JPH10132417A - Cooling system using hydrogen occlusion alloy - Google Patents

Cooling system using hydrogen occlusion alloy

Info

Publication number
JPH10132417A
JPH10132417A JP30564696A JP30564696A JPH10132417A JP H10132417 A JPH10132417 A JP H10132417A JP 30564696 A JP30564696 A JP 30564696A JP 30564696 A JP30564696 A JP 30564696A JP H10132417 A JPH10132417 A JP H10132417A
Authority
JP
Japan
Prior art keywords
temperature side
heat
circulation path
reaction vessel
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30564696A
Other languages
Japanese (ja)
Inventor
Kazuo Noya
和雄 野家
Harunobu Takeda
晴信 竹田
Masamitsu Murai
正光 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP30564696A priority Critical patent/JPH10132417A/en
Publication of JPH10132417A publication Critical patent/JPH10132417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve an elimination of a pump and an efficient recovery of heat by arranging a steam transfer path to send steam obtained by a steam generator to a high temperature side reaction container, a heat exchange section to apply heat of the steam to a hydrogen occlusion alloy within the reaction container and a circulation path to circulate a heat medium liquefied by the heat exchange section to the steam generator. SOLUTION: After the end of the release of hydrogen in a hydrogen occlusion alloy M2, a low temperature side circulation path 12 is made to communicate with a low temperature side circulation path 12b by adjusting three-way valves 13a and 13b and a cooling heat medium is circulated between the heat exchange section 11 and a cooler 16 to cool the hydrogen occlusion alloy M2 beforehand. On the other hand, a high temperature side circulation path 5 is made to communicate with a high temperature side circulation path 5b by adjusting three-way valves 6a and 6b on the high temperature side to circulate steam from a steam boiler 9. The steam quickly reaches the heat exchange section 4 through the high temperature side circulation paths 5 and 5b without using a pump by its own high pressure and is liquefied after heating a hydrogen occlusion alloy M1 at the heat exchange section 4. The water thus obtained is smoothly circulated to a boiler 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金の吸
熱反応を利用して冷房装置や冷凍装置等として使用され
る、水素吸蔵合金を用いた冷却システムに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling system using a hydrogen storage alloy, which is used as a cooling device or a refrigeration device by utilizing an endothermic reaction of the hydrogen storage alloy.

【0002】[0002]

【従来の技術】従来、冷房装置などの冷却システムの分
野では、水素吸蔵合金における水素放出時の吸熱作用を
利用したシステムの実用化が図られている。この装置で
は、図8に示すように、性質が異なる(例えば水素平衡
圧が異なる)2種の水素吸蔵合金M1、M2を用意し、
それぞれを高温側反応容器50と低温側反応容器51と
に収容し、両容器50、51を、バルブ52aを介在さ
せた水素移動管52で連結する。また、高温側反応容器
50には、ポンプ53aで温水を循環させる温水ボイラ
(加熱源)53と、ポンプ54aで冷却水を循環させる
冷却装置54とがそれぞれ三方弁53b、54bを介し
て高温側循環路55によって接続されている。一方、低
温側反応容器51には、ポンプ57aで熱媒体を循環さ
せる冷凍庫57と、ポンプ58aで冷却水を循環させる
冷却装置58とが三方弁57b、58bを介して低温側
循環路59によって接続されている。なお、冷却装置5
8は、ポンプ60を介してさらに水冷のラジエター61
に接続されている。
2. Description of the Related Art Conventionally, in the field of a cooling system such as a cooling device, a system utilizing an endothermic effect at the time of releasing hydrogen in a hydrogen storage alloy has been put to practical use. In this apparatus, as shown in FIG. 8, two kinds of hydrogen storage alloys M1 and M2 having different properties (for example, different hydrogen equilibrium pressures) are prepared.
Each is accommodated in a high-temperature side reaction vessel 50 and a low-temperature side reaction vessel 51, and both vessels 50, 51 are connected by a hydrogen transfer pipe 52 with a valve 52a interposed. In the high-temperature side reaction vessel 50, a hot water boiler (heating source) 53 for circulating hot water by a pump 53a and a cooling device 54 for circulating cooling water by a pump 54a are connected to the high-temperature side via three-way valves 53b and 54b, respectively. They are connected by a circulation path 55. On the other hand, a freezer 57 for circulating a heat medium by a pump 57a and a cooling device 58 for circulating cooling water by a pump 58a are connected to the low-temperature side reaction vessel 51 by a low-temperature side circulation path 59 via three-way valves 57b and 58b. Have been. The cooling device 5
8 is a water-cooled radiator 61 via a pump 60
It is connected to the.

【0003】上記装置では、低温側水素吸蔵合金M2か
ら水素を放出させて高温側水素吸蔵合金M1に水素を吸
蔵させる際に、高温側水素吸蔵合金M1を冷却装置54
によって冷却し、一方、低温側水素吸蔵合金M2で生じ
る吸熱により冷却された熱媒体を冷凍庫57に送り込む
ことにより冷凍庫57内を冷却する。なお、このシステ
ム構成では、冷却時とは逆に高温側水素吸蔵合金M1か
ら水素を放出して低温側水素吸蔵合金M2に水素を吸蔵
させる再生工程が必要になるため、冷熱の取り出しは不
連続的に行われることになる。再生時には、ポンプ53
aによって温水ボイラ53から高温側反応容器50へと
温水を送って高温側水素吸蔵合金M1を加熱し、これに
より放出される水素を水素移動管52を通して低温側反
応容器51に移動させて低温側水素吸蔵合金M2に吸蔵
させる。なお、上記の冷却を連続的に行うためには、上
記装置を二組用意してこれらを並列に接続し、各組で水
素の吸蔵、放出を半サイクルずらして行えばよい。
In the above apparatus, when hydrogen is released from the low-temperature side hydrogen storage alloy M2 and hydrogen is stored in the high-temperature side hydrogen storage alloy M1, the high-temperature side hydrogen storage alloy M1 is cooled by the cooling device 54.
On the other hand, the inside of the freezer 57 is cooled by sending the heat medium cooled by the heat absorption generated in the low-temperature side hydrogen storage alloy M2 into the freezer 57. In addition, in this system configuration, it is necessary to perform a regeneration step of releasing hydrogen from the high-temperature side hydrogen storage alloy M1 and storing hydrogen in the low-temperature side hydrogen storage alloy M2, which is opposite to the time of cooling. It will be performed in a typical manner. During regeneration, the pump 53
a, the hot water is sent from the hot water boiler 53 to the high temperature side reaction vessel 50 to heat the high temperature side hydrogen storage alloy M1, and the hydrogen released by this is moved to the low temperature side reaction vessel 51 through the hydrogen transfer pipe 52, and The hydrogen is stored in the hydrogen storage alloy M2. In order to continuously perform the above-mentioned cooling, two sets of the above-described devices are prepared, these are connected in parallel, and the storage and release of hydrogen may be shifted by half a cycle in each set.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の冷却シ
ステムでは、各部でポンプを用いて温水や冷却水を輸送
するため、ポンプの作動に要するエネルギーが大きく、
効率が悪いという問題があり、さらに、システムが複雑
になり、容積大、コスト大になるという問題がある。ま
た、従来の冷却システムでは、高温側水素吸蔵合金の加
熱方法として温水の循環方法を用いているが、水素吸蔵
合金への投入熱量は、温水の入−出の温度差で決まるの
で、水素吸蔵合金を効率的に加熱するためには上記温度
差(最低10℃)を大きくする必要がある。しかし、そ
の結果として、水素吸蔵合金の加熱温度を高くとれず、
十分な反応速度が得られない。さらに、十分な水素吸収
・放出量(有効水素移動量)が得られなくなるという問
題がある。この結果として、システムに必要となる水素
吸蔵合金使用量が増加し、システムの容積大、コスト大
になるという問題も起こる。
However, in the conventional cooling system, since the hot water and the cooling water are transported using the pump in each part, the energy required for the operation of the pump is large.
There is a problem that the efficiency is low, and further, there is a problem that the system becomes complicated, and the volume and cost increase. Further, in the conventional cooling system, a method of circulating hot water is used as a method of heating the high-temperature side hydrogen storage alloy. However, since the amount of heat input to the hydrogen storage alloy is determined by the temperature difference between the input and output of the hot water, the hydrogen storage In order to heat the alloy efficiently, it is necessary to increase the temperature difference (minimum 10 ° C.). However, as a result, the heating temperature of the hydrogen storage alloy cannot be set high,
Sufficient reaction rate cannot be obtained. Further, there is a problem that a sufficient amount of absorbed and released hydrogen (effective hydrogen transfer amount) cannot be obtained. As a result, there arises a problem that the amount of the hydrogen storage alloy required for the system increases and the volume and cost of the system increase.

