JP4175612B2 - Single-effect absorption chiller / heater - Google Patents

Single-effect absorption chiller / heater Download PDF

Info

Publication number
JP4175612B2
JP4175612B2 JP2002260765A JP2002260765A JP4175612B2 JP 4175612 B2 JP4175612 B2 JP 4175612B2 JP 2002260765 A JP2002260765 A JP 2002260765A JP 2002260765 A JP2002260765 A JP 2002260765A JP 4175612 B2 JP4175612 B2 JP 4175612B2
Authority
JP
Japan
Prior art keywords
solution
temperature regenerator
low
regenerator
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002260765A
Other languages
Japanese (ja)
Other versions
JP2004100999A (en
Inventor
修行 井上
哲也 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002260765A priority Critical patent/JP4175612B2/en
Publication of JP2004100999A publication Critical patent/JP2004100999A/en
Application granted granted Critical
Publication of JP4175612B2 publication Critical patent/JP4175612B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガスタービン、エンジン等の高温排ガス、エンジンからの排ガスと高温水、エンジンからの蒸気と高温水、あるいはプラントからの高温水、排蒸気などの排熱を利用する吸収冷温水機に関するものである。
特に、温度レベルが2種ある排熱を熱源とする一二重効用サイクル、あるいは顕熱変化により温度を大きく変化させる熱流体を、高温部と低温部とに区分して用いる一二重効用サイクルに関するものであり、熱源熱流体を低い温度まで有効に利用する、吸収冷温水機の溶液循環経路に関するものである。
【0002】
【従来の技術】
【特許文献1】
特公昭57−20543号公報
【特許文献2】
特公昭57−42823号公報
【特許文献3】
特公昭53−34658号公報
従来の排熱回収型一二重効用吸収冷凍機に、熱源に排ガスを用いる、特公昭57−20543号公報、特公昭57−42823号公報などがあり、高温排ガスを二重効用の熱源として高温再生器で、温度の下がった低温側排ガスを単効用の熱源として排熱低温再生器で利用している。
また、高温水を熱源とする一二重効用吸収冷凍機の例が、特公昭53−34658号公報にあり、高温水を二重効用サイクルの熱源としたあと、さらに単効用の熱源とするサイクルが示されている。
これらの例では、高温再生器、排熱低温再生器、低温再生器で濃縮される溶液は、各再生器に導入された溶液をそのまま濃縮するだけで、再生器内での溶液の濃度変化による沸騰温度の変化を有効に利用して、熱回収量を増加させようという考慮はなかった。
即ち、高温部を二重効用として、低温部を単効用として利用するにとどまり、熱回収量をさらに増加させようという考慮はなかった。
【0003】
【発明が解決しようとする課題】
本発明は、上記従来技術に鑑み、溶液の循環サイクルを工夫することで、高温再生器で熱源となる高温熱源流体からなるべく多くの熱量を回収し、また、排熱低温再生器での熱源熱流体の温度もできるだけ低くまで利用して回収熱量を多くし、冷温水機の出力である冷凍容量を大きくすることができる一二重効用吸収冷温水機を提供することを課題とする。
【0004】
【課題を解決するための手段】
上記課題を解決するために、本発明では、外部熱源を熱源とする高温再生器、該高温再生器の熱源とは異なる温度レベルを有する外部熱源を熱源とする排熱低温再生器、及び、前記高温再生器で発生した冷媒蒸気を熱源とする低温再生器のそれぞれ別々の機器と熱源で構成される3つの再生器、凝縮器、吸収器、蒸発器及びこれらの機器を接続する溶液流路と冷媒流路とを備えた一二重効用吸収冷温水機において、前記高温再生器、排熱低温再生器、低温再生器のうち、溶液出口濃度の低い1又は2の再生器により加熱濃縮された溶液を、前記再生器より溶液出口濃度の高い再生器の溶液入口と溶液出口の途中位置から導入するように溶液流路を形成したことを特徴とする一二重効用吸収冷温水機としたものである。
前記吸収冷温水機において、溶液流路が、吸収器からの吸収溶液を、高温再生器と排熱低温再生器と低温再生器とに三方向に分割して導くように構成され、溶液出口濃度の低い再生器が低温再生器であり、前記低温再生器からの溶液が排熱低温再生器の溶液入口と溶液出口の途中位置から導入されるか、又は、溶液出口濃度の低い再生器が低温再生器と高温再生器であり、前記低温再生器からの溶液及び高温再生器からの溶液が排熱低温再生器の溶液入口と溶液出口の途中位置から導入されるように構成することができ、また、前記溶液流路が、吸収器からの吸収溶液を、高温再生器と排熱低温再生器と低温再生器とに三方向に分割して導くように構成され、溶液出口濃度の低い再生器が排熱低温再生器であり、前記排熱低温再生器からの溶液が低温再生器の溶液入口と溶液出口の途中位置から導入されるか、又は、溶液出口濃度の低い再生器が排熱低温再生器と高温再生器であり、前記排熱低温再生器からの溶液及び高温再生器からの溶液が低温再生器の溶液入口と溶液出口の途中位置から導入されるよう構成することができる。
【0005】
また、前記吸収冷温水機において、溶液流路が、吸収器からの吸収溶液を、排熱低温再生器と低温再生器とに分割して導くように構成され、溶液出口濃度の低い再生器が低温再生器であり、前記低温再生器からの溶液が高温再生器の溶液入口及び排熱低温再生器の溶液入口と溶液出口の途中位置に分割して導かれるか、又は、前記低温再生器からの溶液排熱低温再生器の溶液入口と溶液出口の途中位置に導入され、且つ前記排熱低温再生器からの溶液が高温再生器に導かれるように構成するか、前記溶液流路が、吸収器からの吸収溶液を、高温再生器又は高温再生器と排熱低温再生器とに分割して導くように構成され、低温再生器へは溶液が高温再生器を経由して導入され、溶液出口濃度の低い再生器が低温再生器であり、前記低温再生器からの溶液を排熱低温再生器の溶液入口と溶液出口の途中位置に導入するように構成することができ、また、前記溶液流路が、吸収器からの吸収溶液を、高温再生器と低温再生器とに分割して導くように構成され、溶液出口濃度の低い再生器が高温再生器であり、前記高温再生器からの溶液が排熱低温再生器の溶液入口と溶液出口の途中位置又は低温再生器の溶液入口と溶液出口の途中位置に導かれるように構成するか、又は、前記溶液流路が、吸収器からの吸収溶液を、高温再生器と排熱低温再生器とに分割して導くように構成され、溶液出口濃度の低い再生器が高温再生器であり、前記高温再生器からの溶液が排熱低温再生器の溶液入口と溶液出口の途中位置又は低温再生器の溶液入口と溶液出口の途中位置に導かれるように構成することができる。
【0006】
さらに、前記吸収冷温水機において、溶液流路が、吸収器からの吸収溶液を、低温再生器に導くように構成され、前記低温再生器からの溶液を、高温再生器と排熱低温再生器とに分割して導き、溶液出口濃度の低い再生器が高温再生器であり、前記高温再生器からの溶液が排熱低温再生器の溶液入口と溶液出口の途中位置に導入されるように構成するか、前記溶液流路が、吸収器からの吸収溶液を、排熱低温再生器に導くように構成され、前記排熱低温再生器からの溶液を、高温再生器と低温再生器とに分割して導き、溶液出口濃度の低い再生器が高温再生器であり、前記高温再生器からの溶液が低温再生器の溶液入口と溶液出口の途中位置に導入されるように構成するか、前記溶液流路が、吸収器からの吸収溶液を、低温再生器と排熱低温再生器とに分割して導くように構成され、高温再生器には低温再生器からの溶液が導かれて、溶液出口濃度の低い再生器が高温再生器であり、前記高温再生器からの溶液が前記排熱低温再生器の溶液入口と溶液出口の途中位置に導入されるように構成するか、又は、前記溶液流路が、吸収器からの吸収溶液を、低温再生器と排熱低温再生器とに分割して導くように構成され、高温再生器には排熱低温再生器からの溶液が導かれて、溶液出口濃度の低い再生器が高温再生器であり、前記高温再生器からの溶液が前記低温再生器の溶液入口と溶液出口の途中位置に導入されるように構成することができる。
