JPH10188989A - Negative electrode for lead-acid battery - Google Patents

Negative electrode for lead-acid battery

Info

Publication number
JPH10188989A
JPH10188989A JP8344338A JP34433896A JPH10188989A JP H10188989 A JPH10188989 A JP H10188989A JP 8344338 A JP8344338 A JP 8344338A JP 34433896 A JP34433896 A JP 34433896A JP H10188989 A JPH10188989 A JP H10188989A
Authority
JP
Japan
Prior art keywords
lead
negative electrode
acid
active material
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8344338A
Other languages
Japanese (ja)
Inventor
Yoshiharu Arai
義晴 荒井
Imakichi Hirasawa
今吉 平沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP8344338A priority Critical patent/JPH10188989A/en
Publication of JPH10188989A publication Critical patent/JPH10188989A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the quantity of sodium lignosulfate in a negative electrode active material so as to lower unsatisfactory filling to improve the charging acceptability, and to reduce the calorific power to prevent the lowering of low-temperature high efficiency discharge capacity by adding sodium lignosulfate to a negative electrode plate for lead-acid battery restraining the flocculation of lead during the charging to refine lead particles, and adding a specified quantity of phosphoric acid or boric acid thereto. SOLUTION: A negative electrode active material paste formed by adding an addition agent such as sodium lignosulfonate and sulfuric acid to lead powder composed mainly of lead oxide, is filled in a collector, and aged, dried, and formed to obtain a negative electrode plate for lead-acid battery. At this stage, phosphoric acid or boric acid at 0.01-0.1wt.% (vs. lead powder) is added to the negative electrode active material. With this composition, the quantity of sodium lignosulfonate as a surfactant is reduced, and the paste is hardened to lower the imperfect filling and to improve the conductivity of an electrode plate and the charge acceptability is thereby improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉛蓄電池用陰極板
に関するものである。
The present invention relates to a cathode plate for a lead storage battery.

【0002】[0002]

【従来の技術】一般に、鉛蓄電池用陰極活物質ペースト
は、鉛酸化物を主体とする鉛粉に硫酸バリウム、カーボ
ン、リグニンスルホン酸ナトリウム等の添加物を加え、
硫酸と水とで混練され、製造される。これを、集電体に
充填した後、熟成、乾燥、化成して極板となる。鉛蓄電
池用陰極板の低温高率放電容量は、主として、活物質の
比表面積に依存しおり、リグニンスルホン酸ナトリウム
が、鉛粒子を微細化させる働きによることが知られてい
る。リグニンスルホン酸ナトリウムは、鉛と一酸化鉛に
は吸着し易いが、硫酸鉛にはほとんど吸着されないとい
う特徴を有している。そのため、化成初期において、硫
酸である電解液と一酸化鉛を主成分とする未化活物質と
が反応して硫酸鉛になると、これが吸着できずに電解液
中へと溶出してしまう。このため、特公昭60−436
26号公報の様に、電解液と接する極板表面部分のリグ
ニンスルホン酸ナトリウム量を確保して性能向上を図る
ために、この部分に添加量を多くしたペーストを塗り込
む方法が提案されている。
2. Description of the Related Art In general, a cathode active material paste for a lead-acid battery is prepared by adding additives such as barium sulfate, carbon, and sodium ligninsulfonate to lead powder mainly composed of lead oxide.
It is manufactured by kneading with sulfuric acid and water. After filling this into a current collector, it is aged, dried and chemically formed to form an electrode plate. The low-temperature high-rate discharge capacity of the lead-acid battery cathode plate mainly depends on the specific surface area of the active material, and it is known that sodium ligninsulfonate functions to refine lead particles. Sodium ligninsulfonate is characterized by being easily adsorbed by lead and lead monoxide, but hardly adsorbed by lead sulfate. For this reason, in the early stage of chemical formation, if the electrolyte solution of sulfuric acid reacts with the unactivated active material containing lead monoxide as a main component to become lead sulfate, it cannot be adsorbed and elutes into the electrolyte solution. For this reason, Japanese Patent Publication No. 60-436
As disclosed in Japanese Patent Publication No. 26, a method has been proposed in which a paste with a large amount of addition is applied to this portion in order to secure the amount of sodium ligninsulfonate on the surface of the electrode plate in contact with the electrolytic solution and improve the performance. .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、リグニ
ンスルホン酸ナトリウム量を増やすと、界面活性剤とし
ての働きにより、ペーストが軟らかくなり、集電体に充
填した後に集電体からたれ落ちるという問題(穴あき)
が生じる。また、二層にすると工数が多く、手間がかか
るという問題も生じる。さらに、導電性の乏しい有機高
分子であるリグニンスルホン酸ナトリウム量を増やす
と、充電がはい入りにくくなる(充電受入性が悪くな
る)という問題も生じる。
However, when the amount of sodium ligninsulfonate is increased, the paste becomes softer due to the action as a surfactant, and the paste falls down from the current collector after filling into the current collector (hole). Autumn)
Occurs. In addition, when two layers are used, there is a problem that the number of steps is large and it takes time and effort. Further, when the amount of sodium ligninsulfonate, which is an organic polymer having poor conductivity, is increased, there arises a problem that charging becomes difficult (charging acceptability deteriorates).