【0005】さらに、冷熱を連続的に得るために上記の
ように装置を複数組並列に接続使用するものでは、再生
処理をした組の高温側水素吸蔵合金は、冷熱を発生させ
た組の高温側水素吸蔵合金よりも高温になっている。こ
の熱は通常の操業では無駄になるため、従来は両者の高
温側循環路を直結し、ポンプで熱媒体を移動させること
により熱を移動させて有効に回収する方法が図られてい
る。しかし、この方法では、熱媒体が高温側循環路を通
過するため冷却用の熱媒体との接触等によって失われる
熱が大きく、効率的な顕熱回収ができないという問題が
ある。
Further, in the case where a plurality of sets of devices are connected in parallel as described above in order to continuously obtain cold heat, the high-temperature side hydrogen storage alloy of the set subjected to the regenerating treatment has a high temperature of the set generating the cold heat. The temperature is higher than that of the side hydrogen storage alloy. Since this heat is wasted in a normal operation, conventionally, a method of connecting the high-temperature side circulation path of the two directly and moving a heat medium by a pump to move the heat to effectively recover the heat has been attempted. However, this method has a problem that since the heat medium passes through the high-temperature side circulation path, a large amount of heat is lost due to contact with the heat medium for cooling or the like, and efficient sensible heat recovery cannot be performed.

【0006】本発明は、上記事情を背景としてなされた
ものであり、ポンプの不要化、熱の効率回収等によって
効率的な操業を可能にした冷却システムを提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a cooling system that enables efficient operation by eliminating the need for a pump and efficiently recovering heat.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明の水素吸蔵合金を用いた冷却システムのうち
第1の発明は、それぞれに異種の水素吸蔵合金を収容し
た高温側反応容器と低温側反応容器との間に水素移動路
を設け、前記高温側反応容器に熱供給手段と冷却手段と
を選択可能に接続するとともに、前記低温側反応容器に
冷熱利用部と冷却手段とを選択可能に接続した冷却シス
テムにおいて、前記熱供給手段は、熱媒体を蒸発させる
蒸気発生器と、該蒸気発生器で得られた蒸気を高温側反
応容器に送る蒸気移送路と、該蒸気の熱を高温側反応容
器内の水素吸蔵合金に与える熱交換部と、該熱交換部で
液化した熱媒体を蒸気発生器に環流させる環流路とから
なることを特徴とする。
Means for Solving the Problems In order to solve the above-mentioned problems, a first invention of a cooling system using a hydrogen storage alloy according to the present invention comprises a high-temperature side reaction vessel each containing a different type of hydrogen storage alloy. A hydrogen transfer path is provided between the low-temperature side reaction vessel and a heat supply means and a cooling means are selectively connected to the high-temperature side reaction vessel, and a cold heat utilization unit and a cooling means are selected for the low-temperature side reaction vessel. In the cooling system connected as possible, the heat supply means includes a steam generator for evaporating a heat medium, a steam transfer path for sending steam obtained by the steam generator to the high-temperature side reaction vessel, and heat of the steam. It is characterized by comprising a heat exchanging section for giving to the hydrogen storage alloy in the high-temperature side reaction vessel, and an annular flow path for circulating the heat medium liquefied in the heat exchanging section to the steam generator.

【0008】第2の発明の水素吸蔵合金を用いた冷却シ
ステムは、第1の発明において、環流路が、熱交換部側
が高位置、蒸気発生器側が低位置となるように配置され
た毛細管で構成されていることを特徴とする。
A cooling system using a hydrogen storage alloy according to a second aspect of the present invention is the cooling system according to the first aspect, wherein the return flow path is a capillary tube arranged so that the heat exchange section is at a high position and the steam generator side is at a low position. It is characterized by comprising.

【0009】第3の発明の水素吸蔵合金を用いた冷却シ
ステムは、それぞれに異種の水素吸蔵合金を収容した高
温側反応容器と低温側反応容器との間に水素移動路を設
け、前記高温側反応容器に高温側循環路を介して熱供給
手段と冷却手段とを選択可能に接続するとともに、前記
低温側反応容器に低温側循環路を介して冷熱利用部と冷
却手段とを選択可能に接続した冷却システムにおいて、
前記高温側循環路の熱供給手段側と冷却手段側との間に
バイパス用配管を連結したことを特徴とする。
In a cooling system using a hydrogen storage alloy according to a third aspect of the present invention, a hydrogen transfer path is provided between a high-temperature side reaction vessel and a low-temperature side reaction vessel, each containing a different type of hydrogen storage alloy. A heat supply means and a cooling means are selectively connected to the reaction vessel via a high temperature side circulation path, and a cold heat utilization section and a cooling means are selectively connected to the low temperature side reaction vessel via a low temperature side circulation path. Cooling system,
A bypass pipe is connected between the heat supply means side and the cooling means side of the high temperature side circulation path.

【0010】第4の発明の水素吸蔵合金を用いた冷却シ
ステムは、それぞれに異種の水素吸蔵合金を収容した高
温側反応容器と低温側反応容器との間に水素移動路を設
け、前記高温側反応容器に高温側循環路を介して熱供給
手段および冷却手段を選択可能に接続するとともに、前
記低温側反応容器に低温側循環路を介して冷熱利用部お
よび冷却手段を選択可能に接続したシステムを2組以上
設け、各組における水素吸蔵合金の加熱、冷却時期を変
えることによって連続的に冷熱を供給する冷却システム
において、上記低温側の冷却手段は、低温側水素吸蔵合
金の熱によって熱媒体を蒸発させる蒸発部と、この蒸気
を凝縮させて熱を奪う凝縮器と、蒸発または液化した熱
媒体を蒸発部と循環器との間で循環させる循環路とで構
成したことを特徴とする。
In a cooling system using a hydrogen storage alloy according to a fourth aspect of the present invention, a hydrogen transfer path is provided between a high-temperature side reaction vessel and a low-temperature side reaction vessel, each containing a different type of hydrogen storage alloy, and A system in which a heat supply means and a cooling means are selectively connected to a reaction vessel via a high-temperature side circulation path, and a cold heat utilization section and a cooling means are selectively connected to the low-temperature side reaction vessel via a low-temperature side circulation path. In a cooling system that continuously supplies cold heat by changing the heating and cooling timings of the hydrogen storage alloy in each set, wherein the cooling means on the low temperature side uses a heat medium by the heat of the low temperature side hydrogen storage alloy. It is characterized by comprising an evaporator for evaporating water, a condenser for condensing this vapor to take heat, and a circulation path for circulating the evaporated or liquefied heat medium between the evaporator and the circulator. To.

【0011】第5の発明の水素吸蔵合金を用いた冷却シ
ステムは、それぞれに異種の水素吸蔵合金を収容した高
温側反応容器と低温側反応容器との間に水素移動路を設
け、前記高温側反応容器に高温側循環路を介して熱供給
手段および冷却手段を選択可能に接続するとともに、前
記低温側反応容器に低温側循環路を介して冷熱利用部お
よび冷却手段を選択可能に接続したシステムを2組以上
設け、各組における水素吸蔵合金の加熱、冷却時期を変
えることによって連続的に冷熱を供給する冷却システム
において、上記各組の高温側循環路を開閉自在にすると
ともに各組の高温側反応容器熱交換部を開閉自在な顕熱
回収循環路で連結したことを特徴とする。
In a cooling system using a hydrogen storage alloy according to a fifth aspect of the present invention, a hydrogen transfer path is provided between a high-temperature side reaction vessel and a low-temperature side reaction vessel each containing a different type of hydrogen storage alloy, and A system in which a heat supply means and a cooling means are selectively connected to a reaction vessel via a high-temperature side circulation path, and a cold heat utilization section and a cooling means are selectively connected to the low-temperature side reaction vessel via a low-temperature side circulation path. In a cooling system that continuously supplies cold heat by changing the heating and cooling timings of the hydrogen storage alloy in each set, two or more sets of The heat exchange part of the side reaction vessel is connected by a sensible heat recovery circuit which can be opened and closed freely.

【0012】第6の発明の水素吸蔵合金を用いた冷却シ
ステムは、第5の発明において、高温側循環路の熱供給
手段側と顕熱回収循環路との間に第1のバイパス用配管
を連結し、顕熱回収循環路と高温側循環路の冷却手段側
との間に第2のバイパス用配管を連結したことを特徴と
する。
A cooling system using a hydrogen storage alloy according to a sixth aspect of the present invention is the cooling system according to the fifth aspect, wherein a first bypass pipe is provided between the heat supply means side of the high-temperature side circulation path and the sensible heat recovery circulation path. And a second bypass pipe connected between the sensible heat recovery circuit and the cooling means side of the high temperature side circuit.