また、これらの一二重効用吸収冷温水機において、前記溶液流路には、追焚き用の高温再生器を付加することもできる。

【0007】
【発明の実施の形態】
凝縮温度が同一で、再生器への入口濃度が同一の場合、溶液流量が多いと再生器出口までの濃度上昇が低く抑えられ、再生器出口温度(出口での沸騰温度)が低く、熱源温度と溶液温度との温度差が大きくなり、熱源からの熱回収量が多くなる。しかし、吸収器、蒸発器、凝縮器、及び低温熱交換器が同一の場合、吸収器からの溶液流量が多くなると、サイクルの効率が低下するので、溶液流量を多くしすぎる訳にはいかない。
吸収器、蒸発器、凝縮器、及び低温熱交換器が同一で、吸収器からの溶液流量が同一の場合、吸収溶液の高温再生器、排熱低温再生器、低温再生器への循環経路、循環割合などにより、各再生器の沸騰温度が変化する。
本発明は、限られた溶液流量を、各再生器に分配し、あるいは流す順番を決めて、熱源からなるべく多くの熱を回収し、大きな冷凍出力を得ようとするものである。
【0008】
一二重効用サイクルには、高温再生器、排熱低温再生器、低温再生器の少なくとも3基の再生器があり、これらの再生器への吸収溶液の導入順序(並列導入、直列導入)などによって、多くのサイクルが存在する。この中で、どのサイクルを選択するかは、高温再生器出口溶液の温度制限(腐食を考慮)、サイクルの濃度制限(結晶腐食を考慮)、高温再生器の飽和温度/飽和圧力制限(圧力容器に対する考慮)などの制限の中でに、高温再生器への熱源及び排熱低温再生器への熱源の特性を考えてなされ、単に、熱回収の多さだけで決定されるのではない。
本発明は、高温再生器出口溶液の温度制限、サイクルの濃度制限、高温再生器の飽和温度/飽和圧力制限の中で、基本的なサイクルが選択されるとして、その中で、高温再生器での熱利用率を高めると共に、排熱低温再生器をでる熱源流体温度もできるだけ下げて回収熱量を多くし、冷温水機の出力である冷凍容量を大きくしている。
【0009】
吸収器蒸発器、凝縮器、及び低温熱交換器が同一で、吸収器からの溶液流量が同一の場合、吸収溶液の高温再生器、排熱低温再生器低温再生器への循環経路により、各再生器で利用できる温度が変化する。
本発明では、まず、各再生器を出る熱源熱流体の温度をできるだけ下げ得るフローとするため、吸収器からの希溶液を、高温再生器、排熱低温再生器、低温再生器のそれぞれに導入するフローを採用し、さらに、排熱など外部熱源の種類により、各再生器に導く流量を設定している溶液フローについて説明する。
希溶液流量が多く導入された再生器の出口濃度は低く、希溶液導入量の少ない再生器の出口濃度は高くなる。濃度が高いと吸収溶液の沸騰温度が高くなり、熱源流体温度を低くできなくなる。本発明では、出口濃度の低い再生器の吸収溶液を、出口濃度の高い再生器に導入、導入位置は溶液入口から出口までの途中位置として、出口濃度の上昇を抑えている。
【0010】
高温再生器の熱源が、顕熱変化の大きな熱源熱流体であり、また、排熱低温再生器の熱源も顕熱変化の大きな熱源熱流体であり、特に、高温再生器を通った熱源熱流体がそのまま排熱低温再生器の熱源となる場合、低温再生器には、全溶液循環量の内、多くの割合で希溶液を導入し、低温再生器の出口濃度を低く保つと共に、この低温再生器の出口溶液を前記排熱低温再生器の中間部に導入する。
高温再生器にて、熱源熱流体と吸収溶液とを全体として対向流にて熱交換させ、高温再生器の熱源熱流体出口では、熱源熱流体と入口希溶液とが熱交換するように構成すると共に、排熱低温再生器でも、熱源熱流体と吸収溶液とを全体として対向流にて熱交換させ、排熱低温再生器の熱源熱流体出口では、熱源熱流体と入口希溶液とが熱交換するように構成する。
低温再生器に多くの希溶液を導入し、低温再生器出口部の沸騰温度を低く抑えた結果、低温再生器の熱源となる高温再生器の冷媒蒸気を、飽和温度(凝縮温度)の低い冷媒蒸気とすることができ、高温再生器の沸騰温度を低下させることができる。これに従い、高温再生器の熱源温度も低くまで利用できて、即ち、高温再生器出口の排ガス温度も低下して、二重効用として利用できる熱源熱流体の熱量が多くなる。
【0011】
一方、排熱低温再生器には、量は少なくとも、希溶液を導入し、溶液入口/排ガス出口部の沸騰温度を低く抑え、熱源熱流体の出口温度を低くする。溶液流量が少ないままとすると、濃度幅が大きくなり、溶液出口部での沸騰温度が高くなってしまうが、溶液濃度の低い低温再生器出口溶液の一部又は全部を、排熱低温再生器の中間部で、ほぼ同じ程度の濃度の部分から導入して溶液流量を多くすると、排熱低温再生器の出口濃度、沸騰温度を抑えることができ、従って、排熱低温再生器の熱源温度も低くまで利用でき、排熱低温再生器出口の排ガス温度も低下して、単効用として利用できる熱源熱流体の熱量も多くなる。
また、高温再生器の熱源が、顕熱変化の小さな熱源あるいは潜熱変化をする熱源であり、さらに二重効用サイクルの熱源温度としては低めで、温度的余裕がなく、一方、排熱低温再生器の熱源が、顕熱変化の大きな熱源熱流体である場合、低温再生器に、多くの割合で希溶液を導入し、次いで高温再生器にも多くの割合で希溶液を導入する。
【0012】
高温再生器の熱源が、顕熱変化の小さな熱源あるいは潜熱変化をする熱源の場合、高温再生器のピンチ温度は、高温再生器の溶液出口温度部となるので、溶液出口部の沸騰温度はなるべく低いことが望まれ、即ち、出口濃度が低いことが望まれ、高温再生器にも多くの希溶液を導入する。低温再生器に多くの希溶液を導入するのは、高温再生器の冷媒蒸気飽和温度を下げ、高温再生器全体の沸騰温度を下げるためである。
この場合、低温再生器出口濃度ばかりでなく、高温再生器出口濃度も、排熱低温再生器の出口濃度よりも低くなるので、低温再生器出口溶液を前記排熱低温再生器の中間部に導入すると共に、高温再生器の出口溶液も、前記排熱低温再生器の中間部で先程の導入部よりは下流位置に導入することで、溶液流量を多くして、排熱低温再生器の出口濃度、沸騰温度を抑えることができる。
【0013】
さらに、排熱低温再生器の熱源熱流体が、蒸気など潜熱を主体とする熱源であって温度が低く、一方、高温再生器の熱源が、排ガスあるいは高温水で顕熱変化の大きな熱源熱流体である場合、排熱低温再生器の溶液出口温度(沸騰温度)が、潜熱変化をする熱源温度を支配する(排熱低温再生器の溶液出口側が、ピンチ温度となる)ので、希溶液流量を多く導入し溶液出口濃度を下げると、低温度の排熱には効果がある。一方、高温再生器は顕熱型の熱源であり、ピンチ温度は溶液入口側になるので、溶液流量が少なくともその影響は小さい。
この場合、排熱低温再生器に多くの希溶液を導入し、溶液出口温度が低温再生器出口濃度よりも低くなる場合、排熱低温再生器の出口溶液を、低温再生器の中間部に導入すると、低温再生器出口濃度、沸騰温度を抑えることができる。低温再生器の熱源は高温再生器からの冷媒蒸気であり、潜熱型の熱源であり、溶液出口がピンチ温度となるので、この溶液混入は効果がある。
【0014】
また、排熱低温再生器の熱源熱流体が、蒸気など潜熱を主体とする熱源であって温度が低く、一方、高温再生器の熱源も、排蒸気で潜熱変化で温度変化が無く、あるいは多量の高温水で顕熱変化の小さな熱源熱流体である場合、排熱低温再生器と高温再生器に多くの割合で希溶液を導入する。
排熱低温再生器の溶液出口温度(沸騰温度)が、潜熱変化をする熱源温度を支配する(排熱低温再生器の溶液出口側が、ピンチ温度となる)ので、希溶液流量を多くすることで、溶液出口濃度、沸騰温度を下げることができ、低温度の排熱に効果がある。一方、高温再生器も顕然変化が小さいと、ピンチ温度が溶液出口側になるので、溶液流量が少ないと、必要入口温度が高くなり過ぎることになる。この場合、多くの希溶液を高温再生器にも導入し、高温再生器出口濃度が、低温再生器出口濃度よりも低い場合、排熱低温再生器の出口溶液を、低温再生器の中間部に導入すると共に、高温再生器の出口溶液も、前記低温再生器の中間部に導入することで、溶液流量を多くして、低温再生器の出口濃度、沸騰温度を抑えることができる。
排熱量が充分でない場合は、単効用ではなく、二重効用となる位置で、熱源のバックアップ、つまり追焚きをする。
【0015】
次に、本発明では、排熱低温再生器への熱源流体が、顕熱変化の大きな熱源熱流体である場合を、特に想定し、以下のようなサイクルとしており、高温再生器への熱源流体は、顕熱変化でも潜熱変化でもどちらでもよい。