【0004】本発明の目的は、陰極活物質中のリグニン
スルホン酸ナトリウム量を減少させることにより、上記
の充填不良の低減と、充電受入性を向上させ、かつ、こ
れを減量したことによる低温高率放電容量の低下を引き
起こさせない鉛蓄電池用陰極板を提供することにある。
[0004] It is an object of the present invention to reduce the amount of sodium ligninsulfonate in the cathode active material, thereby reducing the above-mentioned poor filling, improving the charge acceptability, and increasing the low temperature due to the reduced amount. An object of the present invention is to provide a cathode plate for a lead storage battery that does not cause a reduction in the rate discharge capacity.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、鉛酸化物を主成分とする活物質ペースト
にリン酸またはホウ酸等を0.01〜0.1wt%(vs.鉛粉)添
加していることを特徴とするものである。
In order to solve the above-mentioned problems, the present invention relates to an active material paste containing lead oxide as a main component, containing 0.01 to 0.1 wt% of phosphoric acid or boric acid (vs. lead powder). ) Is added.

【0006】本発明によれば、界面活性剤であるリグニ
ンスルホン酸ナトリウムを減量することで、ペーストが
硬くなるために充填不良は低減できる。また、リグニン
スルホン酸ナトリウムは導電性の乏しい有機高分子であ
るので、これを減量することで極板の導電性も向上す
る。よって、充電受入性も向上する。また、添加剤とし
て陰極板に添加したリン酸またはホウ酸は、一酸化鉛を
主成分とした未化成活物質と配位結合するために、硫酸
との反応面積を少なくしている。このため、硫酸鉛化に
よるリグニンスルホン酸ナトリウムの脱着量を少なくし
ている。また、硫酸鉛化する反応面積が小さくなってい
ることで、その反応に伴う発熱量も小さくなる。よっ
て、電解液の温度上昇も小さくなる。ここで、リグニン
スルホン酸ナトリウムの溶解度は、温度が低くなればそ
の値も小さくなるために、硫酸鉛化の際に電解液へ溶解
する量を抑制し、その量を確保している。よって、低温
高率放電容量の低下を引き起こさせない。
According to the present invention, by reducing the amount of sodium ligninsulfonate, which is a surfactant, the paste becomes hard, so that poor filling can be reduced. In addition, since sodium ligninsulfonate is an organic polymer having poor conductivity, by reducing the amount thereof, the conductivity of the electrode plate is also improved. Therefore, charge acceptability is also improved. Further, phosphoric acid or boric acid added to the cathode plate as an additive has a small reaction area with sulfuric acid because it coordinates with an unformed active material containing lead monoxide as a main component. For this reason, the amount of sodium ligninsulfonate desorbed by lead sulfate is reduced. Further, since the reaction area for the conversion to lead sulfate is small, the calorific value accompanying the reaction is also small. Therefore, the temperature rise of the electrolyte is also small. Here, since the solubility of sodium ligninsulfonate becomes smaller as the temperature becomes lower, the amount of sodium ligninsulfonate dissolved in the electrolyte during the conversion to lead sulfate is suppressed and the amount is secured. Therefore, a decrease in the low-temperature high-rate discharge capacity is not caused.

