【0007】
【発明が解決しようとする課題】したがって、本発明の
目的は、生産効率が高く且つ高分子量のキトサンを得る
ことができる、微生物由来のキトサンの製造方法を提供
することである。また、本発明のもう一つの目的は、前
記キトサン食品規格基準に見合う高分子量の微生物由来
キトサンの提供である。
【0008】
【課題を解決するための手段】本発明者らは、上記の目
的を達成すべくアブシディア・コエルレアを種々の培養
条件で培養し、キトサン生産に好適な条件を検討した。
一般に、糸状菌の通気攪拌培養では、胞子または菌糸核
の接種量が多いとパルプ状の菌糸体を形成するために培
養液の粘度が上がり、結果的に増殖速度の低下を招くと
いわれている。また、アブシディア・コエルレアの通気
攪拌培養において、攪拌速度を高くすると高い剪断力が
生じて菌糸の増殖に悪影響を与えるために、キトサン収
量が減少するとの報告がある。したがって、キトサンの
生産性を増大させるには、比較的穏和な通気攪拌条件で
培養するのが好ましいと一般に考えられていた。
【0009】これに対し、本発明者らは、比較的高密度
となるようにアブシディア・コエルレアの胞子または菌
糸核を接種しても、高攪拌速度条件下で培養することに
より、菌糸は一定の大きさのペレット状の凝集体を形成
し、その結果、意外にも従来法よりも高いキトサン生産
効率が得られることを見出した。さらに、除タンパク工
程で穏和な熱苛性処理を行うことにより、従来法よりも
なお数倍高い生産性を維持したまま、微生物由来として
は初めて100cP以上の粘度を有する高分子量キトサ
ンを製造することに成功して本発明を完成するに至っ
た。
【0010】すなわち、本発明は以下に示す通りのもの
である。 (1)ユミケカビ属(Absidia )に属する糸状菌を培地
中で培養し、得られる培養菌体を熱苛性処理してキトサ
ンを採取することを含むキトサンの製造方法であって、
本培養中、菌体の対数増殖期における培養液中の最少溶
存酸素量が1〜6ppmであることを特徴とする方法。 (2)本培養開始時に、該糸状菌の胞子または菌糸核を
培地100mlあたり5×105 〜5×107 個となる
ように接種することを特徴とする上記(1)のキトサン
の製造方法。 (3)培養菌体を、0.8〜1.5w/v%のNaOH
で、90〜105℃、30〜90分間熱苛性処理するこ
とを特徴とする上記(1)または(2)のキトサンの製
造方法。 (4)100cP以上の粘度を有することを特徴とする
ユミケカビ属糸状菌由来キトサン。
【0011】
【発明の実施の形態】本発明で用いられるキトサン生産
菌は、細胞壁構成成分として相当量のキトサンを含むも
のであれば特に限定されず、天然から分離されるものだ
けでなく、人為的にキトサン生産性を高めるように操作
された変異体もしくは組換え体をも包含する。好ましく
は、ユミケカビ属(Absidia )やクモノスカビ属(Rhiz
opus)に属する糸状菌、より好ましくは、ユミケカビ属
糸状菌、就中アブシディア・コエルレアが例示される。
アブシディア・コエルレアに属する幾つかの菌株は、財
団法人発酵研究所(大阪市淀川区十三本町2−17−8
5)より一般に入手することができる(例えば、Absidi
a coerulea IFO 5301 およびAbsidia coerulea IFO 443
5 )。
【0012】本発明のキトサンは、同化し得る炭素源お
よび窒素源を含む培地に、上記糸状菌の胞子、胞子を発
芽させて得た菌糸または菌糸をワーリングブレンダー等