排熱低温再生器の熱源流体と吸収溶液とは対向流で流すとすると、ピンチ温度(熱交換温度差の最も小さい部分の温度差)が熱源流体出口部/吸収溶液入口部に存在し、熱源流体入口側/溶液出口側ではないことから、出口溶液温度はある程度高くなってもよく、排熱低温再生器に導入する溶液流量は少なくし、その分を他の再生器(高温再生器、低温再生器)に振り向け、多くした再生器での熱回収をよくすることができる。低温再生器への導入量を増した場合には、低温再生器の沸騰温度が低下し、熱源となる高温再生器の冷媒蒸気の飽和温度を低下させる効果があり、高温再生器の全領域に渡る沸騰温度を低下させることができ効果的である。
【0016】
排熱低温再生器に導入する溶液流量を少なくすると、出口濃度が、他の再生器出口の濃度よりも高くなる。しかし、排熱低温再生器の溶液入口から溶液出口までの途中位置に、他の再生器で濃縮されて出てくる溶液を導入すると、途中から導入しなかった場合よりも、排熱再生器出口濃度を低く抑えることができ、沸騰温度を抑えることになって、伝熱のための温度差を大きくすることができ、熱回収量増大に効果がある。
この場合、本発明では、特に、低温再生器に多くの吸収溶液を流し、濃縮された溶液を排熱低温再生器の中間位置に導入する。
また、本発明では、排熱低温再生器に、溶液サイクル中で最も濃度の低い希溶液を導入して、ピンチ温度となる排熱低温再生器の溶液入口側の沸騰温度を低下させ、熱源流体出口温度を低下させている。また、排熱低温再生器に導入する溶液流量は制限し、他の再生器への流量を多くしている。即ち、排熱低温再生器の熱源流体は、顕熱変化の大きな熱流体を想定しているので、ピンチ温度となる排熱低温再生器の溶液入口側の沸騰温度を低下させればよく、溶液出口側の温度がある程度上昇してもよいが、本発明では、途中から溶液流量を増加させて、排熱低温再生器の出口濃度沸騰温度も抑えるようにしている。
【0017】
また、本発明では、高温再生器の熱源温度が、二重効用サイクルに対して、それほど高くない場合に対応するもので、吸収器からの希溶液を全て高温再生器に導入し、高温再生器で濃縮された溶液を、排熱低温再生器と低温再生器に分割導入している。その分割は排熱低温再生器に少なく、低温再生器に多くして、低温再生器出口溶液を排熱低温再生器の入口から出口までの途中位置に導入する構成としている。
さらに、本発明は、高温再生器と別の再生器とに溶液を分配して流すサイクルで、高温再生器に多くの溶液を分配した場合に、高温再生器出口の溶液濃度が高くなっていないことを利用して、熱源からの回収熱量を増し、冷凍容量を大きくしようとするものである。
高温再生器にて加熱濃縮した吸収溶液が、排熱低温再生器の吸収溶液出口濃度より低いとき、排熱低温再生器の吸収溶液入口から出口までの途中位置に、高温再生器出口の吸収溶液を導入し沸騰温度を下げると共に、それ以降の温度上昇の勾配を抑える。
【0018】
あるいは、高温再生器にて加熱濃縮した吸収溶液が、低温再生器の吸収溶液出口濃度より低いとき、低温再生器の吸収溶液入口から出口までの途中位置に、高温再生器出口の吸収溶液を導入し沸騰温度を下げると共に、それ以降の温度上昇の勾配を抑えることができる。
具体的には、本発明では、吸収器からの希溶液を、分岐して一部を高温再生器に導き、残部を低温再生器、又は排熱低温再生器に導くと共に、前記高温再生器に導いて加熱濃縮した吸収溶液を、排熱低温再生器又は前記低温再生器の吸収溶液入口から出口までの途中位置に導入する。
この場合、高温再生器に多くの希溶液を導入し、沸騰温度を下げることで、高温再生器熱源への温度対策とし、高温再生器の出口濃度があまり高くなっていないことを利用し、低温再生器または排熱低温再生器の中間位置に導入して、沸騰温度を低くしょうとするものである。
【0019】
また、本発明では、吸収器からの希溶液を、低温再生器に導き加熱濃縮した吸収溶液を、高温再生器と排熱低温再生器とに分割して導くと共に、前記高温再生器に導いて加熱濃縮した吸収溶液を、前記排熱低温再生器の吸収溶液入口から出口までの途中位置に導入する。
この場合は、排熱低温再生器の熱源が顕熱変化の大きなもので、高温再生器の熱源は顕熱変化が小さいか、あるいは潜熱変化である場合に適したサイクルであり、高温再生器の出口濃度を排熱低温再生器の濃度上昇、沸点上昇を抑えるのに役立てることができる。
【0020】
また、本発明では、吸収器からの希溶液を、排熱低温再生器に導き加熱濃縮した吸収溶液を、高温再生器と低温再生器とに分割して導くと共に、前記高温再生器に導いて加熱濃縮した吸収溶液を、前記低温再生器の吸収溶液入口から出口までの途中位置に導入する。この場合は、排熱低温再生器の熱源が低く、顕熱温度差も小さいか、あるいは潜熱変化であり、高温再生器の熱源も顕熱変化が小さいか、あるいは潜熱変化である場合に適したサイクルであり、希溶液の全量を排熱低温再生器に流すことで、温度の低い排熱低温再生器の熱源を利用可能とし、濃縮後の溶液の多くを高温再生器に導き、高温再生器出口温度を上げすぎないようにすると共に、高温再生器出口溶液を低温再生器の中間部から導入し、低温再生器の過濃縮、過剰な温度上昇を防ぐことができる。
【0021】
さらに、本発明では、吸収器からの希溶液を、低温再生器と排熱低温再生器とに導くと共に、前記低温再生器に導いて加熱濃縮した吸収溶液を、高温再生器に導いてさらに濃縮し、該吸収溶液を前記排熱低温再生器の吸収溶液入口から出口までの途中位置に導入するか、あるいは前記排熱低温再生器に導いて加熱濃縮した吸収溶液を、高温再生器に導いてさらに濃縮し、該吸収溶液を前記低温再生器の吸収溶液入口から出口までの途中位置に導入する。
吸収器からの希溶液の多くを、低温再生器に導き、次いで高温再生器に導くと、二重効用サイクル部が、所謂 リバースフローの形になり、低温再生器の沸騰温度が低く、間接的に高温再生器の沸騰温度を抑えることができる。多くの溶液を高温再生器に送ると、排熱低温再生器への流量が不足し、排熱低温再生器出口濃度が上昇しすぎるが、これを、高温再生器からの吸収溶液で希釈し沸騰温度を抑えることができる。この方式では、低温再生器入口温度を低くすることができ、一方、出口温度は高いので、排熱低温再生器への熱源が、顕熱温度差の大きな熱源である場合に適したサイクルである。なお、低温再生器出口溶液を全量高温再生器に送ろうとすると、流量調節のための特別な制御が必要になるので、大部分の吸収溶液を送ることとし、残りは、排熱低温再生器に送ると特別な制御は不要となる。
【0022】
例えば、高温再生器にはポンプを用いて送る吐出量をオリフィスなどで規定し、残りの溶液はポンプが吸込まず、排熱再生器側に溢れるというような形態で、特別な制御を不要とすることができる。
一方、排熱低温再生器への熱源が低い場合には、吸収器からの希溶液の多くを、排熱低温再生器に導き、次いで高温再生器に導き、一方、低温再生器への流量を増すために、高温再生器からの溶液を途中から導入している。この場合は、高温再生器への熱源温度は少し高くなるが、排熱再生器への熱源温度を下げることができる。なお、排熱低温再生器出口溶液を全量高温再生器に送ろうとすると、流量調節のための特別な制御が必要になるので、大部分の吸収溶液を送ることとし、残りは、低温再生器に送ると特別な制御は不要となる。
前記本発明の一二重効用吸収冷温水機においては、追焚き用の高温再生器を付加することで、排熱だけでは冷凍負荷を賄えない時の対策とすることができる。追焚きは、当然熱効率のよい二重効用部分、即ち、高温再生器の圧力部で行う。
【0023】
次に、本発明を、図面を用いて、冷媒に水、吸収溶液に無機塩類水溶液を用いた吸収冷温水機を対象として説明する。
図1、図2、図7、図8、図13、図14は、本発明に用いる吸収冷温水機のフロー構成図であり、図3〜図6、図9〜図12、図15〜図22は、それぞれ(a)は簡略化したフロー図、(b)は、圧力−濃度線図上の吸収溶液サイクル図、(c)、(d)は再生器の熱源液体と溶液の温度関係を示すグラフである。
図において、Aは吸収器、GLは低温再生器、GHは高温再生器、GXは排熱低温再生器、GH1は追焚き用高温再生器、Cは凝縮器、Eは蒸発器、Xは低温熱交換器、、XHは高温熱交換器、SP、SP1は溶液ポンプ、RPは冷媒ポンプ、V1〜V3は弁、1、1’は熱源、2は冷温水、3、4は冷却水、5、6、7は中間部、11〜18は溶液流路、21〜25は冷媒流路である。
このように、本発明の例では、吸収器A、蒸発器E、低温再生器GL、凝縮器Cを一つの角型缶胴に収め、この缶胴とは別に、高温排熱を熱源とする高温再生器GHと排熱低温再生器GXと溶液熱交換器XH、Xが配備されている。そして、この缶胴の吸収器A及び低温再生器GLと、高温再生器GH、排熱低温再生器GX、追焚き用高温再生器GH1とは,それぞれ溶液流路及び冷媒流路で接続されている。