【0007】[0007]

【発明の実施の形態】以下、説明する。 実施例1 実施例1で用いたリン酸は、和光純薬(株)製、特級試
薬である。一酸化鉛を主体とする鉛粉に、所定量の硫酸
バリウム、カーボン、そして、鉛粉に対して0.2wt%の
リグニンスルホン酸ナトリウムを添加した混合体に、0.
025%のリン酸をイオン交換水に溶解した溶液と硫酸と
を添加し、混練して活物質ペーストを作った。次に、こ
れらの活物質ペーストを集電体に充填した後に、熟成
(50℃、RH95%、18h)、乾燥(50℃、16
h)して未化成の陰極板を作製した。この陰極板1枚と
陽極板2枚とセパレータとを、それぞれ積層して極板群
を作り、これらを一定加圧下で塩化ビニル製の電槽に挿
入した。その中に硫酸を所定量注入し、電槽化成を行い
鉛蓄電池Aを作製した。
The following is a description of the preferred embodiments. Example 1 The phosphoric acid used in Example 1 is a special grade reagent manufactured by Wako Pure Chemical Industries, Ltd. A mixture of lead powder mainly composed of lead monoxide, a predetermined amount of barium sulfate, carbon, and 0.2 wt% of sodium ligninsulfonate based on the lead powder is added to a mixture of 0.1 wt.
A solution of 025% phosphoric acid in ion-exchanged water and sulfuric acid were added and kneaded to form an active material paste. Next, after these active material pastes were filled in a current collector, aging (50 ° C., RH 95%, 18 h) and drying (50 ° C., 16
h) to produce an unformed cathode plate. One cathode plate, two anode plates, and a separator were laminated, respectively, to form an electrode plate group, and these were inserted into a vinyl chloride container under a constant pressure. A predetermined amount of sulfuric acid was injected therein, and the battery was formed to form a lead storage battery A.

【0008】実施例2 実施例1のリン酸を用いて0.1%の水溶液を調製した。
その水溶液にリン酸を添加していない未化成の陰極板
(リグニンスルホン酸ナトリウム量:0.2wt%)を1h
浸積(室温、常圧)し、極板表面のリン酸量が0.025%
となるような極板を作製した。それを、実施例1と同様
の手順に従い鉛蓄電池Bを作製した。
Example 2 A 0.1% aqueous solution was prepared using the phosphoric acid of Example 1.
An aqueous solution of a cathode plate (sodium ligninsulfonate: 0.2 wt%) to which no phosphoric acid was added was added to the aqueous solution for 1 hour.
Immersion (room temperature, normal pressure), 0.025% phosphoric acid on the surface of the electrode plate
The electrode plate was prepared as follows. Then, a lead storage battery B was produced in the same procedure as in Example 1.

【0009】従来例1 一酸化鉛を主体とする鉛粉に、実施例と同量の硫酸バリ
ウム、カーボン、そして、鉛粉に対して0.4wt%のリグ
ニンスルホン酸ナトリウムを添加した粉体と、イオン交
換水と硫酸とを混練させたペーストを作った。それを、
実施例1と同様の手順に従い鉛蓄電池Cを作製した。
Conventional Example 1 Powder obtained by adding the same amount of barium sulfate, carbon, and 0.4 wt% sodium lignin sulfonate to lead powder to lead powder mainly composed of lead monoxide, A paste was prepared by kneading ion-exchanged water and sulfuric acid. That,
A lead storage battery C was manufactured according to the same procedure as that of the first embodiment.

【0010】従来例2 さらに、リグニンスルホン酸ナトリウムを1.0wt%添加
したペーストを作った。そして、集電体に0.2wt%のペ
ーストだけを充填し、次いでその両面にこのペーストを
重ねて充填した極板を作った。それを、実施例1と同様
の手順に従い鉛蓄電池Dを作製した。
Conventional Example 2 Further, a paste containing 1.0 wt% of sodium ligninsulfonate was prepared. The current collector was filled with only 0.2 wt% paste, and then the paste was overlapped on both surfaces to form a filled electrode plate. Then, a lead storage battery D was manufactured in the same procedure as in Example 1.