で物理的に切断して調製される菌糸核を接種し、好まし
くは、例えば通気攪拌培養等の好気条件下に培養するこ
とにより産生することができる。
【0013】培地中の好ましい炭素源は、グルコース、
フルクトース、グリセロール、デンプン等であり、これ
らは単独で、または複数を組み合わせて使用することが
できる。その他にラクトース、アラビノース、キシロー
ス、デキストリン、糖蜜等が含まれていてもよい。
【0014】窒素源としては、酵母エキス、ペプトン、
麦芽エキス、コーンスティープリカー(CSL)、グル
テン粉、綿実粉、大豆粉、乾燥酵母、尿素、アミノ酸等
の有機窒素化合物、およびアンモニウム塩(硫酸アンモ
ニウム、硝酸アンモニウム、リン酸アンモニウムなど)
等の無機窒素化合物が例示される。これらは単独でも、
複数を組み合わせて使用してもよい。経済性およびキト
サン生産性を考慮すると、安価なCSLおよび無機窒素
化合物等を主要窒素源として、高価な酵母エキス、ペプ
トン等を含まない培地がより好ましい。
【0015】上に例示した炭素源および窒素源は、純粋
な形で使用する必要はない。むしろ純度の低い物質に
は、微量の成長因子や相当量の無機栄養素が含まれてお
り、使用に適している場合が多い。
【0016】さらに、所望により、炭酸カルシウム、リ
ン酸カリウムまたはリン酸ナトリウム、ヨウ化カリウム
またはヨウ化ナトリウム、塩化カリウムまたは塩化ナト
リウム、硫酸マグネシウム、塩化コバルト等の無機塩類
を添加することもできる。また、培養液が発泡する場合
には、必要に応じて液体パラフィン、高級アルコール、
植物油、ミネラル油またはシリコン等の消泡剤を添加し
てもよい。
【0017】大型発酵タンク内で大量生産させる場合に
は、キトサン生産工程における生育遅延を回避するため
に、また、必要胞子数を低減させるために、胞子を発芽
させて菌糸シード調製し、これを発酵タンク中に接種す
ることが好ましい。すなわち、まず比較的少量の培地に
胞子または菌糸核を接種して培養(前培養)し、対数増
殖期にある前培養体(菌糸がパルプ状に増殖している場
合にはワーリングブレンダー等で物理的に切断して菌糸
核として)の全部または一部を無菌的に発酵タンク中に
接種して培養(本培養)するのがより効率的である。前
培養は1回または徐々にスケールアップしながら複数回
行うことができる。フラスコ培養等の少量生産の場合
は、前培養を行わずに直接本培養を行ってもよい。
【0018】前培養に用いる培地と本培養に用いる培地
は、炭素源、窒素源および他の培地成分の混合比が実質
的に同一であるか、あるいは若干異なってもよいが、本
培養培地の基質濃度は、培養液単位容積あたりのキトサ
ン生産量を増大させるために、前培養培地の基質濃度よ
りも高いことが好ましい。より好ましくは、前培養培地
の基質濃度の約5〜10倍程度であり、具体的には、炭
素源が約5〜10%程度である。必要以上に培地の基質
濃度を高めると、基質阻害により逆にキトサン生産量の
低下を引き起こすので望ましくない。
【0019】前培養培地および本培養培地のpHは、通
常pH約4〜7、好ましくはpH約5〜6.5の範囲で
ある。前培養および本培養は、通常20〜33℃、好ま
しくは25〜30℃程度の温度条件で、1〜3日間行わ
れるが、これらは培養条件および培養の規模に応じて適
宜変化させてもよい。
【0020】培養液の攪拌および通気は種々の方法によ
り行うことができる。攪拌はプロペラまたはそれに類似
した機械的攪拌装置、培養器の回転、振盪、種々のポン