【0024】
次に、図1について説明すると、図1は各再生器に吸収溶液を3分割して導く例で、高温再生器の熱源及び排熱低温再生器の熱源が、顕熱変化の大きな熱源熱流体である場合の例である。
特に、熱源は、ガスタービン、ガスエンジンなどからの排ガスを、先ず高温再生器、次いで排熱低温再生器に導いて、冷温水機の駆動熱源としている。
まず、冷房運転においては、弁V1、V2、V3を閉止して、冷房サイクルを行う。
吸収器Aからの希溶液を三分割し、一部を高温再生器GH、一部を排熱低温再生器GX、残りを低温再生器GLに導く。高温再生器GH及び排熱低温再生器GXでは、熱源1となる排ガスと吸収溶液とを、図示のように、全体として対向流となるように流して熱交換させ、吸収溶液を加熱濃縮する。高温再生器GHの排ガス出口では、出口排ガスと溶液入口側の希溶液とが熱交換し、また、排熱低温再生器GXの排ガス出口でも、出口排ガスが希溶液と熱交換する。
低温再生器GLでは、高温再生器GHで発生した冷媒蒸気を熱源に吸収溶液を加熱濃縮する。
【0025】
低温再生器GLで加熱濃縮した溶液は、排熱低温再生器GXの溶液入口から出口までの溶液流れの中間部5に導入し、溶液量を増量する。低温再生器GLで発生した冷媒蒸気は、排熱低温再生器GXからの冷媒蒸気と共に凝縮器Cに入り、冷却水で冷却され凝縮する。高温再生器GHで発生し低温再生器GLの熱源となった冷媒蒸気は凝縮液となって凝縮器Cに入り、先ほどの凝縮器Cで凝縮した冷媒液と共に、蒸発器Eに入る。
蒸発器Eでは、冷媒液が冷水2から熱を奪って、冷凍効果を発揮し、冷媒蒸気になる。
高温再生器GH、排熱低温再生器GXから出てくる濃溶液は吸収器Aに戻り、冷却水で冷却される伝熱面に散布され、蒸発器Eからの冷媒蒸気を吸収し、希溶液となる。
【0026】
図3(a)は、図1の吸収溶液の流れを簡略化したフロー図、図3(b)は、吸収溶液のサイクルを圧力−濃度線図上に示したものである。
図3(c)は、高温再生器GHでの排ガスと吸収溶液との温度関係を示すもので、吸収溶液の沸騰開始温度部分がピンチ温度(最小温度差)となっており、排ガスの出口温度を支配する温度となっている。
図3(d)は、排熱低温再生器GXでの排ガスと吸収溶液との温度関係を示すもので、吸収溶液の沸騰開始温度部分がピンチ温度(最小温度差)となっており、排ガスの出口温度を支配する温度となっている。なお、低温再生器Gからの溶液を排熱低温再生器GXに導入しない場合、破線のように、溶液出口部での沸騰温度が高くなるが、本発明を適用すると、破線から実線のように吸収溶液の温度が低下し、排ガス出口温度が低下、回収熱量が多くなる。
本図では、低温再生器GL出口溶液を、排熱低温再生器GXに導いているが、熱交換器経由で、高温再生器GHの溶液入口から出口までの途中位置に導入することも可能である。
【0027】
暖房運転については、弁V1、V2、V3を開として冷暖を切替える。冷却水は流さない。
吸収器Aからの希溶液を三分割し、一部を高温再生器GH、一部を排熱低温再生器GX、残りを低温再生器GLに導き、低温再生器GLからの濃溶液を排熱低温再生器GXに導く吸収溶液の流れは、冷房運転の場合と同じであるが、高温再生器GH、排熱低温再生器GXから出てくる濃溶液は弁V2を通して蒸発器Eに入れ、溶液を蒸発器Eに散布する。
低温再生器GLの圧力レベルの機器(低温再生器GL、排熱低温再生器GX、凝縮器C)と蒸発器E又は蒸発器Eとを結ぶ配管中の弁V1を通して、冷媒蒸気を蒸発器Eに導き、先程の散布溶液に吸収させ、暖房時の出力となる温水をこの吸収熱で加熱する。蒸発器Eで冷媒蒸気を吸収した溶液は、弁V3を通して吸収器Aに戻る。弁V3の代わりに蒸発器液溜めのオーバーフロー管(図示せず)を通して吸収器Aに戻してもよい。
【0028】
図2は、図1において、熱源熱流体単独では冷暖房容量を賄えない場合に、燃料等による追焚きを可能にした冷温水機であり、燃料による高温再生器GH1を付加している。
図4は、図1において、さらに高温再生器GHで加熱濃縮した溶液も、排熱低温再生器GXの溶液流れの中間部に導入するもので、図4(a)は、吸収溶液の流れを簡略化したフロー図を、図4(b)は、吸収溶液のサイクルを圧力−濃度線図上に、図4(c)は、高温再生器GHでの熱源流体と溶液との温度関係、図4(d)は、排熱低温再生器GXでの熱源流体と溶液との温度関係を示したものである。
【0029】
高温再生器GHの熱源が、顕熱変化の小さな熱源あるいは、潜熱変化をする熱源であり、二重効用サイクルの熱源温度としてあまり余裕がなく、サイクル温度が低いことが望まれるものであり、一方、排熱低温再生器GXの熱源熱流体は、顕熱変化の大きな熱源熱流体である場合に適用するサイクルである。
低温再生器GLに多くの溶液を流して沸騰温度を下げ、高温再生器GHの飽和圧力を下げている。また、高温再生器GHへの流量もある程度多くして、出口濃度を抑え、沸騰温度を抑えている。
排熱低温再生器GXの熱源熱流体出口は、希溶液と熱交換する。吸収溶液は入口から出口までの途中で、低温再生器GLからの溶液が入り、またさらに、高温再生器GHからの溶液が導入される。
なお、入る順番は、低温再生器GLと高温再生器GHとが逆になることもある。低い濃度の方を溶液入口側に入れるのが望ましい。
【0030】
図5は、図1において、排熱低温再生器GXで加熱濃縮した溶液を、低温再生器GLの溶液流れの中間部に導入するように変更したもので、図5(a)は、吸収溶液の流れを簡略化したフロー図を、図5(b)は、吸収溶液のサイクルを圧力−濃度線図上に、図5(c)は、高温再生器GHでの熱源流体と溶液との温度関係、図5(d)は、排熱低温再生器GXでの熱源流体と溶液との温度関係を示したものである。
高温再生器GHの熱源が、顕熱変化の大きな熱源熱流体であり、一方、排熱低温再生器GXの熱源熱流体は、温度が低く、顕熱変化の小さな熱源あるいは潜熱変化をする熱源である場合に適用するサイクルである。
排熱低温再生器GXに多くの溶液を流して沸騰温度を下げ、ピンチ温度となる排熱低温再生器GXの溶液出口温度をできるだけ下げている。
高温再生器GHと低温再生器GLへの流量は、高温再生器GHへの熱源温度を考慮して決める。
排熱低温再生器GXの出口溶液は濃度が低いので、低温再生器GLの吸収溶液入口から出口までの途中に導入する。なお、低温再生器GLの代わりに、高温再生器GHに導入してもよい。
【0031】
図6は、図1において、高温再生器GHと排熱低温再生器GXとの両方の加熱濃縮した溶液を、低温再生器GLの溶液流れの中間部に導入するように変更したもので、図6(a)は、吸収溶液の流れを簡略化したフロー図を、図6(b)は、吸収溶液のサイクルを圧力−濃度線図上に、図6(c)は、高温再生器GHでの熱源流体と溶液との温度関係、図6(d)は、排熱低温再生器GXでの熱源流体と溶液との温度関係を示したものである。
高温再生器GHの熱源が、顕熱変化の小さな熱源あるいは、潜熱変化をする熱源であり、一方、排熱低温再生器GXの熱源熱流体もまた、顕熱変化の小さな熱源あるいは、潜熱変化をする熱源である場合に適用するサイクルである。
排熱低温再生器GXに多くの溶液を流して沸騰温度を下げ、ピンチ温度となる低温再生器GLの溶液出口温度をできるだけ下げている。
高温再生器GHと低温再生器GLへの流量は、高温再生器GHへの熱源温度を考慮して決めるが、高温再生器GHのピンチ温度が溶液出口側にあるので、高温再生器GHへの流量を多くするのが好ましい。
【0032】
排熱低温再生器GXの溶液出口濃度、高温再生器GHの溶液出口濃度は、低温再生器GL出口濃度よりも低いので、低温再生器GLの吸収溶液入口から出口までの途中に、排熱低温再生器GXからの溶液を入れ、またさらに、高温再生器GHからの溶液を導入すると、低温再生器GL出口濃度が低下し、また沸騰温度も低下し、高温再生器GHの沸騰温度をさらに下げる効果がでてくる。
なお、溶液を入れる順番は、排熱低温再生器GXと高温再生器GHとが逆になることもある。低い濃度の方を溶液入口側に入れるのが望ましい。
また、ここで、本発明の熱源は、高温再生器GHへの熱源流体と、排熱低温再生器GXへの熱源熱流体が別流体であっても、また同一流体で、高温再生器GHを通した後、排熱低温再生器GXへ通してもよい。
【0033】
また、高温再生器GHを通ったあとの熱源流体に、別の熱源からくる熱流体を導入し、両流体を排熱低温再生器GXの熱源としてもよい。
高温再生器GHの熱源が、顕熱変化をする熱源熱流体である場合、熱源熱流体と吸収溶液とは対向流で流すのがよく、排熱低温再生器GXの場合も同様である。