【0011】これら電池の各種ペーストの充填性を格子
に充填したときに、ペーストが格子のますめから垂れ落
ちてしまうものを不良としたときの不良率を測定した。
この時のペースト性状は、水分量10%、硫酸鉛量16%で
ある。次に、これら電池の充電受入性を測定した。この
試験方法は、まず25℃で電池容量の半分放電し、その状
態の電池を0℃で18h放置し、その後0℃で2.4Vの定電圧
充電し、その10分間の充電電気量を測定する方法であ
る。また、これら四つの電池の化成終了後のリグニンス
ルホン酸ナトリウムの残存量に対応する値として、活物
質の比表面積を測定した。次に、容量試験として常温
(25℃)における低率(1.4A)放電容量と、低温
(−15℃)における高率(37.5A)放電容量を測定し
た。さらに、これら電池にJIS軽負荷試験に従う充放
電を繰り返し、その回数を測定した。これらの結果を表
1に示す。なおこの表において、A1:実施例1,A
2:実施例2,B1:従来例1,B1:従来例2をしめ
す。
When the filling properties of the various pastes of these batteries were filled in a grid, the percentage of rejection was measured when the paste was dripped from the grid.
The paste properties at this time are a water content of 10% and a lead sulfate content of 16%. Next, the charge acceptability of these batteries was measured. In this test method, first discharge half of the battery capacity at 25 ° C, leave the battery in that state at 0 ° C for 18 hours, and then charge it at 0 ° C at a constant voltage of 2.4 V and measure the amount of charge for 10 minutes Is the way. The specific surface area of the active material was measured as a value corresponding to the remaining amount of sodium ligninsulfonate after the formation of these four batteries was completed. Next, as a capacity test, a low rate (1.4 A) discharge capacity at normal temperature (25 ° C.) and a high rate (37.5 A) discharge capacity at low temperature (−15 ° C.) were measured. Further, these batteries were repeatedly charged / discharged according to the JIS light load test, and the number of times was measured. Table 1 shows the results. In this table, A1: Example 1, A
2: Example 2, B1: Conventional example 1, B1: Conventional example 2

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】まず、充填時の不良率を比べると、リグニ
ンスルホン酸ナトリウムを減量した実施例1、2のペース
トは、添加量が2倍である従来例1に比べ、不良率が大幅
に低減できていることがわかる。また、添加量を実施例
の5倍にしたペーストを両面に塗り込んだ従来例2は、
不良率が他に比べ桁違いに大きいことが分かる。この結
果より、リグニンスルホン酸ナトリウムの添加量を減ら
すことで不良率が低減できることがわかる。
First, when comparing the defective rate at the time of filling, the pastes of Examples 1 and 2 in which the amount of sodium ligninsulfonate was reduced could significantly reduce the defective rate as compared with Conventional Example 1 in which the added amount was doubled. You can see that it is. Conventional example 2 in which the paste was applied to both sides with the amount added five times that of the example,
It can be seen that the defect rate is orders of magnitude higher than others. From this result, it can be seen that the defective rate can be reduced by reducing the amount of sodium ligninsulfonate added.

【0015】次に、充電受入性を比べるとリグニンスル
ホン酸ナトリウムを減量した実施例1、2は、従来例1に
比べて電気量が1.5倍上がり充電が入りやすくなったこ
とがわかる。また、従来例2の充電電気量が実施例のも
のと変わらない原因は、集電体近傍が0.2wt%のペース
トを使用しているためと考えられる。
Next, when comparing the charge acceptability, it can be seen that in Examples 1 and 2 in which the amount of sodium ligninsulfonate was reduced, the amount of electricity was increased by 1.5 times as compared with Conventional Example 1, and charging became easier. The reason why the amount of electricity charged in Conventional Example 2 is not different from that in the embodiment is considered to be that the paste near the current collector uses 0.2 wt%.