【0013】なお、本発明は、冷却システムに関するも
のであり、冷房装置や冷凍装置、冷却装置等として使用
することができる。また、上記装置に使用される水素吸
蔵合金の種別が特に限定されるものではなく、適宜選定
されるが、合金当たりの生成熱量および有効水素量が大
きく、さらにヒステリシスやプラトーの傾きが小さいも
ので耐久性に優れたものが望ましい。また、高温側と低
温側とでは、熱源温度や利用部温度を考慮した水素吸蔵
合金の選別を行うのが望ましい。
The present invention relates to a cooling system, and can be used as a cooling device, a refrigeration device, a cooling device, and the like. Further, the type of the hydrogen storage alloy used in the above device is not particularly limited and is appropriately selected, but the heat generation amount and the effective hydrogen amount per alloy are large, and the hysteresis and the plateau gradient are small. Those having excellent durability are desirable. In addition, it is desirable to select a hydrogen storage alloy between the high temperature side and the low temperature side in consideration of the heat source temperature and the utilization part temperature.

【0014】また、各反応容器の材質や構造は特に限定
されるものではないが、熱の授受が効率的になされ、し
かも水素吸蔵合金と水素との接触が良好になされ、さら
に水素が円滑に移動できるものが望ましい。なお、反応
容器間に配置される水素移動路は、通常は反応容器を連
結する配管で構成する。また、熱供給手段を除いた、冷
却手段や冷熱利用部の構造や循環路の構造、配置等も特
に限定されるものではないが、低温側の冷却手段では、
低温側水素吸蔵合金の熱によって熱媒体を蒸発させる蒸
発部と、この蒸気を凝縮させて熱を奪う凝縮器と、蒸発
または液化した熱媒体を蒸発部と循環器との間で循環さ
せる循環路とからなるヒートパイプ形式とすることによ
りポンプを使用しない冷却手段を構築することができ
る。また高温側の冷却手段も上記と同様のヒートパイプ
形式とすることができる。これによりポンプ可動のため
のエネルギが不要になり、蒸気の作用により熱媒体の移
動がなされるので、システムの効率が向上する。
Although the material and structure of each reaction vessel are not particularly limited, heat can be efficiently transferred, and the hydrogen storage alloy can be brought into good contact with hydrogen, and hydrogen can be smoothly removed. It is desirable to be able to move. In addition, the hydrogen transfer path arranged between the reaction vessels is usually constituted by a pipe connecting the reaction vessels. In addition, except for the heat supply unit, the structure of the cooling unit and the cooling heat utilization unit, the structure of the circulation path, the arrangement, and the like are not particularly limited, but in the cooling unit on the low temperature side,
An evaporator for evaporating the heat medium by the heat of the low-temperature-side hydrogen storage alloy, a condenser for condensing this vapor to remove heat, and a circulation path for circulating the evaporated or liquefied heat medium between the evaporator and the circulator. By using a heat pipe type comprising: a cooling means that does not use a pump can be constructed. The cooling means on the high-temperature side can also be of the same heat pipe type as described above. This eliminates the need for energy to operate the pump and moves the heat medium by the action of the steam, thereby improving the efficiency of the system.

【0015】また、高温側の熱供給手段は、蒸気発生器
と蒸気移送路と熱交換部と環流路とで構成するのが望ま
しく、この他に環流路の基端または中途に貯液部を有す
るものであってもよい。この熱供給手段に使用される熱
媒体としては水が代表的であるが、これに限定されるも
のではなく、蒸気の温度等によっては他の媒体を使用す
ることもできる。蒸気発生器としては蒸気ボイラを例示
することができ、このボイラから高温側反応容器へは、
蒸気管等の蒸気移送路を通して蒸気が送り込まれる。水
素吸蔵合金に熱を伝える熱交換部の構造も特に限定され
るものではないが、熱を効率的に伝達でき、かつ液化し
た熱媒体が円滑に移動できるものが望ましく、例えば、
蒸気の入り側を高位置、液の出側を低位置としたものが
挙げられる。また、環流部は、熱媒体液が円滑に蒸気発
生器へと流れるものが望ましく、熱交換部側を高位置、
蒸気発生器側を低位置として環流部自身を毛細管で構成
するのが望ましい。これにより重力と毛細管現象とを利
用して液化した熱媒体を円滑に環流させることができ
る。
Preferably, the heat supply means on the high-temperature side comprises a steam generator, a steam transfer path, a heat exchange section, and an annular flow path. In addition, a liquid storage section is provided at the base end or in the middle of the annular flow path. You may have. The heat medium used for the heat supply means is typically water, but is not limited thereto, and another medium may be used depending on the temperature of steam or the like. As the steam generator, a steam boiler can be exemplified, and from this boiler to the high-temperature side reaction vessel,
Steam is fed through a steam transfer path such as a steam pipe. The structure of the heat exchange portion that transmits heat to the hydrogen storage alloy is not particularly limited, but it is desirable that the heat exchange portion can efficiently transmit heat and that the liquefied heat medium can move smoothly.
One in which the vapor inlet side is at a high position and the liquid outlet side is at a low position. Further, it is desirable that the recirculation portion is such that the heat medium liquid smoothly flows to the steam generator, and the heat exchange portion side is at a high position,
It is desirable that the recirculation portion itself be formed of a capillary tube with the steam generator side at a low position. As a result, the heat medium liquefied using gravity and capillary action can be smoothly circulated.

【0016】また、水素吸蔵合金を用いた冷却システム
では、上記したように高温側で熱供給手段と冷却手段と
を選択的に接続するため、その循環路で温度差により選
択時に大きな圧力変動が起こってポンプ等に過大な負荷
が掛かるという問題がある。このため、従来は循環路の
一部に圧力調整タンクを設けて圧力変動を緩和している
が、設備が過大になり、スペース、コストの点で不利に
なるという問題がある。そこで、高温側循環路の熱供給
手段側と冷却手段側とをバイパス用配管で連結すること
により、上記圧力調整タンクを必要とすることなく圧力
変動を避けることができる。なお、バイパス用配管は、
循環路用の配管の1/5以下の内径とするのが望まし
い。これにより過大な混流の発生が防止される。
Further, in the cooling system using a hydrogen storage alloy, since the heat supply means and the cooling means are selectively connected on the high temperature side as described above, a large pressure fluctuation occurs at the time of selection due to a temperature difference in the circulation path. There is a problem that an excessive load is applied to a pump or the like. For this reason, conventionally, a pressure regulation tank is provided in a part of the circulation path to alleviate the pressure fluctuation, but there is a problem that the equipment becomes excessively large and disadvantageous in terms of space and cost. Therefore, by connecting the heat supply means side and the cooling means side of the high-temperature side circulation path with a bypass pipe, pressure fluctuation can be avoided without the need for the pressure adjustment tank. The bypass piping is
It is desirable that the inner diameter be 1/5 or less of the circulation pipe. This prevents the occurrence of excessive mixing.

【0017】また、2組以上の装置を並列に接続して冷
熱を連続して取り出すシステムでは、再生処理後の高温
側水素吸蔵合金から熱を有効に回収するために、上記各
組の高温側循環路を開閉自在にするとともに各組の高温
側反応容器熱交換部を開閉自在な顕熱回収循環路で連結
するのが望ましい。循環路の連結位置は、熱交換部の熱
媒体出入り部またはその近辺で行えばよい。上記顕熱回
収循環路の配置により、顕熱を効率的に回収することが
でき、システム全体の効率が向上する。なお、熱供給手
段として第1の発明に示すように蒸気を利用する場合に
は、顕熱回収循環路の一端は、循環路の内、熱媒体液が
循環している部分、すなわち環流路に相当する部分に接
続するのが望ましい。また、顕熱回収循環路を設けると
ともに圧力変動を避けるためにバイパス用配管を配する
システムでは、高温側循環路の熱供給手段側と顕熱回収
循環路との間に第1のバイパス用配管を連結し、顕熱回
収循環路と高温側循環路の冷却手段側との間に第2のバ
イパス用配管を連結するのが望ましい。
In a system in which two or more sets of devices are connected in parallel to continuously extract cold heat, in order to effectively recover heat from the high-temperature-side hydrogen storage alloy after the regeneration treatment, the above-mentioned high-temperature It is desirable to make the circulation path openable and closable, and to connect the sets of high-temperature side reaction vessel heat exchange sections with a sensible heat recovery circulation path that can be opened and closed. The connection position of the circulation path may be at or near the heat medium entrance / exit of the heat exchange unit. With the arrangement of the sensible heat recovery circuit, sensible heat can be efficiently recovered, and the efficiency of the entire system is improved. In the case where steam is used as the heat supply means as shown in the first invention, one end of the sensible heat recovery circulation path is connected to a portion of the circulation path where the heat medium liquid is circulated, that is, the annular flow path. It is desirable to connect to the corresponding part. In a system in which a sensible heat recovery circuit is provided and a bypass pipe is arranged to avoid pressure fluctuation, a first bypass pipe is provided between the heat supply means side of the high-temperature side circuit and the sensible heat recovery circuit. And a second bypass pipe is desirably connected between the sensible heat recovery circulation path and the cooling means side of the high-temperature side circulation path.