また、本発明の暖房への切替は、図1の切替方式が、図4〜図6のフローにも適用できる。
高温再生器GHから冷媒蒸気を導く等、暖房切替の別の方式も可能であり、また、蒸発器Eへの溶液散布をせず、蒸発器Eで冷媒蒸気を凝縮させる等の暖房方式も適用でき、暖房方式、冷暖切替に限定されるものではない。
【0034】
次に、本発明において、溶液の流れが、低温再生器GLの出口溶液を、排熱低温再生器GXの溶液流れの中間部に導入するか、又はその逆の場合について説明する。
図7は、高温再生器GH及び排熱低温再生器GXの熱源が、顕熱変化の大きな熱源であり、高温再生器GHへの熱源の供給温度が高い場合に適したサイクルであり、両再生器とも熱源流体と吸収溶液とを対向流で流すとして、熱源出口部/吸収溶液入口部がピンチ温度となる。図7では、ガスタービンからの排ガスを熱源に、駆動するとして説明する。
まず、冷房運転について説明すると、弁V1、V2、V3を閉止して、冷房サイクルを行う。
吸収器Aからの希溶液を低温熱交換器Xの被加熱側出口で分岐し、一部を低温再生器GL、残部を排熱低温再生器GXに導く。低温再生器GLに多くの溶液、例えば75%を導入するものとし、低温再生器GLで濃縮された溶液の一部を排熱低温再生器GXの溶液入口から出口までの途中位置に導入し、残部を高温熱交換器の被加熱側経由で高温再生器GH溶液入口に導入する。
【0035】
熱源1は、ガスタービンからの排ガスで、高温再生器GH入口が約300℃、出口180℃程度で、その後、排熱低温再生器GXに導き、110℃程度まで利用する。熱源1となる排ガスと溶液とは対向流とし、伝熱効率をよくしている。高温発生器GH及び排熱低温再生器GXで、溶液は前記排ガスによって加熱され、冷媒蒸気を発生しながら濃縮される。
低温再生器GLでは、高温再生器GHで発生した冷媒蒸気を熱源に吸収溶液を加熱濃縮する。低温再生器GLで加熱濃縮された溶液は、排熱低温再生器GXの溶液入口から出口までの溶液流れの途中位置5に導入し、溶液量を増量する。一方、発生した冷媒蒸気は、排熱低温再生器GXからの冷媒蒸気と共に凝縮器Cに入り、冷却水で冷却され凝縮する。高温再生器GHで発生し低温再生器GLの熱源となった冷媒蒸気は凝縮液となって凝縮器Cに入り、先ほどの凝縮器Cで凝縮した冷媒液と共に、蒸発器Eに入る。
蒸発器Eでは、冷媒液が冷水から熱を奪って、冷凍効果を発揮し、冷媒蒸気になる。
高温再生器GH、排熱低温再生器GXから出てくる濃溶液は吸収器Aに戻り、冷却水で冷却される伝熱面に散布され、蒸発器Eからの冷媒蒸気を吸収し、希溶液となる。
【0036】
図9(a)は、図7の吸収溶液の流れを簡略化したフロー図。
図9(b)は、吸収溶液のサイクルを圧カ−濃度線図上に示したものである。GLとGXの圧力はほぼ同一で、図面上重なるはずであるが、両者の区別ができるように少し圧力をずらして表示している〔図10(a)〜図12(b)も同様〕
図9(c)は、高温再生器GHでの排ガスと吸収溶液との温度関係を示すもので、吸収溶液の沸騰開始温度部分がピンチ温度(最小温度差)となっており、排ガスの出口温度を支配する温度となっている。
図9(d)は、排熱低温再生器GXでの排ガスと吸収溶液との温度関係を示すもので、吸収溶液の沸騰開始温度部分がピンチ温度(最小温度差)となっており、排ガスの出口温度を支配する温度となっている。
【0037】
図7において、暖房運転では、弁V1、V2、V3を開として冷暖を切替える。冷却水は流さない。
吸収器Aからの希溶液を分岐、一部を低温再生器GL、残部を排熱低温再生器GXに導き、低温再生器GLからの濃溶液を高温再生器GHと排熱低温再生器GXに導く吸収溶液の流れは、冷房運転の場合と同じであるが、高温再生器GH、排熱低温再生器GXから出てくる濃溶液は、弁V2を通して蒸発器Eに入れ、溶液を蒸発器Eに散布する。
低温再生器GLの圧力レベルの機器(低温再生器GL、排熱低温再生器GX、凝縮器C)と蒸発器E又は蒸発器Eとを結ぶ配管中の弁V1を通して、冷媒蒸気を蒸発器Eに導き、先程の散布溶液に吸収させ、暖房時の出力となる温水をこの吸収熱で加熱する。蒸発器Eで冷媒蒸気を吸収した溶液は、弁V3を通して吸収器Aに戻る。弁V3の代わりに蒸発器液溜めのオーバーフロー管(図示せず)を通して吸収器Aに戻してもよい。
【0038】
図8は、図7を少し変更して、熱源熱流体単独では冷暖房容量を賄えない場合に、燃料等による追焚きを可能にした冷温水機であり、燃料による高温再生器GHを付加している。
図10は、図7において、高温再生器GHには、排熱低温再生器GXの出口溶液を分岐して導入するもので、図10(a)は、吸収溶液の流れを簡略化したフロー図を、図10(b)は、吸収溶液のサイクルを圧力−濃度線図上に、図10(c)は、高温再生器GHでの熱源流体と溶液との温度関係、図10(d)は、排熱低温再生器GXでの熱源流体と溶液との温度関係を示したものである。
高温再生器GHの熱源が、(潜熱変化の熱流体でも、顕熱変化の大きな熱流体であっても)二重効用に対して余裕のある温度であり、一方、排熱低温再生器GXの熱源熱流体は、顕熱変化がある程度の大きく、なるべく低温まで利用したい場合に適したサイクルである。
排熱低温再生器GXでは、溶液入口がピンチ温度となるので、少ないながら希溶液を導入して、入口部の沸騰温度を下げている。
低温再生器GLには多くの溶液を流して沸騰温度を下げることで、高温再生器GHの飽和温度を下げ、高温再生器GHの溶液温度を低下させている。低温再生器GLで濃縮された溶液は、排熱低温再生器GXの中間位置に全量導入し、その後、排熱低温再生器GXのほぼ全量を高温再生器GHに導いている。
【0039】
図11は、吸収器からの希溶液を高温再生器GHと排熱低温再生器GXとに分割導入すると共に、低温再生器GLには、高温再生器GHの出口溶液を導き、低温再生器GLの出口溶液を排熱低温再生器GXの溶液流れの中間部に導入するもので、図11(a)は、吸収溶液の流れを簡略化したフロー図を、図11(b)は、吸収溶液のサイクルを圧力−濃度線図上に、図11(c)は、高温再生器GHでの熱源流体と溶液との温度関係、図11(d)は、排熱低温再生器GXでの熱源流体と溶液との温度関係を示したものである。
高温再生器GHの熱源が、顕熱変化の小さな熱源熱流体であり、しかも、二重効用サイクルを駆動する温度としては低い温度であり、一方、排熱低温再生器GXの熱源熱流体は、顕熱変化の大きな熱源である場合に適したサイクルである。
高温再生器GHに多くの希溶液を流して、入口から出口まで溶液濃度を低く抑えて沸騰温度を下げている。
排熱低温再生器GXには、少ないが希溶液を導入して、ピンチ温度となる排熱低温再生器GXの溶液入口温度を下げている。途中で、分岐していた溶液全量を混入し、出口温度が過大にならないようにしている。
【0040】
図12は、吸収器Aから吸収溶液を全量高温再生器GHに導き、出口溶液を排熱低温再生器GXと低温再生器GLとに分岐して導入するもので、図12(a)は、吸収溶液の流れを簡略化したフロー図を、図12(b)は、吸収溶液のサイクルを圧カ−濃度線図上に、図12(c)は、高温再生器GHでの熱源流体と溶液との温度関係、図12(d)は、排熱低温再生器GXでの熱源流体と溶液との温度関係を示したものである。
高温再生器GHの熱源が、顕熱変化の小さな熱源熱流体であり、しかも、二重効用サイクルを駆動する温度としては低い温度であり、一方、排熱低温再生器GXの熱源熱流体は、顕熱変化は小さな熱源であるが、単効用サイクルに対しては温度の余裕がある場合に適したサイクルである。
高温再生器GHに希溶液の全流量を流して、入口から出口まで溶液濃度を低く抑えて沸騰温度を下げている。高温再生器GHを出た溶液を分岐し、低温再生器GLと排熱低温再生器GXに流している。
高温再生器GHに影響を与える低温再生器GL側に多く流し、濃縮後の溶液を排熱低温再生器GXの途中位置に戻し、排熱低温再生器GXの溶液出口温度が過大にならないようにしている。
【0041】
図7〜図12においても、熱源は、高温再生器GHへの熱源流体と、排熱低温再生器GXへの熱源熱流体が別流体であっても、また同一流体で、高温再生器GHを通した後、排熱低温再生器GXへ通してもよい。
また、高温再生器GHを通ったあとの熱源流体に、別の熱源からくる熱流体を導入し、両流体を排熱低温再生器GXの熱源としてもよい。
高温再生器GHの熱源が、顕熱変化をする熱源熱流体である場合、熱源熱流体と吸収溶液とは対向流で流すのがよく、排熱低温再生器GXの場合も同様である。
また、この場合も、暖房への切替は、図7の切替方式が、図8〜図12のフローにも適用できる。