プ装置または滅菌空気の培養液中の通過により行えばよ
い。また、通気は滅菌空気を培養液中を通過させること
により行えばよい。本発明の方法においては、本培養
中、菌体の対数増殖期において、培養液中のDO値を常
時1〜6ppm、好ましくは2〜5ppmの範囲で維持
することにより、高いキトサン生産効率が得られる。D
Oの調整は、通常、通気量および/または攪拌速度を変
化させることにより行われるが、上記の好ましいDO値
は、培養中、例えば5l容ジャーファーメンターを用い
た培養では、通気量を0.5〜1.5vvm、攪拌速度
を500〜1000rpm、好ましくは600〜900
rpmに保つことにより達成することができる。もし、
培養液中のDO値が1ppm未満となるような通気攪拌
条件とした場合には、菌糸は繊維状(パルプ状)に増殖
し、培養液の粘度が高くなり、その結果糖消費が著しく
遅延してキトサン生産効率は大幅に低下する。また仮
に、培養液中のDO値が6ppmを超えるような通気攪
拌条件とした場合には、高い剪断力により菌糸の増殖は
抑制され、キトサン生産性は低下する。
【0021】本培養は、回分培養に限らず、培養中に制
限基質である炭素源や窒素源または新鮮な培地を追加す
る半回分培養、反復回分培養、反復半回分培養または連
続培養等を用いることもできる。
【0022】本培養終了後、得られた培養液を濾過およ
び/または遠心分離して菌体を回収した後、強アルカ
リ、特にNaOHを加えて熱苛性処理することにより夾
雑タンパク質が変性除去される。アルカリとしてNaO
Hを使用する場合、菌体を0.5〜2w/v%、好まし
くは0.8〜1.5w/v%のNaOH溶液中、85〜
115℃、好ましくは90〜105℃で30〜90分間
処理すればよい。具体的には、例えば1w/v%のNa
OH溶液中、100℃で60分間の熱処理、等である。
熱苛性処理後、0.5〜5w/v%の酢酸で抽出し、不
溶性成分を遠心分離および/または濾過により除去した
後、上清をNaOH等のアルカリ溶液を用いて弱アルカ
リ性にすることによりキトサンを析出させる。析出した
キトサンは遠心分離および/または濾過により回収され
る。
【0023】本発明の糸状菌由来キトサン、特にユミケ
カビ属由来のキトサンは、100cP以上の粘度および
85%以上の脱アセチル化度を有することを特徴とす
る。従来得られている微生物由来キトサンの粘度はせい
ぜい10〜20cP程度であり、本発明のキトサンは従
来の微生物由来キトサンに比して分子量が非常に高い極
めて高品質のキトサンである。本発明のキトサンは上記
の製造方法により得ることができるが、製法はそれに限
定されるものではない。
【0024】
【実施例】以下に実施例を挙げて本発明を具体的に説明
するが、これらは単なる例示であって本発明を何ら限定
するものではない。
【0025】実施例1 キトサン生産効率に及ぼす培養
液中溶存酸素濃度の効果 500ml容三角フラスコ2本に、それぞれ前培養培地
(1w/v%グルコース,0.05w/v%酵母エキ
ス,0.5%ペプトン,0.25%硫酸アンモニウム,
0.05%リン酸水素二カリウム,0.05%塩化ナト
リウム,0.05%硫酸マグネシウム7水和物,0.0
01%塩化カルシウム2水和物)100mlを入れ、加
熱滅菌後、アブシディア・コエルレアIFO4435株
の胞子5×107 個を接種した。これらを回転振盪器を
用いて25℃、250rpmで24時間培養して前培養
体200mlを得た。一方、本培養培地(10w/v%
グルコース,6%CSL,2%硫酸アンモニウム,0.