【0016】容量試験結果から、リン酸添加品である実
施例1、2は、リグニンスルホン酸ナトリウムを2倍添
加した従来例1と、5倍添加したペーストを両面に塗った
従来例2と同等である。これは、リン酸の添加によって
リグニンスルホン酸ナトリウムの溶出が抑制されて、活
物質の比表面積が大きくなったためである。また、充放
電回数においてもリン酸添加品は、増加品と同程度であ
り、寿命性能では同程度である。よって、これらの結果
から、リン酸を添加した電池は性能面で同等、充填性も
充電受入性も良いことがわかる。
From the results of the capacity test, Examples 1 and 2, which are phosphoric acid-added products, are equivalent to Conventional Example 1 in which sodium ligninsulfonate is added twice, and Conventional Example 2 in which a paste in which sodium ligninsulfonate is added five times is applied to both sides It is. This is because the addition of phosphoric acid suppressed the elution of sodium ligninsulfonate and increased the specific surface area of the active material. In addition, the number of times of charge and discharge of the phosphoric acid-added product is almost the same as that of the increased product, and the same as the life performance. Therefore, from these results, it is understood that the batteries to which phosphoric acid is added are equivalent in performance, and have good filling properties and charge acceptability.

【0017】次に、実施例で用いたリン酸の添加量を実
施例1の添加方法で添加量を変えて作製した極板を、上
述と同様の手順で電池を作り、低温(−15℃)での高
率放電試験を行った結果を図1に示す。この結果から、
添加量0.01%以上から0.1%程度の範囲で効果があるこ
とがわかる。また、添加量0.1%を越えると容量が低下
することもわかる。これは、リン酸の添加量が多すぎる
と、この配位層が電解液の拡散を阻害したり、抵抗にな
ったするために、容量が低下するためと考えられる。逆
に、添加量0.01%以下であると、配位層が形成できない
ために効果が現れないと考えられる。
Next, an electrode plate manufactured by changing the addition amount of phosphoric acid used in the embodiment by the addition method of the embodiment 1 was used to fabricate a battery in the same procedure as described above, and the low temperature (−15 ° C.) FIG. 1 shows the results of the high-rate discharge test performed in step (1). from this result,
It can be seen that the effect is obtained in the range of 0.01% or more to 0.1% or more. It is also found that when the amount exceeds 0.1%, the capacity decreases. This is presumably because, when the amount of phosphoric acid added is too large, the coordination layer inhibits diffusion of the electrolytic solution or becomes a resistance, resulting in a decrease in capacity. Conversely, if the addition amount is 0.01% or less, it is considered that no effect is exhibited because a coordination layer cannot be formed.

【0018】次に、実施例2で用いたリン酸の添加方法
(浸積方法)で同様の実験を行った。その結果、この実
施例とほぼ同様の結果が得られた。他に、ホウ酸につい
ても同様の実験を行った結果、この実施例とほぼ同様の
結果が得られた。
Next, a similar experiment was conducted using the phosphoric acid addition method (immersion method) used in Example 2. As a result, almost the same results as in this example were obtained. In addition, as a result of performing the same experiment for boric acid, almost the same result as in this example was obtained.

【0019】[0019]