高温再生器GHから冷媒蒸気を導く等、暖房切替の別の方式も可能であり、また、蒸発器への溶液散布をせず、蒸発器で冷媒蒸気を凝縮させる等の暖房方式も適用でき、暖房方式、冷暖切替に限定されるものではない。
【0042】
次に、本発明において、高温再生器GHの出口溶液を、低温再生器GL又は排熱低温再生器GXの溶液流れの中間部に導入する場合について説明する。
図13は、プラントから供給される熱源流体として、大量の高温水を高温再生器GHに、排蒸気を排熱低温再生器GXに導いて、冷温水機を駆動する。
冷房運転においては、弁V1、V2、V3を閉止して、冷房サイクルを行う。
吸収器Aからの希溶液を低温熱交換器Xの被加熱側出口で分岐し、一部を低温再生器GLに、残部を高温熱交換器XHの被加熱側を経由して高温再生器GHに導く。
高温再生器GHでは、熱源となる高温水と吸収溶液とが対向流で熱交換する。大量の高温水で顕熱変化の小さな熱源、あるいは蒸気などの潜熱を用いる場合、高温再生器XHのピンチ温度(伝熱のための温度差の最小値)は、溶液出口側となる。本フローでは、高温水が二重効用サイクルを駆動するには低めであるとして、高温再生器GHに希溶液を導入し、さらに低温再生器GLへの希溶液より多くの希溶液を高温再生器GHに導くことで、高温再生器GHの出口の溶液濃度を抑え、沸騰温度を低く保っている。高温水出口は希溶液で沸騰温度が低く、高温水からの回収熱量を多くしている。
【0043】
高温再生器GH出口濃度は、低温再生器GLの出口の濃度より低濃度となるので、この低濃度を伝熱的に役立てるため、この高温再生器GHの出口溶液を低温再生器GLの希溶液入口から出口までの中間位置に混入し、低温再生器GLの出口側濃度、出口側沸騰温度を抑えている。
低温再生器GLでは、高温再生器GHで発生した冷媒蒸気を熱源に吸収溶液を加熱濃縮され、その後、排熱低温再生器GXに導き、排蒸気で加熱濃縮している。本フローでは、排蒸気が単効用に対しては、余裕のある温度であるとして、最も濃縮した位置で吸収溶液を加熱濃縮している。
高温再生器GHで発生し低温再生器GLの熱源となった冷媒蒸気は、凝縮液となって凝縮器Cに入る。低温再生器GLで発生した冷媒蒸気と、排熱低温再生器GXで発生した冷媒蒸気は、共に凝縮器Cに入り、冷却水で冷却されて凝縮し、高先程の冷媒液と共に蒸発器Eに入る。
蒸発器Eでは、冷媒液が冷水から熱を奪って、冷凍効果を発揮し、冷媒蒸気になる。
排熱低温再生器GXから出てくる濃溶液は吸収器Aに戻り、冷却水で冷却される伝熱面に散布され、蒸発器Eからの冷媒蒸気を吸収し、希溶液となる。
【0044】
図15(a)は、図13を簡略化した溶液のフロー図である。
図15(b)は、吸収溶液のサイクルを圧力−濃度線図上に示したものである。
図15(c)は、高温再生器GHでの高温水と吸収溶液との温度関係を示すもので、吸収溶液の出口部分がピンチ温度(最小温度差)となっており、高温水の必要温度を支配する温度となっている。
図15(d)は、排熱低温再生器GXでの排蒸気と吸収溶液との温度関係を示すものである。
吸収溶液の出口部分がピンチ温度(最小温度差)となっており、必要な蒸気温度を支配することになる。
【0045】
図13において、暖房運転では、弁V1、V2、V3を開として冷暖を切替える。冷却水は流さない。
吸収器Aからの希溶液を分岐し、一部を高温再生器GH、残部を排熱低温再生器GX又は低温再生器GLに導くなど、再生器への吸収溶液の流れは、冷房運転の場合と同じであるが、排熱低温再生器GXから戻ってくる濃溶液を、弁V2を通して蒸発器Eに入れ、溶液を蒸発器Eに散布する。
高温再生器GHで発生した冷媒蒸気は、低温再生器GLを加熱し冷媒蒸気を発生させる。低温再生器GLの圧力レベルの機器(低温再生器GL、排熱低温再生器GX、凝縮器C)と蒸発器E又は蒸発器Eとを結ぶ配管中の弁V1を通して、冷媒蒸気を蒸発器Eに導き、先程の散布溶液に吸収させ、暖房時の出力となる温水をこの吸収熱で加熱する。蒸発器で冷媒蒸気を吸収した溶液は、弁V3を通して吸収器Aに戻る。弁V3の代わりに蒸発器液溜めのオーバーフロー管(図示せず)を通して吸収器に戻してもよい。
【0046】
図14は、図13において、排熱だけでは冷暖房容量を賄えない場合、燃料等による追焚きを可能にした冷温水機であり、燃料による高温再生器GHを付加している。
本図は図13に、燃料による高温再生器を付加しているが、後述の他のフローに対しても同様に付加することができる。
図16は、図13において、高温再生器GHの出口溶液を、排熱低温再生器GXの溶液流れの中間部に導入するように変更したもので、図16(a)は、吸収溶液の流れを簡略化したフロー図を、図16(b)は、吸収溶液のサイクルを圧力−濃度線図上に、図16(c)は、高温再生器GHでの熱源流体と溶液との温度関係、図16(d)は、排熱低温再生器GXでの熱源流体と溶液との温度関係を示したものである。
【0047】
高温再生器GHの熱源が、顕熱変化の大きな熱流体であって、高温再生器GHの溶液入口/排熱出口がピンチ温度となり、一方、排熱低温再生器GXの熱源熱流体は、顕熱変化がある程度小さいか、潜熱変化の場合に適したサイクルである。
高温再生器GHでは、溶液入口がピンチ温度となるので、少ないながら希溶液を導入して、入口部の沸騰温度を下げている。
低温再生器GLには多くの溶液を流して沸騰温度を下げることで、高温再生器GHの飽和温度を下げ、高温再生器GHの溶液温度を低下させている。低温再生器GLで濃縮された溶液は、排熱低温再生器GXに全量導入し、高温再生器GHで濃縮された溶液を、排熱低温再生器GXの中間位置に導いている。
【0048】
図17は、図13において、希溶液を高温再生器GHと、排熱低温再生器GXに分割導入するように変更し、さらに、高温再生器GHの出口溶液を、排熱低温再生器GXの溶液流れの中間部に導入して低温再生器GLに導くように変更したもので、図17(a)は、吸収溶液の流れを簡略化したフロー図を、図17(b)は、吸収溶液のサイクルを圧力−濃度線図上に、図17(c)は、高温再生器GHでの熱源流体と溶液との温度関係、図17(d)は、排熱低温再生器GXでの熱源流体と溶液との温度関係を示したものである。
高温再生器GH及び排熱低温再生器GXの熱源が、顕熱変化の小さな熱源熱流体であり、しかも熱源温度が低めの場合に適したサイクルである。
高温再生器GHに多くの希溶液を流して、入口から出口まで溶液濃度を低く抑えて沸騰温度を下げている。排熱低温再生器GXにも、希溶液を導入し、途中で分岐していた高温再生器GHの溶液を混入し、出口温度を低下させている。図13の例を選択するか、図17の例を選択するかは、高温再生器GH側の温度の余裕と低温再生器GL側の余裕との比較による。高温再生器GH側の温度の余裕が少ない場合図13、低温再生器GL側の余裕が少ない場合、図17とするのが好ましい。
【0049】
図18は、図13において、希溶液を高温再生器GHと、排熱低温再生器GXに分割導入するように変更し、さらに、高温再生器GHの出口溶液を、低温再生器GLの溶液流れの中間部に導入するように変更したもので、図18(a)は、吸収溶液の流れを簡略化したフロー図を、図18(b)は、吸収溶液のサイクルを圧力−濃度線図上に、図18(c)は、高温再生器GHでの熱源流体と溶液との温度関係、図18(d)は、排熱低温再生器GXでの熱源流体と溶液との温度関係を示したものである。
高温再生器GHの熱源が、図17では顕熱変化の小さな熱源熱流体であったのに対し、図18では顕熱変化の大きな場合に適している。一方、排熱低温再生器GXの熱源熱流体は、顕熱変化は小さな熱源であり、単効用サイクルに対しても温度が低めである場合に適したサイクルである。
【0050】
図19は、吸収溶液を低温再生器GLに全量導入して、出口溶液を分岐し、一部を高温再生器GHを経て、排熱低温再生器GXの溶液流れの中間部に導入するもので、図19(a)は、吸収溶液の流れを簡略化したフロー図を、図19(b)は、吸収溶液のサイクルを圧力−濃度線図上に、図19(c)は、高温再生器GHでの熱源流体と溶液との温度関係、図19(d)は、排熱低温再生器GXでの熱源流体と溶液との温度関係を示したものである。
高温再生器GHの熱源が、顕熱変化の小さな熱源熱流体であり、しかも熱源温度が低めであり、一方、排熱低温再生器GXの熱源が、顕熱変化の大きな熱源熱流体である場合に適したサイクルである。
低温再生器GLに希溶液の全量を流して沸騰温度を下げることで、高温再生器GHの飽和温度を下げ、高温再生器GHの溶液温度を低下させている。低温再生器GLで濃縮された溶液を、高温再生器GHと排熱低温再生器GXとに分割導入するが、高温再生器GHに多くの量を流し、濃縮された溶液を、排熱低温再生器GXの中間位置に導いている。
【0051】