【0018】[0018]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施形態1)次に、本発明の一実施形態を添付図面
(図1)に基づき説明する。水素平衡圧が異なる2種の
水素吸蔵合金M1、M2(例えばTiZrCrFeMn
Cu系合金とTiZrCrFeMnNiCu系合金)を
それぞれ高温側反応容器1と低温側反応容器2とに収容
し、両容器1、2を、バルブ3aを介在させた水素移動
管3で連結する。上記高温側反応容器1内には、フィン
チューブ型の熱交換部4が入り側を高位置、出側を低位
置とするように配置されており、該熱交換部4と水素吸
蔵合金M1とは直接接触している。また、該熱交換部4
の出入り側にはそれぞれ高温側循環路5の一端が接続さ
れており、熱交換部4の入り側の循環路5は、三方弁6
aに接続されており、出側の高温側循環路5には貯液タ
ンク8を介在させて三方弁6bが接続されている。ま
た、三方弁6a、6bには高温側循環路5a、5bが接
続されており、高温側循環路5aには、ポンプ7aを介
して冷却装置7が接続されており、高温側循環路5bに
は、上記ボイラ9が接続されている。なお、上記ボイラ
9から熱交換部4の入り側に至る高温側循環路5bおよ
び高温側循環路5は蒸気移送路を構成しており、熱交換
部4の出側からボイラ9に至る高温側循環路5および高
温側循環路5bは、環流路を構成している。
(Embodiment 1) Next, an embodiment of the present invention will be described with reference to the accompanying drawings (FIG. 1). Two kinds of hydrogen storage alloys M1 and M2 having different hydrogen equilibrium pressures (for example, TiZrCrFeMn
A Cu-based alloy and a TiZrCrFeMnNiCu-based alloy) are accommodated in a high-temperature side reaction vessel 1 and a low-temperature side reaction vessel 2, respectively, and both vessels 1 and 2 are connected by a hydrogen transfer pipe 3 with a valve 3a interposed. In the high temperature side reaction vessel 1, a fin tube type heat exchange section 4 is arranged so that the entrance side is at a high position and the exit side is at a low position. Are in direct contact. Further, the heat exchange section 4
One end of a high-temperature side circulation path 5 is connected to the entrance and exit sides of the three-way valve 6, respectively.
The three-way valve 6b is connected to the outlet high-temperature side circulation path 5 with a liquid storage tank 8 interposed therebetween. The three-way valves 6a and 6b are connected to the high-temperature side circulation paths 5a and 5b, and the high-temperature side circulation path 5a is connected to the cooling device 7 via a pump 7a. Is connected to the boiler 9. The high-temperature side circulation path 5b and the high-temperature side circulation path 5 extending from the boiler 9 to the entrance side of the heat exchange section 4 constitute a steam transfer path, and the high-temperature side circulation path from the exit side of the heat exchange section 4 to the boiler 9 is formed. The circulation path 5 and the high-temperature side circulation path 5b constitute an annular flow path.

【0019】一方、低温側反応容器2内には、上記と同
様にフィンチューブ型の熱交換部11が配置されてお
り、該熱交換部11と水素吸蔵合金M2とは直接接触し
ている。上記熱交換部11の出入り側にはそれぞれ低温
側循環路12の一端が接続されており、該低温側循環路
12の他端は三方弁13a、13bに接続されている。
該三方弁13a、13bには、さらに低温側循環路12
a、12bが接続されており、低温側循環路12aは、
ポンプ15aを介して冷熱利用部である冷凍庫15に接
続されており、低温側循環路12bにはポンプ16aを
介して冷却装置16が接続されている。
On the other hand, a fin tube type heat exchange section 11 is disposed in the low temperature side reaction vessel 2 as described above, and the heat exchange section 11 is in direct contact with the hydrogen storage alloy M2. One end of a low temperature side circulation path 12 is connected to each of the entrance and exit sides of the heat exchange section 11, and the other end of the low temperature side circulation path 12 is connected to three-way valves 13a and 13b.
The three-way valves 13a and 13b further have a low-temperature side
a, 12b are connected, and the low temperature side circulation path 12a is
The cooling device 16 is connected to the freezer 15 which is a cold heat utilization unit via a pump 15a, and the cooling device 16 is connected to the low temperature side circulation path 12b via a pump 16a.

【0020】上記した装置の動作を説明する。なお、こ
のとき、水素吸蔵合金M2のみが水素を吸蔵しているも
のとする。水素吸蔵合金M1は水素の放出時の加熱によ
って高温になっており、これを冷却装置7によって冷却
する。具体的には三方弁6a、6bの調整により高温側
循環路5と高温側循環路5aとを連通させ、冷却装置7
からの冷却水をポンプ7aにより高温側循環路5、5a
を通して熱交換部4に送出する。この冷却水によって水
素吸蔵合金M1は冷却され、水素吸蔵合金M2との間で
平衡分解圧差が生じ、水素吸蔵合金M2から水素が放出
され、水素移動管3を通して高温側反応容器1内に水素
が送り込まれる。そして、この水素は水素吸蔵合金M1
に吸蔵され始める。なお、上記した水素吸蔵合金M2で
は、水素の放出に伴って吸熱現象が生じる。低温側で
は、三方弁13a、13bの調整によって低温側循環路
12と低温側循環路12aとが連通しており、熱媒体が
冷凍庫15から熱交換部11に亘り循環しており、水素
吸蔵合金M2の吸熱現象によってこの熱媒体が冷却され
る。冷却された熱媒体は冷凍庫15の熱を奪い、冷凍庫
15を冷却する。
The operation of the above device will be described. At this time, it is assumed that only the hydrogen storage alloy M2 stores hydrogen. The temperature of the hydrogen storage alloy M1 is increased by heating when hydrogen is released, and the hydrogen storage alloy M1 is cooled by the cooling device 7. Specifically, by adjusting the three-way valves 6a and 6b, the high-temperature side circulation path 5 and the high-temperature side circulation path 5a communicate with each other, and the cooling device 7
Cooling water from the high temperature side circulation path 5, 5a by the pump 7a
To the heat exchanging section 4. The hydrogen storage alloy M1 is cooled by the cooling water, an equilibrium decomposition pressure difference is generated between the hydrogen storage alloy M2 and the hydrogen storage alloy M2, hydrogen is released from the hydrogen storage alloy M2, and hydrogen is transferred into the high temperature side reaction vessel 1 through the hydrogen transfer pipe 3. Sent in. This hydrogen is stored in the hydrogen storage alloy M1.
Begins to be occluded. In the hydrogen storage alloy M2, an endothermic phenomenon occurs with the release of hydrogen. On the low temperature side, the three-way valves 13a and 13b adjust the low temperature side circulation path 12 and the low temperature side circulation path 12a to communicate with each other, and the heat medium circulates from the freezer 15 to the heat exchange part 11; This heat medium is cooled by the endothermic phenomenon of M2. The cooled heat medium deprives the freezer 15 of heat and cools the freezer 15.

【0021】水素吸蔵合金M2での水素の放出が終了し
た後は、三方弁13a、13bの調整により低温側循環
路12と低温側循環路12bとを連通させ、熱交換部1
1と冷却装置16との間に冷却用の熱媒体を循環させて
水素吸蔵合金M2を冷却しておく。一方、高温側では三
方弁6a、6bの調整により高温側循環路5と高温側循
環路5bとを連通させておき、蒸気ボイラ9からの蒸気
を循環させる。この蒸気は、それ自身の高い圧力によっ
てポンプを使用しないでも高温側循環路5、5bを通っ
て熱交換部4に速やかに達し、熱交換部4で水素吸蔵合
金M1を加熱した後、液化する。この水は、高温側循環
路5、すなわち環流路を重力と毛細管現象によって下降
し、貯液タンク8で一旦貯留された後、高温側循環路5
b(環流路の一部)を通って蒸気ボイラ9へと円滑に環
流される。これにより加熱された水素吸蔵合金M1は水
素を放出し始め、この水素は、水素移動管3を通って水
素吸蔵合金M2に吸蔵される。上記サイクルを繰り返す
ことにより冷凍庫に冷熱を供給することができる。
After the release of hydrogen from the hydrogen storage alloy M2 is completed, the three-way valves 13a and 13b are adjusted so that the low-temperature side circulation path 12 and the low-temperature side circulation path 12b communicate with each other.
A cooling heat medium is circulated between the cooling device 1 and the cooling device 16 to cool the hydrogen storage alloy M2. On the other hand, on the high temperature side, the high temperature side circulation path 5 and the high temperature side circulation path 5b are communicated with each other by adjusting the three-way valves 6a and 6b, and the steam from the steam boiler 9 is circulated. This steam quickly reaches the heat exchange section 4 through the high-temperature circulation paths 5, 5b without using a pump due to its own high pressure, and heats the hydrogen storage alloy M1 in the heat exchange section 4 and then liquefies. . The water descends in the high-temperature side circulation path 5, that is, the annular flow path by gravity and capillary action, and is temporarily stored in the liquid storage tank 8.
b (a part of the annular flow path) and smoothly return to the steam boiler 9. Thus, the heated hydrogen storage alloy M1 starts releasing hydrogen, and this hydrogen is stored in the hydrogen storage alloy M2 through the hydrogen transfer pipe 3. Cold heat can be supplied to the freezer by repeating the above cycle.