【発明の効果】本発明によれば、界面活性剤であるリグ
ニンスルホン酸ナトリウムを減量することで、ペースト
が硬くなるために充填不良は低減できる。また、リグニ
ンスルホン酸ナトリウムは導電性の乏しい有機高分子で
あるので、これを減量することで極板の導電性も向上す
る。よって、充電受入性も向上する。また、添加剤とし
て陰極板に添加したリン酸またはホウ酸は、一酸化鉛を
主成分とした未化成活物質と配位結合するために、硫酸
との反応面積を少なくしている。このため、硫酸鉛化に
よるリグニンスルホン酸ナトリウムの脱吸着量を少なく
している。また、硫酸鉛化する反応面積が小さくなって
いることで、その反応に伴う発熱量も小さくなる。よっ
て、電解液の温度上昇も小さくなる。ここで、リグニン
スルホン酸ナトリウムの溶解度は、温度が低くなればそ
の値も小さくなるために、硫酸鉛化の際に電解液へ溶解
する量を抑制し、その量を確保している。よって、低温
高率放電容量の低下を引き起こさせない。
According to the present invention, by reducing the amount of sodium ligninsulfonate, which is a surfactant, the paste becomes hard, so that poor filling can be reduced. In addition, since sodium ligninsulfonate is an organic polymer having poor conductivity, by reducing the amount thereof, the conductivity of the electrode plate is also improved. Therefore, charge acceptability is also improved. Further, phosphoric acid or boric acid added to the cathode plate as an additive has a small reaction area with sulfuric acid because it coordinates with an unformed active material containing lead monoxide as a main component. Therefore, the amount of sodium ligninsulfonate desorbed by lead sulfate is reduced. Further, since the reaction area for conversion to lead sulfate is small, the calorific value accompanying the reaction is also small. Therefore, the temperature rise of the electrolyte is also small. Here, since the solubility of sodium ligninsulfonate becomes smaller as the temperature becomes lower, the amount of sodium ligninsulfonate dissolved in the electrolyte during the conversion to lead sulfate is suppressed and the amount is secured. Therefore, a decrease in the low-temperature high-rate discharge capacity is not caused.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明により得られた陰極板を使用した鉛蓄電
池で、極板中のリン酸添加量と低温(−15℃)におけ
る高率(37.5A)放電容量との関係図である。
FIG. 1 is a diagram showing the relationship between the amount of phosphoric acid added to an electrode plate and a high rate (37.5 A) discharge capacity at low temperature (−15 ° C.) in a lead-acid battery using a cathode plate obtained according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】充電中の鉛の凝集を抑え、その鉛粒子を微
細化させる働きを持つリグニンスルホン酸ナトリウムを
添加してなる鉛電池用陰極板に、リン酸またはホウ酸を
0.01〜0.1wt%(vs.鉛粉)添加することを特徴とした鉛
蓄電池用陰極板。
1. A lead battery cathode plate to which sodium ligninsulfonate having the function of suppressing the aggregation of lead during charging and making the lead particles finer is provided with phosphoric acid or boric acid.
A cathode plate for a lead-acid battery, characterized by adding 0.01 to 0.1 wt% (vs. lead powder).
JP8344338A 1996-12-25 1996-12-25 Negative electrode for lead-acid battery Pending JPH10188989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8344338A JPH10188989A (en) 1996-12-25 1996-12-25 Negative electrode for lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8344338A JPH10188989A (en) 1996-12-25 1996-12-25 Negative electrode for lead-acid battery

Publications (1)

Publication Number Publication Date
JPH10188989A true JPH10188989A (en) 1998-07-21

Family

ID=18368471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8344338A Pending JPH10188989A (en) 1996-12-25 1996-12-25 Negative electrode for lead-acid battery

Country Status (1)

Country Link
JP (1) JPH10188989A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199220A (en) * 2013-03-26 2013-07-10 安徽新能电源科技有限公司 Washing-free process of negative plate of lead-acid battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199220A (en) * 2013-03-26 2013-07-10 安徽新能电源科技有限公司 Washing-free process of negative plate of lead-acid battery

Similar Documents

Publication Publication Date Title
CN107735889B (en) Doped conductive oxides and improved electrochemical energy storage device plates based thereon
JPH07201331A (en) Sealed lead-acid battery
US20240186652A1 (en) Absorbent glass mat battery
JP2003123760A (en) Negative electrode for lead-acid battery
JP2003036882A (en) Sealed type lead storage battery
CN106025251A (en) Preparation method of negative electrode material of zinc and nickel battery and slurry mixing method of negative electrode of zinc and nickel battery
JP5017746B2 (en) Control valve type lead acid battery
JP2001028263A (en) Lead-acid battery formation method
JP2003338285A (en) Lead-acid storage battery
JPH10188989A (en) Negative electrode for lead-acid battery
JP4356321B2 (en) Lead acid battery
JP4411860B2 (en) Storage battery
JP4854157B2 (en) Chemical conversion method for positive electrode plate and lead acid battery
JP2007213896A (en) Lead-acid storage battery
JP4041999B2 (en) Lead acid battery
JP2002198041A (en) Manufacturing method of positive pole plate for lead acid battery
JPH06283172A (en) Positive electrode plate for lead-acid battery
CN115692679A (en) Preparation method of graphene modification-based lithium battery electrode material
JPH06243850A (en) Retainer type sealed lead-acid battery
JP2771584B2 (en) Manufacturing method of non-sintering type sealed alkaline storage battery
JPH09147870A (en) Negative electrode plate for lead-acid battery and its manufacture
JPH04162352A (en) Positive plate of lead storage battery
JPH11273666A (en) Positive electrode plate for lead-acid battery and manufacture thereof
JPH05174824A (en) Lead-acid battery positive electrode plate
JPH0654661B2 (en) Sealed lead acid battery