図20は、吸収溶液を排熱低温再生器GXに全量導入し、出口溶液を分岐して、高温再生器GHを経て、低温再生器GLの溶液流れの中間部に導入するもので、図20(a)は、吸収溶液の流れを簡略化したフロー図を、図20(b)は、吸収溶液のサイクルを圧力−濃度線図上に、図20(c)は、高温再生器GHでの熱源流体と溶液との温度関係、図20(d)は、排熱低温再生器GXでの熱源流体と溶液との温度関係を示したものである。
排熱低温再生器GXの熱源が、図19では顕熱変化の大きな熱源熱流体であったのに対し、図20では顕熱変化の小さな場合に適している。
【0052】
図21は、図7において、低温再生器GLを経た高温再生器GHの出口溶液を、排熱低温再生器GXの溶液流れの中間部に導入するように変更したもので、図21(a)は、吸収溶液の流れを簡略化したフロー図を、図21(b)は、吸収溶液のサイクルを圧力−濃度線図上に、図21(c)は、高温再生器GHでの熱源流体と溶液との温度関係、図21(d)は、排熱低温再生器GXでの熱源流体と溶液との温度関係を示したものである。
高温再生器GHの熱源が、顕熱変化の小さな熱源熱流体であり、しかも熱源温度が低めであり、一方、排熱低温再生器GXの熱源が、顕熱変化の大きな熱源熱流体である場合に適したサイクルである。
【0053】
低温再生器GLに希溶液の多くの割合を流して沸騰温度を下げることで、高温再生器GHの飽和温度を下げ、高温再生器GHの溶液温度を低下させている。低温再生器GLで濃縮された溶液の全量あるいは殆どを高温再生器GHに導いている。
排熱高温再生器GXでは、溶液入口がピンチ温度となるので、少ないながら希溶液を導入して、入口部の沸騰温度を下げている。ただし、出口側の温度が高くなり過ぎないように、高温再生器GHからの濃溶液を排熱低温再生器GXの中間位置に導いている。
図19の例を選択するか、図21の例を選択するかは、排熱低温再生器側熱源への溶液入口温度の効果の大きさで選択する。
【0054】
図22は、図7において、排熱低温再生器GXを経た高温再生器GHの出口溶液を、低温再生器GLの溶液流れの中間部に導入するするように変更したもので、図22(a)は、吸収溶液の流れを簡略化したフロー図を、図22(b)は、吸収溶液のサイクルを圧力−濃度線図上に、図22(c)は、高温再生器GHでの熱源流体と溶液との温度関係、図22(d)は、排熱低温再生器GXでの熱源流体と溶液との温度関係を示したものである。
排熱低温再生器GXの熱源が、図21では、顕熱変化の大きな熱源熱流体であったのに対し、図22では、顕熱変化の小さな場合に適している。
図20の例を選択するか、図22の例を選択するかは、排熱低温再生器側熱源への溶液出口温度の効果の大きさで選択する。
【0055】
本発明の暖房への切替は、高温再生器から冷媒蒸気を導く等、別の方式もできる。
また、蒸発器への溶液散布をせず、蒸発器で冷媒蒸気を凝縮させる等の暖房方式も適用できる。
本発明は、冷媒蒸気を熱源とする給湯熱交換器を設けることにより、
冷房運転+給湯運転
暖房運転+給湯運転
なども可能である。
吸収器、蒸発器側には、通常の吸収器/蒸発器の他、吸収器、蒸発器を2段にして構成するなどがあるが、本発明はこれらと自由に組み合せることができる。
【0056】
【発明の効果】
本発明によれば、前記した各種の温度レベルが2種ある排熱を熱源とする一二重効用サイクル、あるいは顕熱変化により温度を大きく変化させる熱流体を、高温部と低温部とに区分して用いる一二重効用サイクルとしたことにより、高温再生器で熱源となる高温熱源流体からなるべく多くの熱量を回収し、又、排熱低温再生器での熱源熱流体の温度もできるだけ低くまで利用して回収熱量を多くし、冷温水機の出力である冷凍容量を大きくすることができる一二重効用サイクルを行う吸収冷温水機を提供できた。
また、高温再生器の熱源温度が二重効用サイクルの熱源として、温度的に余裕のない場合、あるいは、排熱低温再生器への熱源温度が低く、溶液サイクルに熱源の熱が入り難い場合などに対し、溶液の循環サイクルを工夫することで、排熱をなるべく多く投入し、有効利用することができた。
特に、高温熱源流体と低温熱源流体の温度レベル、温度変化の特性などにより、溶液の循環経路を考慮し、排熱を有効利用することができる。
【図面の簡単な説明】
【図1】本発明に用いる吸収冷温水機の一例を示すフロー構成図。
【図2】本発明に用いる吸収冷温水機の他の例を示すフロー構成図。
【図3】図1の例の(a)簡略化したフロー図、(b)圧力−濃度線図上のサイクル図、(c)、(d)再生器の熱源と吸収溶液の温度関係を示すグラフ。
【図4】本発明の他の例を示し、(a)簡略化したフロー図、(b)圧力−濃度線図上のサイクル図、(c)、(d)再生器の熱源と吸収溶液の温度関係を示すグラフ。
【図5】本発明の他の例を示し、(a)簡略化したフロー図、(b)圧力−濃度線図上のサイクル図、(c)、(d)再生器の熱源と吸収溶液の温度関係を示すグラフ。
【図6】本発明の他の例を示し、(a)簡略化したフロー図、(b)圧力−濃度線図上のサイクル図、(c)、(d)再生器の熱源と吸収溶液の温度関係を示すグラフ。
【図7】本発明に用いる吸収冷温水機の他の例を示すフロー構成図。
【図8】本発明に用いる吸収冷温水機の他の例を示すフロー構成図。
【図9】本発明の他の例を示し、(a)簡略化したフロー図、(b)圧力−濃度線図上のサイクル図、(c)、(d)再生器の熱源と吸収溶液の温度関係を示すグラフ。
【図10】本発明の他の例を示し、(a)簡略化したフロー図、(b)圧力−濃度線図上のサイクル図、(c)、(d)再生器の熱源と吸収溶液の温度関係を示すグラフ。
【図11】本発明の他の例を示し、(a)簡略化したフロー図、(b)圧力−濃度線図上のサイクル図、(c)、(d)再生器の熱源と吸収溶液の温度関係を示すグラフ。
【図12】本発明の他の例を示し、(a)簡略化したフロー図、(b)圧力−濃度線図上のサイクル図、(c)、(d)再生器の熱源と吸収溶液の温度関係を示すグラフ。
【図13】本発明に用いる吸収冷温水機の他の例を示すフロー構成図。
【図14】本発明に用いる吸収冷温水機の他の例を示すフロー構成図。
【図15】本発明の他の例を示し、(a)簡略化したフロー図、(b)圧力−濃度線図上のサイクル図、(c)、(d)再生器の熱源と吸収溶液の温度関係を示すグラフ。
【図16】本発明の他の例を示し、(a)簡略化したフロー図、(b)圧力−濃度線図上のサイクル図、(c)、(d)再生器の熱源と吸収溶液の温度関係を示すグラフ。
【図17】本発明の他の例を示し、(a)簡略化したフロー図、(b)圧力−濃度線図上のサイクル図、(c)、(d)再生器の熱源と吸収溶液の温度関係を示すグラフ。
【図18】本発明の他の例を示し、(a)簡略化したフロー図、(b)圧力−濃度線図上のサイクル図、(c)、(d)再生器の熱源と吸収溶液の温度関係を示すグラフ。
【図19】本発明の他の例を示し、(a)簡略化したフロー図、(b)圧力−濃度線図上のサイクル図、(c)、(d)再生器の熱源と吸収溶液の温度関係を示すグラフ。
【図20】本発明の他の例を示し、(a)簡略化したフロー図、(b)圧力−濃度線図上のサイクル図、(c)、(d)再生器の熱源と吸収溶液の温度関係を示すグラフ。
【図21】本発明の他の例を示し、(a)簡略化したフロー図、(b)圧力−濃度線図上のサイクル図、(c)、(d)再生器の熱源と吸収溶液の温度関係を示すグラフ。
【図22】本発明の他の例を示し、(a)簡略化したフロー図、(b)圧力−濃度線図上のサイクル図、(c)、(d)再生器の熱源と吸収溶液の温度関係を示すグラフ。
【符号の説明】
A:吸収器、GL:低温再生器、GH:高温再生器、GX:排熱低温再生器、GH1:追焚き用高温再生器、C:凝縮器、E:蒸発器、X:低温熱交換器、、XH:高温熱交換器、SP、SP1:溶液ポンプ、RP:冷媒ポンプ、V1〜V3:弁、1、1’:熱源、2:冷温水、3、4:冷却水、5、6、7:中間部、11〜18:溶液流路、21〜25:冷媒流路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an absorption chiller / heater that uses exhaust heat such as high-temperature exhaust gas from a gas turbine, an engine, etc., exhaust gas and high-temperature water from an engine, steam and high-temperature water from an engine, high-temperature water from a plant, and exhaust steam. Is.