【0022】上記水素吸蔵合金M1は、蒸気により潜熱
を利用した加熱がなされるので、熱媒体の出入りの温度
差を小さくして十分な熱量を水素吸蔵合金に与えること
ができ、したがって水素吸蔵合金の加熱温度を高く設定
することができる。これを試験するため、熱交換部を水
槽内におき、熱交換部の出入り温度等を測定した。その
結果は以下に示すとおりであり、出入りの温度差を小さ
くしても効率的な熱交換がなされていることが明らかで
ある。
Since the hydrogen storage alloy M1 is heated by utilizing latent heat by steam, a sufficient amount of heat can be given to the hydrogen storage alloy by reducing the temperature difference between the entrance and exit of the heat medium. Can be set high. In order to test this, the heat exchange part was placed in a water tank, and the entrance and exit temperatures of the heat exchange part were measured. The results are as shown below, and it is clear that efficient heat exchange is performed even when the temperature difference between the entrance and the exit is reduced.

【0023】[0023]

【表1】 [Table 1]

【0024】なお、上記装置では、冷熱の供給と再生処
理とを交互に行うため、冷熱を連続的に供給することは
できないが、上記装置を複数用意して互いに並列に接続
し、各水素吸蔵合金における水素の吸蔵、放出サイクル
の周期をずらすことによって冷熱を連続的に供給するこ
とができる。
In the above apparatus, the supply of cold heat and the regeneration processing are alternately performed, so that it is not possible to continuously supply cold heat. However, a plurality of the above apparatuses are prepared and connected in parallel with each other to store each hydrogen. Cold heat can be continuously supplied by shifting the cycle of the hydrogen storage and release cycles in the alloy.

【0025】(実施形態2)この実施形態は、図2に示
すように高温側循環路で温度差による生じる圧力変動を
防止するために、高温側循環路にバイパス用配管17を
接続したものであり、以下に具体的に説明する。なお、
以下の実施形態において他の実施形態と同様の構造につ
いては、同一の符号を付してその説明を省略または簡略
化する。冷却装置7は、ポンプ7aとバルブ6a、6b
を介して高温側循環路5aと高温側循環路5によって高
温側反応容器1に接続されており、同じく熱供給手段
(蒸気ボイラ9)は、上記と同様にバルブ6a、6bを
介して高温側循環路5bと高温側循環路5によって高温
側反応容器1に接続されている。なお、高温側循環路5
aの一部と高温側循環路5bの一部とは、バイパス用配
管17によって連結されており、該バイパス用配管17
は、高温側循環路5a、5bに比べて十分に径が小さい
(1/5以下の径)細管で構成されている。この装置
は、常時、高温側循環路5aと高温側循環路5bとが連
通しており、両者間の圧力差を減少させる。このため、
バルブ6a、6bの切換によって使用循環路を変更する
場合には、圧力変動は殆ど生じず、ポンプ7aへの過大
な負荷の発生を防止する。上記実施形態では、熱供給手
段として蒸気ボイラを含むものを使用しており、バイパ
ス用配管の設置に際しては液−液間での連通が望ましい
ため、液体が移動する循環路部分、すなわち高温側循環
路5bの図示下方側に接続している。なお、この実施形
態に関する本発明としては、熱供給手段の構成は特に限
定されないので、例えば、従来例のように熱供給手段と
して温水ボイラを利用した冷却システムにおいても同様
にバイパス用配管を設置することができる。ただし、蒸
気を用いた加熱の方が圧力変動が顕著になるため、上記
バイパス用配管は、上記ボイラを用いたシステムにおい
て、より顕著な効果が得られる。
(Embodiment 2) In this embodiment, as shown in FIG. 2, a bypass pipe 17 is connected to the high-temperature side circuit in order to prevent pressure fluctuation caused by a temperature difference in the high-temperature side circuit. Yes, and will be specifically described below. In addition,
In the following embodiments, the same structures as those in the other embodiments are denoted by the same reference numerals, and description thereof will be omitted or simplified. The cooling device 7 includes a pump 7a and valves 6a and 6b.
Are connected to the high-temperature side reaction vessel 1 by the high-temperature side circulation path 5a and the high-temperature side circulation path 5, and the heat supply means (steam boiler 9) is similarly connected to the high-temperature side via valves 6a and 6b. The circulation path 5 b and the high-temperature side circulation path 5 are connected to the high-temperature side reaction vessel 1. In addition, the high temperature side circulation path 5
a and a part of the high-temperature side circulation path 5b are connected by a bypass pipe 17.
Is composed of a thin tube whose diameter is sufficiently smaller than the high temperature side circulation paths 5a and 5b (a diameter of 1/5 or less). In this device, the high-temperature side circulation path 5a and the high-temperature side circulation path 5b are always in communication, and the pressure difference between them is reduced. For this reason,
When the used circulation path is changed by switching the valves 6a and 6b, the pressure hardly fluctuates, thereby preventing an excessive load on the pump 7a. In the above embodiment, the heat supply means including the steam boiler is used, and when the bypass pipe is installed, communication between the liquid and the liquid is desirable. Therefore, the circulation path portion where the liquid moves, that is, the high-temperature side circulation It is connected to the lower side of the road 5b in the figure. Note that, in the present invention relating to this embodiment, since the configuration of the heat supply means is not particularly limited, for example, a bypass pipe is similarly installed in a cooling system using a hot water boiler as a heat supply means as in a conventional example. be able to. However, since the pressure fluctuation becomes more remarkable in the heating using steam, the bypass pipe has a more remarkable effect in the system using the boiler.

【0026】(実施形態3)この実施形態は、図3に示
すようにシステムを2組並列に接続し、高温側の反応容
器内熱交換部間に顕熱回収循環路40を接続したもので
あり、以下に具体的に説明する。高温側反応容器21
a、21bに水素吸蔵合金M1が収容され、低温側反応
容器22a、22bに水素吸蔵合金M2が収容されてお
り、高温側反応容器21a、21bと低温側反応容器2
2a、22bとの間は、バルブ23a、23bを介した
水素移動管24a、24bで連結されている。また、高
温側反応容器21a、21b内には、熱交換部25a、
25b、低温側反応容器22a、22b内には、熱交換
部26a、26bが配設されており、該熱交換部25
a、25bには、高温側循環路27a、27bが接続さ
れている。該高温側循環路27a、27bは、三方弁2
8a、28b、28c、28dを介して高温側循環路2
9a、29bに接続されており、高温側循環路29aは
ポンプ30aを介して冷却装置30に接続され、高温側
循環路29bは、ポンプ31aを介して熱供給手段31
に接続されている。一方、低温側反応容器22a、22
b内の熱交換部26a、26bには、低温側循環路34
a、34bが接続されており、該低温側循環路34a、
34bは、三方弁35a、35b、35c、35dを介
して、低温側循環路36a、低温側循環路36bが接続
されている。さらに、低温側循環路36aにはポンプ3
7aを介して熱利用部37が接続されており、低温側循
環路36bには、ポンプ38aを介して冷却装置38に
接続されている。 また、高温側の熱交換部25aと熱
交換部25bとの間には、顕熱回収循環路40が接続さ
れており、その中途には、バルブ40a、40aが介設
されている。
(Embodiment 3) In this embodiment, as shown in FIG. 3, two sets of systems are connected in parallel, and a sensible heat recovery circuit 40 is connected between heat exchange units in the reaction vessel on the high temperature side. Yes, and will be specifically described below. High temperature side reaction vessel 21
a and 21b contain a hydrogen storage alloy M1 and low-temperature reaction vessels 22a and 22b contain a hydrogen storage alloy M2, and the high-temperature reaction vessels 21a and 21b and the low-temperature reaction vessel 2
2a and 22b are connected by hydrogen transfer pipes 24a and 24b via valves 23a and 23b. In the high temperature side reaction vessels 21a and 21b, heat exchange sections 25a,
25b, heat exchange units 26a and 26b are disposed in the low temperature side reaction vessels 22a and 22b.
The high-temperature side circulation paths 27a and 27b are connected to a and 25b. The high-temperature side circulation paths 27a and 27b are
8a, 28b, 28c, and 28d via the high-temperature side circuit 2
9a and 29b, the high temperature side circulation path 29a is connected to the cooling device 30 via a pump 30a, and the high temperature side circulation path 29b is connected to the heat supply means 31 via a pump 31a.
It is connected to the. On the other hand, the low temperature side reaction vessels 22a, 22
b, the low-temperature side circulation path 34 is connected to the heat exchange portions 26a and 26b.
a, 34b are connected, and the low temperature side circulation path 34a,
The low-temperature side circulation path 36a and the low-temperature side circulation path 36b are connected to 34b via three-way valves 35a, 35b, 35c, and 35d. Further, the pump 3 is connected to the low temperature side circulation path 36a.
The heat utilization unit 37 is connected to the cooling unit 38 via the pump 38a, and the heat utilization unit 37 is connected to the cooling unit 38 via the pump 38a. A sensible heat recovery circuit 40 is connected between the high-temperature side heat exchange section 25a and the heat exchange section 25b, and valves 40a, 40a are interposed midway.