5%リン酸水素二カリウム,0.25%硫酸カリウム,
0.2%硫酸マグネシウム7水和物,0.0025%塩
化カルシウム2水和物)3lを、5l容ジャーファーメ
ンター(ミツワ理化学工業社製,KMJ−5B型;攪拌
羽根:1/2D6枚平羽根タービン型攪拌羽根2段,邪
魔板4枚付)に入れ、高圧滅菌した。該本培養培地に上
記前培養体200mlを接種し、下記の4種の通気攪拌
条件下、培地pHを5.5に自動制御しながら29℃で
33〜50時間培養した(残存糖濃度が0%になり、p
Hが上昇し始めた時点で培養を終了した)。 条件1:通気量3l/分, 攪拌速度500ppm 条件2:通気量1.5l/分,攪拌速度600ppm 条件3:通気量3l/分, 攪拌速度750ppm 条件4:通気量3l/分, 攪拌速度1000ppm 培養液中のDO値は、本培養中連続的にモニタリングし
た。本培養終了後、菌体を回収し、2w/v%NaOH
を加えて115℃で1時間熱苛性処理を行った後、2w
/v%酢酸で抽出した。不溶性成分を遠心分離および濾
過により除去した後、上清にNaOHを加えて弱アルカ
リ性にすることによりキトサンを析出させた。遠心分離
により析出したキトサンを回収し、水洗後凍結乾燥して
収量を測定した。その結果を表1に示す。
【0026】
【表1】
【0027】通気量1.5l/分、攪拌速度600rp
mの場合、培養開始40時間後に残存糖濃度が0%とな
り、この時点で培養を終了した。一方、DO値は、菌糸
が増殖し、糖消費が始まる培養開始約6時間後以降徐々
に低下し始め、糖濃度が初濃度の約半分になる培養開始
27時間後に最低の2.24ppmを示した。しかし、
その後菌糸がペレット状の凝集体を形成すると、おそら
くペレット内部での酸素消費が低下するためにDO値は
徐々に上昇し、培養終了時には4ppmにまで回復し
た。他の通気攪拌条件においてもDO値は同様に推移
し、最小DO値は攪拌速度にほぼ比例的に変化した。最
小DO値が1.59〜5.5ppmの範囲でキトサン生
産速度は0.178〜0.261g/l・時間であり、
従来報告されているより数倍高い生産効率を示した。
【0028】さらに、各通気攪拌条件で得られたキトサ
ンの粘度および脱アセチル化度を測定した。0.5w/
v%酢酸にキトサンを0.5w/v%となるように溶
解、攪拌後、20℃でB型粘度計(東京計器製,BL
型)を用いて回転粘度を測定した。同じ溶液を用いてコ
ロイド滴定法により脱アセチル化度を測定した。その結
果を表2に示す。
【0029】
【表2】
【0030】いずれの条件においても得られたキトサン
は85%以上の脱アセチル化度を有していた。また、キ
トサンの粘度は攪拌速度が小さいほど高値を示したが、
500rpmでも68cPの粘度に留まった。
【0031】比較例1 従来の通気攪拌条件での培養に
おける培養液中溶存酸素濃度の変化 本培養時の通気量を3l/分、攪拌速度を300rpm
とする以外は、すべて実施例1と同一の条件で培養を行
った。その結果、菌糸はパルプ状に増殖して培養液中の
DO値は徐々に低下し、培養開始18時間後には0pp
mとなり、その後も再上昇はみられなかった。培養開始
70時間後に残存糖濃度を測定したところ8%を示し、
糖消費がほとんど進行していないことがわかったので、
この時点で培養を中止した。
【0032】実施例2 キトサン生産効率およびキトサ
ン粘度に及ぼす熱苛性処理の効果 本培養培地のCSL濃度を8%、本培養培地への前培養
体の接種量を150ml、培養時間を51時間とした以
外は、すべて実施例1の条件2と同一の条件で培養を行
った。本培養終了後培養菌体を回収し、表3に記載の処
理1〜17の各条件でそれぞれ熱苛性処理を行った後、
実施例1と同様の抽出および析出工程を経てキトサン凍
結乾燥品を得た。収量測定後、実施例1と同様の方法に
より各キトサンの粘度および脱アセチル化度を測定し
た。その結果を同じく表3に示す。2%NaOHで11
5℃、1時間処理した時(処理1)、キトサン収量は最
大となるが、逆にキトサンの粘度は34cPで最低であ
った。一方、1%NaOHで100℃、1時間処理した
時(処理9)、キトサン収量は前者に比して15%減少
したものの、なお従来報告されているよりも1.5倍〜
数倍高い生産効率を示し、しかも123cPの粘度を有
するより高分子量のキトサンが得られた。
【0033】
【表3】
【0034】実施例3 実施例1の条件2および条件3での培養により得られた
それぞれの培養菌体を、熱苛性処理を実施例2の処理9
の条件に変えて行う以外は、すべて実施例1と同様に処
理してキトサン凍結乾燥品を得た。収量を測定した後、
実施例1と同様の方法で各キトサンの粘度および脱アセ
チル化度を測定した。その結果を表4に示す。実施例1
での結果と比較すると、キトサン生産効率は約9〜14