【0027】上記装置では、前記実施形態で説明したの
と同様にして、一方の高温側水素吸蔵合金と低温側水素
吸蔵合金で冷熱を発生させる際には、他方の高温側水素
吸蔵合金と低温側水素吸蔵合金で再生処理を行う。ここ
で便宜上反応容器21b側で再生処理を行ったものとす
ると、再生処理を終了した高温側水素吸蔵合金M1で
は、熱交換部25b内から液化した温水を排出し、蒸気
のみが充満するようにして高温側循環路27bを三方弁
28a、28b、28c、28dの調整により遮断し、
バルブ40a、40aを開いて、他方の高温側水素吸蔵
合金用の熱交換部25aと顕熱回収循環路40によって
連通させる。この連通によって再生処理直後の熱交換部
25b内の蒸気は顕熱回収循環路40の往路を通って他
方の熱交換部内25aに達し、ここで冷熱供給を終了し
た側の高温側水素吸蔵合金を加熱して顕熱を有効に利用
する。なお、この熱交換部25aで熱を奪われた蒸気は
凝縮し、顕熱回収循環路40の復路を通って最初に蒸気
を充満させた熱交換部25bに移動する。ここで、両熱
交換部では次第に温水が生じるものの、両熱交換部全部
を満たすには至らないため、水素吸蔵合金から熱媒体へ
の熱交換が効率的になされないという危惧がある。とこ
ろが、図4に示すように、高温側反応容器21b内で
は、液側Lでは温度が下がると水素吸蔵合金の水素分圧
が下がるため、蒸気側Sの水素吸蔵合金から液側Lの水
素吸蔵合金へと水素が移動し、これに伴い温度も蒸気側
Sから液側Lへと移動し、顕熱回収が良好に行われる。
これらにより顕熱の回収率は30〜40%に向上する。
なお、この顕熱回収は、上記実施形態で示した第1の発
明(蒸気利用による加熱)と組み合わせることにより、
より大きな効果が得られる。蒸発と凝縮作用を利用する
という関点からは、水(蒸気)利用が一般的である。但
し、操作温度が高い(例えば>200℃)、操作温度が
低い(例えば<60℃)等がシステム上要求される場合
は、熱媒体として水よりも蒸発温度の高いもの(例えば
油等)、蒸気温度の低いもの(例えばアルコール混合溶
液等)を利用することにより、同様の作用は期待出来
る。
In the above-described apparatus, when cold heat is generated by one of the high-temperature side hydrogen storage alloy and the low-temperature side hydrogen storage alloy, the other high-temperature side hydrogen storage alloy is The regeneration treatment is performed with the side hydrogen storage alloy. Here, assuming that the regeneration treatment is performed on the reaction vessel 21b side for convenience, in the high-temperature side hydrogen storage alloy M1 after the regeneration treatment, the liquefied warm water is discharged from the heat exchange unit 25b, and only the steam is filled. To shut off the high-temperature side circulation path 27b by adjusting the three-way valves 28a, 28b, 28c, 28d,
The valves 40a and 40a are opened to communicate with the other high-temperature-side hydrogen storage alloy heat exchange section 25a through the sensible heat recovery circuit 40. By this communication, the steam in the heat exchange section 25b immediately after the regeneration process passes through the outward path of the sensible heat recovery circulation path 40 and reaches the other heat exchange section 25a, where the high-temperature side hydrogen storage alloy on the side where the cold heat supply is terminated is removed. Heat to make effective use of sensible heat. The steam deprived of heat in the heat exchange section 25a is condensed and moves to the heat exchange section 25b, which is first filled with steam, through the return path of the sensible heat recovery circuit 40. Here, although hot water is gradually generated in both heat exchanging sections, since it does not completely fill both heat exchanging sections, there is a concern that heat exchange from the hydrogen storage alloy to the heat medium may not be efficiently performed. However, as shown in FIG. 4, in the high-temperature side reaction vessel 21b, when the temperature decreases on the liquid side L, the hydrogen partial pressure of the hydrogen storage alloy decreases, so that the hydrogen storage alloy on the vapor side S shifts from the hydrogen storage alloy on the liquid side L. Hydrogen moves to the alloy, and accordingly, the temperature also moves from the vapor side S to the liquid side L, and sensible heat recovery is performed well.
As a result, the recovery rate of sensible heat is improved to 30 to 40%.
Note that this sensible heat recovery is combined with the first invention (heating by utilizing steam) shown in the above embodiment,
Greater effects can be obtained. Water (steam) is generally used from the viewpoint of utilizing evaporation and condensation. However, when a high operating temperature (for example,> 200 ° C.) or a low operating temperature (for example, <60 ° C.) is required in the system, a heat medium having a higher evaporation temperature than water (for example, oil) is used as a heat medium. The same effect can be expected by using a material having a low vapor temperature (for example, an alcohol mixed solution).

【0028】(実施形態4)この実施形態は、実施形態
3のように顕熱回収循環路を設けた冷却システムにおい
て、圧力変動を防止するためにバイパス用配管を設けた
ものであり、図5に示すように顕熱の回収効率の低下を
防止するために、顕熱回収循環路40を介して冷却側の
循環路と加熱側の循環路とをバイパス用配管で接続して
いる。具体的には、高温側循環路27aと顕熱回収循環
路40とを第1のバイパス用配管41で連結し、顕熱回
収循環路40と高温側循環路27bとを第2のバイパス
用配管42で連結する。これにより第1のバイパス用配
管41、顕熱回収循環路40、第2のバイパス用配管4
2を介して高温側循環路27aと高温側循環路27bと
の圧力差が緩和され、圧力変動が防止され、顕熱回収循
環路40内を循環する熱媒体流量の変動が押さえられる
ことにより、安定して顕熱回収が行われ、熱媒体流量の
変動又は流れない等の現象による顕熱回収率の低下が起
こることを防止出来る。
(Embodiment 4) In this embodiment, in a cooling system provided with a sensible heat recovery circuit as in Embodiment 3, a bypass pipe is provided to prevent pressure fluctuation, and FIG. In order to prevent a decrease in the sensible heat recovery efficiency as shown in (1), the cooling side circulation path and the heating side circulation path are connected via a sensible heat recovery circulation path 40 by a bypass pipe. Specifically, the high temperature side circulation path 27a and the sensible heat recovery circulation path 40 are connected by a first bypass pipe 41, and the sensible heat recovery circulation path 40 and the high temperature side circulation path 27b are connected by a second bypass pipe. Connect at 42. Thereby, the first bypass pipe 41, the sensible heat recovery circuit 40, and the second bypass pipe 4
2, the pressure difference between the high-temperature side circulation path 27a and the high-temperature side circulation path 27b is reduced, pressure fluctuations are prevented, and fluctuations in the flow rate of the heat medium circulating in the sensible heat recovery circulation path 40 are suppressed. The sensible heat recovery is stably performed, and it is possible to prevent a decrease in the sensible heat recovery rate due to a phenomenon such as a change in the flow rate of the heat medium or no flow.

【0029】(実施形態5)この実施形態は、図6に示
すように、低温側反応容器に接続される冷却装置におい
てヒートパイプ式により熱媒体を移動させるものとした
ものである。具体的には、低温側反応容器22aまたは
22bに接続される冷却装置38として蒸発器を使用
し、該蒸発器の循環路45の中途に凝縮器46とタンク
47とを設けたものである。この蒸発器と凝縮器46と
の間で循環させる熱媒体としてはメタノールが例示され
る。低温側水素吸蔵合金の冷却に際しては、低温側循環
路36bを循環する熱媒体(例えばメタノール)の熱を
蒸発器(冷却装置38)で受け、循環路45内の熱媒体
を蒸発させる。蒸発した熱媒体は凝縮器46で凝縮して
熱を奪われ、タンク47で一旦貯留した後、蒸発器に環
流する。上記装置によれば、循環路45側でポンプが不
要であり、省力化される。また、システムが簡単にな
り、コンパクト化、低コスト化が達成される。
(Embodiment 5) In this embodiment, as shown in FIG. 6, a heat medium is moved by a heat pipe type in a cooling device connected to a low-temperature side reaction vessel. Specifically, an evaporator is used as the cooling device 38 connected to the low-temperature side reaction vessel 22a or 22b, and a condenser 46 and a tank 47 are provided in the middle of a circulation path 45 of the evaporator. As a heat medium circulated between the evaporator and the condenser 46, methanol is exemplified. When cooling the low-temperature side hydrogen storage alloy, the heat of the heat medium (for example, methanol) circulating in the low-temperature side circulation path 36b is received by the evaporator (cooling device 38), and the heat medium in the circulation path 45 is evaporated. The evaporated heat medium is condensed in the condenser 46 and deprived of heat, temporarily stored in the tank 47, and then returns to the evaporator. According to the above-described device, a pump is not required on the circulation path 45 side, thereby saving labor. Further, the system is simplified, and downsizing and cost reduction are achieved.

【0030】図7は、蒸発器を用いないで、熱媒体を直
接低温側反応容器22a、22bの熱交換部26a、2
6bで蒸発させるようにしたものである。この装置によ
れば、冷却装置で全くポンプが不要となり、上記効果が
顕著になる。また、直接反応容器の熱交換部で熱媒体を
蒸発させるので、熱交換ロスが小さく、効率的である。
FIG. 7 shows that the heat medium is directly supplied to the heat exchange portions 26a, 26b of the low-temperature side reaction vessels 22a, 22b without using an evaporator.
6b. According to this device, no pump is required in the cooling device, and the above-mentioned effect is remarkable. Further, since the heat medium is directly evaporated in the heat exchange section of the reaction vessel, the heat exchange loss is small and efficient.

【0031】上記各実施形態は、それぞれの発明を具体
的に示したものであるが、本発明がこれらの内容に限定
されないことは詳述するまでもない。また、各発明を2
つ以上組み合わせて一つの冷却システムを構築すること
も可能であり、その組合せは任意である。
Although each of the above embodiments specifically shows each invention, it is needless to say that the present invention is not limited to these contents. In addition, each invention is
It is also possible to construct one cooling system by combining two or more, and the combination is arbitrary.

【0032】[0032]

【発明の効果】以上説明したように、第1の発明の冷却
システムでは、熱供給手段が、熱媒体を蒸発させる蒸気
発生器と、該蒸気発生器で得られた蒸気を高温側反応容
器に送る蒸気移送路と、該蒸気の熱を高温側反応容器内
の水素吸蔵合金に与える熱交換部と、該熱交換部で液化
した熱媒体を蒸気発生器に環流させる環流路とからなる
ので、ポンプを必要とすることなく熱媒体を円滑に循環
させて、高効率で水素吸蔵合金を加熱することができ、
システム全体の効率を向上させることができる。これに
より低コストでコンパクト、高効率の冷却システムが得
られる。
As described above, in the cooling system according to the first aspect of the present invention, the heat supply means includes the steam generator for evaporating the heat medium and the steam obtained by the steam generator for the high-temperature side reaction vessel. Since it is composed of a steam transfer path for sending, a heat exchange section for giving the heat of the steam to the hydrogen storage alloy in the high-temperature side reaction vessel, and an annular flow path for circulating the heat medium liquefied in the heat exchange section to the steam generator, By circulating the heat medium smoothly without the need for a pump, the hydrogen storage alloy can be heated with high efficiency,
The efficiency of the entire system can be improved. This results in a low cost, compact, high efficiency cooling system.

【0033】また、第2の発明の冷却システムでは、上
記環流路を、熱交換部側が高位置、蒸気発生器側が低位
置となるように配置した毛細管で構成したので、液化し
た熱媒体を円滑に環流させることができ、熱媒体の移動
がよりスムーズになる。
In the cooling system according to the second aspect of the present invention, the annular flow path is constituted by a capillary tube arranged so that the heat exchange section is at a high position and the steam generator side is at a low position. And the heat medium can be moved more smoothly.

【0034】第3の冷却システムは、高温側循環路の熱
供給手段側と冷却手段側との間にバイパス用配管を連結
したので、高温循環路の熱供給側と冷却側との間で発生
する圧力変動を防止して、循環路に設けたポンプ等に過
大な負荷が掛かるのを防止することができる。
In the third cooling system, since the bypass pipe is connected between the heat supply means side and the cooling means side of the high temperature side circulation path, the third cooling system generates a heat between the heat supply side and the cooling side of the high temperature side circulation path. Pressure fluctuations can be prevented to prevent an excessive load from being applied to a pump or the like provided in the circulation path.

【0035】第4の冷却システムは、低温側の冷却手段
を、低温側水素吸蔵合金の熱によって熱媒体を蒸発させ
る蒸発部と、この蒸気を凝縮させて熱を奪う凝縮器と、
蒸発または液化した熱媒体を蒸発部と循環器との間で循
環させる循環路とで構成したので、低温側冷却システム
における熱媒体の移動をポンプを必要とすることなく効
率的に行うことができ、省力化、コンパクト化が可能に
なる。
The fourth cooling system includes a low-temperature-side cooling means including an evaporator for evaporating a heat medium by the heat of the low-temperature-side hydrogen storage alloy, a condenser for condensing the vapor and removing heat,
Since the evaporating or liquefied heat medium is constituted by the circulation path for circulating the heat medium between the evaporator and the circulator, the heat medium in the low-temperature side cooling system can be moved efficiently without the need for a pump. This enables labor saving and compactness.

【0036】また、第5の冷却システムは、2組以上の
システムを用いて冷熱を連続的に供給する冷却システム
において、各組の高温側循環路を開閉自在にするととも
に各組の高温側反応容器熱交換部を開閉自在な顕熱回収
循環路で連結したので、各組の高温側水素吸蔵合金で無
駄になる顕熱を有効に回収して効率を向上させることが
できる。
The fifth cooling system is a cooling system that continuously supplies cold heat by using two or more sets of systems. Since the container heat exchange section is connected by a sensible heat recovery circuit that can be freely opened and closed, sensible heat wasted by each set of high-temperature side hydrogen storage alloys can be effectively recovered and efficiency can be improved.

【0037】さらに、第6の冷却システムは、第5の冷
却システムにおいて、高温側循環路の熱供給手段側と顕
熱回収循環路との間に第1のバイパス用配管を連結し、
顕熱回収循環路と高温側循環路の冷却手段側との間に第
2のバイパス用配管を連結したので、顕熱回収を行う場
合にも、その回収効率を損なうことなく循環路の加熱側
と冷却側とで発生する圧力変動を防止することができ
る。
Further, in the sixth cooling system, in the fifth cooling system, a first bypass pipe is connected between the heat supply means side of the high-temperature side circulation path and the sensible heat recovery circulation path,
Since the second bypass pipe is connected between the sensible heat recovery circulation path and the cooling means side of the high-temperature side circulation path, even when sensible heat recovery is performed, the heating side of the circulation path can be maintained without impairing the recovery efficiency. Pressure fluctuations occurring between the cooling side and the cooling side can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態1を示す概略図である。FIG. 1 is a schematic diagram showing Embodiment 1 of the present invention.

【図2】 同じく実施形態2の概略図である。FIG. 2 is a schematic diagram of a second embodiment.

【図3】 同じく実施形態3の概略図である。FIG. 3 is a schematic diagram of a third embodiment.

【図4】 実施形態3の顕熱回収時の熱媒体の状態を示
す概略図である。
FIG. 4 is a schematic diagram illustrating a state of a heat medium during sensible heat recovery according to a third embodiment.

【図5】 本発明の実施形態4の概略図である。FIG. 5 is a schematic diagram of Embodiment 4 of the present invention.

【図6】 同じく実施形態5の概略図である。FIG. 6 is a schematic view of the fifth embodiment.

【図7】 実施形態5の変更例を示す概略図である。FIG. 7 is a schematic diagram showing a modification of the fifth embodiment.

【図8】 従来の冷却システムを示す概略図である。FIG. 8 is a schematic diagram showing a conventional cooling system.

【符号の説明】[Explanation of symbols]

1、21a、21b 高温側反応容器 2、22a、22b 低温側反応容器 3、24a、24b 水素移動管 4、11、25a、25b、16a、16b 熱交換部 5、5a、5b、27a、27b、29a、29b 高
温側循環路 7 冷却装置 8 貯液タンク 9 蒸気ボイラ 12、12a、12b、34a、34b、36a、36
b 低温側循環路 15a、16a,30a、31a、37a、38a ポ
ンプ 15 冷凍庫 16 冷却装置 17 バイパス用配管 30 冷却装置 31 熱供給手段 37 熱利用部 38 冷却装置 40 顕熱回収循環路 41 第1のバイパス用配管 42 第2のバイパス用配管 45 循環路 46 凝縮器 47 タンク
1, 21a, 21b High-temperature side reaction vessel 2, 22a, 22b Low-temperature side reaction vessel 3, 24a, 24b Hydrogen transfer tube 4, 11, 25a, 25b, 16a, 16b Heat exchange section 5, 5a, 5b, 27a, 27b, 29a, 29b High-temperature side circulation path 7 Cooling device 8 Liquid storage tank 9 Steam boiler 12, 12a, 12b, 34a, 34b, 36a, 36
b Low-temperature side circulation path 15a, 16a, 30a, 31a, 37a, 38a Pump 15 Freezer 16 Cooling device 17 Bypass pipe 30 Cooling device 31 Heat supply means 37 Heat utilization unit 38 Cooling device 40 Sensible heat recovery circuit 41 First Bypass pipe 42 Second bypass pipe 45 Circulation path 46 Condenser 47 Tank