%減少するが、キトサンの粘度は約2〜3倍となり、1
00cP以上の高分子量キトサンが得られた。
【0035】
【表4】
【0036】実施例4 キトサン生産効率に及ぼす菌体
接種量の効果 500ml容三角フラスコに培地(2w/v%グルコー
ス,0.1%酵母エキス,1%ペプトン,0.5%硫酸
アンモニウム,0.1%リン酸水素二カリウム,0.1
%塩化ナトリウム,0.1%硫酸マグネシウム7水和
物,0.01%塩化カルシウム2水和物)100mlを
入れ、加熱滅菌後、アブシディア・コエルレアIFO4
435株の胞子を1×106 〜1×109 個の範囲で変
化させて接種し(S1)、それぞれ回転振盪器中25
℃、250rpmで24時間培養した。各培養液(一次
培養体)の一部をそれぞれ同じ培地100mlの入った
別の500ml容三角フラスコに植え継ぎ(S2)、2
5℃、250rpmで72時間培養して二次培養体を得
た。それぞれについて菌糸の増殖を観察したところ、接
種量が多くなるにしたがって菌糸はより小さなペレット
状の凝集体を形成して増殖し、S2における培地100
mlあたりの接種量が5×105 〜5×107 個の時、
菌糸は直径1mm以下のペレットとなった。しかし、接
種量が5×107個を超えると菌糸はパルプ状に増殖し
た。二次培養体を、実施例1と同様の熱苛性処理、抽出
および析出工程を経てキトサン凍結乾燥品を得、収量を
測定した。その結果、S2における培地100mlあた
りの接種量が5×105 〜5×10 7 個の時に最大のキ
トサン生産速度が得られた(図1)。
【0037】実施例5 2段階前培養法 500ml容三角フラスコに実施例1と同一の前培養培
地100mlを入れ、加熱滅菌後、アブシディア・コエ
ルレアIFO4435株の胞子を2×108 個接種し、
回転振盪器中25℃、250rpmの条件で24時間培
養した。得られた前培養体(一次前培養体)の一部を同
じ前培養培地100mlの入った別の500ml容三角
フラスコ2本にそれぞれ植え継ぎ、25℃、250rp
mの条件で24時間培養して二次前培養体200mlを
得た。このうち150mlを実施例1と同一の本培養培
地3lに接種し、29℃、pH5.5、通気量1.5l
/分、攪拌速度600rpmの条件で52時間培養し
た。培養液中のDO値は、本培養中3.04ppmまで
低下し、その後上昇した。本培養終了後、培養液を2分
し、それぞれ実施例1および実施例3と同様に熱苛性処
理、抽出および析出工程を行ってキトサンを得た。収量
測定後、それぞれについて実施例1と同様の方法により
キトサンの粘度および脱アセチル化度を測定した。その
結果を表5に示す。キトサン生産速度、キトサン粘度、
脱アセチル化度のいずれについても前培養1回の場合と
同様の傾向を示した。
【0038】
【表5】
【0039】実施例6 多段階前培養法 500ml容三角フラスコに実施例1と同一の前培養培
地100mlを入れ、加熱滅菌後、アブシディア・コエ
ルレアIFO4435株の胞子を5×107 個接種し、
回転振盪器中25℃、250rpmの条件で72時間培
養したところ、菌糸はパルプ状に増殖した。得られた一
次前培養体をワーリングブレンダーを用いて切断、菌糸
核を調製し、その一部を同じ前培養培地の入った別の5
00ml容三角フラスコに植え継ぎ、同じ条件で72時
間培養した。この操作をさらに2回繰り返して四次前培
養体を得た。この中に含まれる菌糸核数を計測したとこ
ろ、100mlあたり約1×108 個であった。四次前
培養体200mlを、実施例1と同一の本培養培地3l
に接種し(本培養開始時の菌糸核密度が約6×10 6
/100mlとなる)、29℃、pH5.5、通気量3
l/分、攪拌速度750rpmの条件で29時間培養し
た。培養液中のDO値は、本培養中3.78ppmまで
低下し、その後上昇した。本培養終了後、菌体を回収し
て実施例1と同様に熱苛性処理、抽出および析出工程を
行ってキトサンを得た。その結果、培養液1lあたりの
キトサン収量は10.1gであり、これは乾燥菌体量の
25.2%に相当した。キトサン生産速度は0.348
g/l・時間で、前培養1回の場合に比べて3割程度生
産効率が向上した。収量測定後、実施例1と同様の方法
によりキトサンの粘度および脱アセチル化度を測定し
た。その結果、キトサンの粘度は54cP、脱アセチル
化度は88.7%であった。
【0040】
【発明の効果】本発明の方法によれば、従来よりも数倍
高い効率で、しかも100cP以上の粘度を有する高分
子量のキトサンを微生物から製造することができる。し
たがって、本発明の方法は、高品質のキトサンを安価に
且つ安定に供給する手段を提供する点で極めて有用であ
る。
【図面の簡単な説明】
【図1】アブシディア・コエルレアIFO4435株菌