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 それぞれに異種の水素吸蔵合金を収容し
た高温側反応容器と低温側反応容器との間に水素移動路
を設け、前記高温側反応容器に熱供給手段と冷却手段と
を選択可能に接続するとともに、前記低温側反応容器に
冷熱利用部と冷却手段とを選択可能に接続した冷却シス
テムにおいて、前記熱供給手段は、熱媒体を蒸発させる
蒸気発生器と、該蒸気発生器で得られた蒸気を高温側反
応容器に送る蒸気移送路と、該蒸気の熱を高温側反応容
器内の水素吸蔵合金に与える熱交換部と、該熱交換部で
液化した熱媒体を蒸気発生器に環流させる環流路とから
なることを特徴とする水素吸蔵合金を用いた冷却システ
1. A hydrogen transfer path is provided between a high-temperature side reaction vessel and a low-temperature side reaction vessel each containing a different type of hydrogen storage alloy, and heat supply means and cooling means can be selected for the high-temperature side reaction vessel. And a cooling system in which a cold heat utilization unit and a cooling means are selectively connected to the low-temperature side reaction vessel, wherein the heat supply means includes a steam generator for evaporating a heat medium, and the steam generator. A steam transfer path for sending the steam to the high-temperature side reaction vessel, a heat exchange section for giving the heat of the steam to the hydrogen storage alloy in the high-temperature side reaction vessel, and a heat medium liquefied in the heat exchange section to the steam generator. A cooling system using a hydrogen-absorbing alloy, characterized by comprising an annular flow path for reflux.
【請求項2】 環流路は、熱交換部側が高位置、蒸気発
生器側が低位置となるように配置された毛細管で構成さ
れていることを特徴とする請求項1記載の水素吸蔵合金
を用いた冷却システム
2. The hydrogen storage alloy according to claim 1, wherein the return channel is formed by a capillary tube arranged so that the heat exchange section is at a high position and the steam generator is at a low position. Cooling system
【請求項3】 それぞれに異種の水素吸蔵合金を収容し
た高温側反応容器と低温側反応容器との間に水素移動路
を設け、前記高温側反応容器に高温側循環路を介して熱
供給手段と冷却手段とを選択可能に接続するとともに、
前記低温側反応容器に低温側循環路を介して冷熱利用部
と冷却手段とを選択可能に接続した冷却システムにおい
て、前記高温側循環路の熱供給手段側と冷却手段側との
間にバイパス用配管を連結したことを特徴とする水素吸
蔵合金を用いた冷却システム
3. A hydrogen transfer path is provided between a high-temperature side reaction vessel and a low-temperature side reaction vessel each containing a different type of hydrogen storage alloy, and heat supply means is provided to the high-temperature side reaction vessel via a high-temperature side circulation path. And the cooling means can be connected selectively.
In a cooling system in which a cold utilization unit and a cooling means are selectively connected to the low-temperature side reaction vessel via a low-temperature side circulation path, a bypass is provided between the heat supply means side and the cooling means side of the high-temperature side circulation path. Cooling system using hydrogen storage alloy characterized by connecting pipes
【請求項4】 それぞれに異種の水素吸蔵合金を収容し
た高温側反応容器と低温側反応容器との間に水素移動路
を設け、前記高温側反応容器に高温側循環路を介して熱
供給手段および冷却手段を選択可能に接続するととも
に、前記低温側反応容器に低温側循環路を介して冷熱利
用部および冷却手段を選択可能に接続した冷却システム
において、上記低温側の冷却手段は、低温側水素吸蔵合
金の熱によって熱媒体を蒸発させる蒸発部と、この蒸気
を凝縮させて熱を奪う凝縮器と、蒸発または液化した熱
媒体を蒸発部と循環器との間で循環させる循環路とで構
成したことを特徴とする水素吸蔵合金を用いた冷却シス
テム
4. A hydrogen transfer path is provided between a high-temperature side reaction vessel and a low-temperature side reaction vessel each containing a different type of hydrogen storage alloy, and heat supply means is provided to the high-temperature side reaction vessel via a high-temperature side circulation path. And a cooling means selectably connected to the low-temperature side reaction vessel via a low-temperature side circulation path, and a low-temperature side cooling means is selectably connected to the low-temperature side reaction vessel. An evaporator that evaporates the heat medium by the heat of the hydrogen storage alloy, a condenser that condenses the vapor to remove heat, and a circulation path that circulates the evaporate or liquefied heat medium between the evaporator and the circulator. A cooling system using a hydrogen storage alloy, characterized by comprising
【請求項5】 それぞれに異種の水素吸蔵合金を収容し
た高温側反応容器と低温側反応容器との間に水素移動路
を設け、前記高温側反応容器に高温側循環路を介して熱
供給手段および冷却手段を選択可能に接続するととも
に、前記低温側反応容器に低温側循環路を介して冷熱利
用部および冷却手段を選択可能に接続したシステムを2
組以上設け、各組における水素吸蔵合金の加熱、冷却時
期を変えることによって連続的に冷熱を供給する冷却シ
ステムにおいて、上記各組の高温側循環路を開閉自在に
するとともに各組の高温側反応容器熱交換部を開閉自在
な顕熱回収循環路で連結したことを特徴とする水素吸蔵
合金を用いた冷却システム
5. A hydrogen transfer path is provided between a high-temperature side reaction vessel and a low-temperature side reaction vessel each containing a different type of hydrogen storage alloy, and heat supply means is provided to the high-temperature side reaction vessel via a high-temperature side circulation path. And a cooling means selectably connected to the low-temperature side reaction vessel via the low-temperature side circulation path.
In a cooling system that continuously supplies cold heat by changing the heating and cooling timings of the hydrogen storage alloy in each set, a high temperature side circulation path of each set can be freely opened and closed and a high temperature side reaction of each set is provided. A cooling system using a hydrogen storage alloy, characterized by connecting the container heat exchange section with a sensible heat recovery circuit that can be freely opened and closed.
【請求項6】 高温側循環路の熱供給手段側と顕熱回収
循環路との間に第1のバイパス用配管を連結し、顕熱回
収循環路と高温側循環路の冷却手段側との間に第2のバ
イパス用配管を連結したことを特徴とする請求項5記載
の水素吸蔵合金を用いた冷却システム
6. A first bypass pipe is connected between the heat supply means side of the high temperature side circulation path and the sensible heat recovery circulation path, and a first bypass pipe is connected between the sensible heat recovery circulation path and the cooling means side of the high temperature side circulation path. 6. A cooling system using a hydrogen storage alloy according to claim 5, wherein a second bypass pipe is connected therebetween.
JP30564696A 1996-10-30 1996-10-30 Cooling system using hydrogen occlusion alloy Pending JPH10132417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30564696A JPH10132417A (en) 1996-10-30 1996-10-30 Cooling system using hydrogen occlusion alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30564696A JPH10132417A (en) 1996-10-30 1996-10-30 Cooling system using hydrogen occlusion alloy

Publications (1)

Publication Number Publication Date
JPH10132417A true JPH10132417A (en) 1998-05-22

Family

ID=17947646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30564696A Pending JPH10132417A (en) 1996-10-30 1996-10-30 Cooling system using hydrogen occlusion alloy

Country Status (1)

Country Link
JP (1) JPH10132417A (en)

Similar Documents

Publication Publication Date Title
JP2664506B2 (en) Cooling and / or heating device by solid-gas reaction
JP2010107093A (en) Heat storage device for vehicle
US5507158A (en) Device for indirect production of cold for refrigerating machine
EP0354749B1 (en) Air-cooled absorption Air-conditioner
JP2009121740A (en) Adsorption type heat pump and its operation control method
JPH10132417A (en) Cooling system using hydrogen occlusion alloy
JP2008232464A (en) Chemical heat pump and heat utilization system using the same
JPH06272989A (en) Refrigerator
JP3948815B2 (en) Multi-effect absorption refrigerator
JP2703360B2 (en) Heat-driven chiller using metal hydride
JP2004092968A (en) Absorption type cold and hot-water machine
JP4596683B2 (en) Absorption refrigerator
JP3744689B2 (en) Co-generation system
Mazet et al. Gravitational heat pipes for discontinuous applications
JP3724975B2 (en) Steam tank absorption chiller / heater
JP2543258B2 (en) Absorption heat source device
JP4175612B2 (en) Single-effect absorption chiller / heater
JPS61190261A (en) Heat pipe type cooling and refrigerating device utilizing hydrogen storage alloy
JP2004011928A (en) Absorption refrigerator
JP2892519B2 (en) Absorption heat pump equipment
JPS63116066A (en) Double effect absorption water chiller and heater
JPS5829819Y2 (en) Absorption heat pump
JP2010084604A (en) Engine exhaust heat recovery system
JPS6329184B2 (en)
JPH0250057A (en) Air cooled absorbing type hot water heater