糸核接種量とキトサン生産速度との相関を示す図であ
る。
フロントページの続き (72)発明者 鈴木 順一 福井県坂井郡金津町自由ヶ丘1丁目8番10 号 レンゴー株式会社金津化学品バイオ工 場内

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 ユミケカビ属(Absidia )に属する糸状
    菌を培地中で培養し、得られる培養菌体を熱苛性処理し
    てキトサンを採取することを含むキトサンの製造方法で
    あって、本培養中、菌体の対数増殖期における培養液中
    の最少溶存酸素量が1〜6ppmであることを特徴とす
    る方法。
  2. 【請求項2】 本培養開始時に、ユミケカビ属に属する
    糸状菌の胞子または菌糸核を培地100mlあたり5×
    105 〜5×107 個となるように接種することを特徴
    とする請求項1記載のキトサンの製造方法。
  3. 【請求項3】 培養菌体を、0.8〜1.5w/v%の
    NaOHで、90〜105℃、30〜90分間熱苛性処
    理することを特徴とする請求項1または2記載のキトサ
    ンの製造方法。
  4. 【請求項4】 100cP以上の粘度を有することを特
    徴とするユミケカビ属糸状菌由来キトサン。
JP13227197A 1997-05-22 1997-05-22 微生物由来のキトサンおよびその製造方法 Pending JPH10316702A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13227197A JPH10316702A (ja) 1997-05-22 1997-05-22 微生物由来のキトサンおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13227197A JPH10316702A (ja) 1997-05-22 1997-05-22 微生物由来のキトサンおよびその製造方法

Publications (1)

Publication Number Publication Date
JPH10316702A true JPH10316702A (ja) 1998-12-02

Family

ID=15077385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13227197A Pending JPH10316702A (ja) 1997-05-22 1997-05-22 微生物由来のキトサンおよびその製造方法

Country Status (1)

Country Link
JP (1) JPH10316702A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211893A (ja) * 2000-01-31 2001-08-07 Food Industry Res & Dev Inst キトサン及びキチンの生産
JP2002069101A (ja) * 2000-09-01 2002-03-08 Kyowa Technos:Kk 中性付近のキトサン水溶液、その乾燥物、およびそれらの製造法
EP1471149A1 (en) * 1999-07-08 2004-10-27 Food Industry Research and Development Institute Production of chitosan and chitin
KR100470610B1 (ko) * 2002-02-28 2005-02-21 경상대학교산학협력단 균류를 이용한 키토산 생산방법
JP2010162046A (ja) * 2010-03-30 2010-07-29 Food Industry Res & Dev Inst キトサン及びキチンの生産
JP2011200128A (ja) * 2010-03-24 2011-10-13 Ihi Corp 微生物濃縮装置
JP2021052698A (ja) * 2019-09-30 2021-04-08 株式会社Biomaterial in Tokyo 皮革様材料およびその製造方法
CN114540208A (zh) * 2022-03-28 2022-05-27 山东省林业科学研究院 一株高效解磷的犁头霉及其应用

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1471149A1 (en) * 1999-07-08 2004-10-27 Food Industry Research and Development Institute Production of chitosan and chitin
EP1471148A3 (en) * 1999-07-08 2004-11-03 Food Industry Research and Development Institute Production of chitosan and chitin
JP2001211893A (ja) * 2000-01-31 2001-08-07 Food Industry Res & Dev Inst キトサン及びキチンの生産
JP4708524B2 (ja) * 2000-01-31 2011-06-22 フード・インダストリー・リサーチ・アンド・デベロップメント・インスティチュート キトサン及びキチンの生産
JP2002069101A (ja) * 2000-09-01 2002-03-08 Kyowa Technos:Kk 中性付近のキトサン水溶液、その乾燥物、およびそれらの製造法
KR100470610B1 (ko) * 2002-02-28 2005-02-21 경상대학교산학협력단 균류를 이용한 키토산 생산방법
JP2011200128A (ja) * 2010-03-24 2011-10-13 Ihi Corp 微生物濃縮装置
JP2010162046A (ja) * 2010-03-30 2010-07-29 Food Industry Res & Dev Inst キトサン及びキチンの生産
JP2021052698A (ja) * 2019-09-30 2021-04-08 株式会社Biomaterial in Tokyo 皮革様材料およびその製造方法
CN114540208A (zh) * 2022-03-28 2022-05-27 山东省林业科学研究院 一株高效解磷的犁头霉及其应用
CN114540208B (zh) * 2022-03-28 2023-06-20 山东省林业科学研究院 一株高效解磷的犁头霉及其应用

Similar Documents

Publication Publication Date Title
EP0531991B1 (en) Method for preparing chitosan
CN1071460A (zh) 生产纳他霉素的发酵方法
JPH10316702A (ja) 微生物由来のキトサンおよびその製造方法
Kim et al. Optimization of culture conditions and continuous production of chitosan by the fungi, Absidia coerulea
WO2010058427A2 (en) Process for production and purification of polymyxin b sulfate
CN1117159C (zh) 新的微生物多糖结冷胶生产工艺
CN1515676A (zh) 脱乙酰壳多糖和壳多糖的生产
JP2002176996A (ja) 細菌細胞の表面に付着していないエキソポリサッカライドの産生
CN116396988B (zh) 一种微芒藻属微生物产多不饱和脂肪酸的方法
JP4132253B2 (ja) アンモニア耐性l(+)−乳酸産生能菌およびl(+)−乳酸の生産方法
KR100318755B1 (ko) 저온멸균법을 이용한 목질계 당화액으로부터 고농도에탄올 제조 방법
EP0047641B1 (en) Ethanol production by high performance bacterial fermentation
US4731329A (en) Ethanol production by high performance bacterial fermentation
CN109136313A (zh) 利用密西根克雷伯氏菌合成2’-脱氧腺苷的方法
JP3044284B2 (ja) 高凝集活性変異株
CN1034579A (zh) 微生物发酵正烷烃生产长链α·ω-二羧酸的方法
US4734368A (en) Process for the bioconversion of fumarate to L-malate
CN117587083B (zh) 一种黄原胶的发酵方法
JP4033914B2 (ja) エリスリトール産生微生物及びその製造方法
CN87100655A (zh) 生产l-山梨糖的方法
CN1245518C (zh) 发酵生产衣康酸的方法以及该方法所用的菌株
JPS63196298A (ja) 新規微生物
CN114369554B (zh) 一种谷氨酸棒状杆菌及其应用
US4830964A (en) Ethanol production by high performance bacterial fermentation
CN1081714A (zh) 利用微生物生产d-酒石酸的方法