In particular, a single double-effect cycle that uses exhaust heat with two types of temperature levels as a heat source, or a single-double-effect cycle that uses a thermal fluid that changes its temperature greatly by changing sensible heat into a high-temperature part and a low-temperature part. The present invention relates to a solution circulation path of an absorption chiller / heater that effectively uses a heat source heat fluid to a low temperature.
[0002]
[Prior art]
[Patent Document 1]
Japanese Patent Publication No.57-20543
[Patent Document 2]
Japanese Patent Publication No.57-42823
[Patent Document 3]
Japanese Patent Publication No.53-34658
Conventional exhaust heat recovery type single-effect absorption refrigerators include Japanese Patent Publication No. 57-20543 and Japanese Patent Publication No. 57-42823 using exhaust gas as a heat source, and high temperature exhaust gas is used as a heat source for double effect. In the regenerator, the exhaust gas low-temperature regenerator uses the low-temperature exhaust gas that has fallen in temperature as a heat source for single effect.
In addition, an example of a single-effect absorption refrigerator using high-temperature water as a heat source is disclosed in Japanese Patent Publication No. 53-34658, and a cycle in which high-temperature water is used as a heat source for a double-effect cycle and then a single-effect heat source is used. It is shown.
In these examples, the solution concentrated in the high-temperature regenerator, exhaust heat low-temperature regenerator, and low-temperature regenerator can be obtained by simply concentrating the solution introduced into each regenerator as it is and changing the concentration of the solution in the regenerator. There was no consideration of increasing heat recovery by effectively utilizing changes in boiling temperature.
That is, the high temperature part was used as a double effect and the low temperature part was used as a single effect, and there was no consideration of further increasing the amount of heat recovery.
[0003]
[Problems to be solved by the invention]
In view of the above prior art, the present invention recovers as much heat as possible from a high-temperature heat source fluid that becomes a heat source in a high-temperature regenerator by devising a solution circulation cycle, and heat source heat in an exhaust heat low-temperature regenerator It is an object of the present invention to provide a single-effect absorption chiller / heater capable of increasing the amount of heat recovered by using the temperature of the fluid as low as possible and increasing the refrigeration capacity, which is the output of the chiller / heater.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, in the present invention, Use external heat source as heat source High temperature regenerator, An external heat source having a temperature level different from that of the high-temperature regenerator is used as the heat source. Waste heat low temperature regenerator, And the refrigerant vapor generated in the high temperature regenerator is used as a heat source Low temperature regenerator Three regenerators, each consisting of separate equipment and heat source, In a single-effect absorption chiller / heater equipped with a condenser, an absorber, an evaporator, and a solution channel and a refrigerant channel connecting these devices, the high-temperature regenerator, the exhaust heat low-temperature regenerator, and the low-temperature regenerator Out of solution 1 or 2 regenerator with low outlet concentration Concentrated by heating The solution Higher solution outlet concentration than the regenerator This is a single-effect absorption chiller / heater characterized in that the solution flow path is formed so as to be introduced from a position midway between the solution inlet and the solution outlet of the regenerator.
In the absorption chiller / heater, the solution flow path is configured to guide the absorption solution from the absorber divided into a high temperature regenerator, an exhaust heat low temperature regenerator, and a low temperature regenerator in three directions, solution Regenerator with low outlet concentration regenerates at low temperature In a vessel Yes, The solution from the low-temperature regenerator is introduced from a position midway between the solution inlet and the solution outlet of the exhaust heat low-temperature regenerator. Or solution Regenerator with low outlet concentration Low temperature regenerator And high temperature regenerator, The solution from the low-temperature regenerator and the solution from the high-temperature regenerator are configured to be introduced from midway between the solution inlet and the solution outlet of the exhaust heat low-temperature regenerator. Can also The solution flow path is configured to guide the absorbent solution from the absorber divided into a high temperature regenerator, a waste heat low temperature regenerator, and a low temperature regenerator in three directions, and a regenerator with a low solution outlet concentration is discharged. A low-temperature regenerator, wherein the solution from the exhaust heat low-temperature regenerator is introduced from an intermediate position between the solution inlet and the solution outlet of the low-temperature regenerator, or a regenerator with a low solution outlet concentration is an exhaust heat low-temperature regenerator And a high temperature regenerator, wherein the solution from the exhaust heat low temperature regenerator and the solution from the high temperature regenerator are introduced from midway between the solution inlet and the solution outlet of the low temperature regenerator can do.
[0005]
Further, in the absorption chiller / heater, the solution flow path is configured to guide the absorption solution from the absorber divided into an exhaust heat low temperature regenerator and a low temperature regenerator, solution Regenerator with low outlet concentration regenerates at low temperature In a vessel Yes, Above Low temperature regeneration Vessel Their solution Is the solution inlet of the high temperature regenerator and the solution inlet and solution outlet of the exhaust heat low temperature regenerator Divide into the middle position of Be burned Or the low temperature regeneration Vessel Their solution But Waste heat low temperature regenerator Solution inlet and solution outlet In the middle of And the solution from the exhaust heat low temperature regenerator is guided to the high temperature regenerator Alternatively, the solution flow path is configured to guide the absorption solution from the absorber divided into a high temperature regenerator or a high temperature regenerator and an exhaust heat low temperature regenerator, The solution is introduced into the low temperature regenerator via the high temperature regenerator, Regenerator with low outlet concentration regenerates at low temperature In a vessel Yes, Above Low temperature regeneration Vessel These solutions exhaust heat low temperature regenerator Solution inlet and solution outlet In addition, the solution flow path can absorb the absorption solution from the absorber at a high temperature regenerator and a low temperature regenerator. Vessel Configured to be divided into solution A regenerator with a low outlet concentration is a high-temperature regenerator, The solution from the high-temperature regenerator is configured to be guided to a position between the solution inlet and the solution outlet of the exhaust heat low-temperature regenerator or to a position between the solution inlet and the solution outlet of the low-temperature regenerator. Or The solution flow path is configured to divide and guide the absorption solution from the absorber into a high temperature regenerator and an exhaust heat low temperature regenerator, a regenerator having a low solution outlet concentration is a high temperature regenerator, and the high temperature regenerator Constructed so that the solution from the regenerator is guided to the middle position between the solution inlet and the solution outlet of the exhaust heat low temperature regenerator or the middle position between the solution inlet and the solution outlet of the low temperature regenerator can do.
[0006]
Furthermore, in the absorption chiller / heater, the solution flow path can regenerate the absorption solution from the absorber at a low temperature. In a vessel Configured to guide ,in front Low temperature reproduction Vessel Of these solutions, high temperature regenerator and exhaust heat low temperature regeneration Vessel Divided into A regenerator with a low solution outlet concentration is a high temperature regenerator, Solution from the high temperature regenerator Is exhausted Thermal low temperature regeneration Solution inlet and outlet In the middle of Is Or the solution channel is configured to absorb the absorbing solution from the absorber, It is configured to lead to a waste heat low temperature regenerator, the solution from the waste heat low temperature regenerator is divided into a high temperature regenerator and a low temperature regenerator, and the regenerator with a low solution outlet concentration is a high temperature regenerator The solution from the high-temperature regenerator is configured to be introduced midway between the solution inlet and the solution outlet of the low-temperature regenerator. Alternatively, the solution flow path is configured to guide the absorption solution from the absorber divided into a low temperature regenerator and an exhaust heat low temperature regenerator. High Temperature regenerator In Low temperature regeneration Vessel These solutions are guided The regenerator having a low solution outlet concentration is a high temperature regenerator, and the solution from the high temperature regenerator is Waste heat low temperature regenerator Solution inlet and solution outlet Introduced midway Is Or configured to The solution flow path is configured to guide the absorption solution from the absorber into a low temperature regenerator and an exhaust heat low temperature regenerator, and the high temperature regenerator is guided with the solution from the exhaust heat low temperature regenerator. The regenerator having a low solution outlet concentration is a high-temperature regenerator, and the solution from the high-temperature regenerator is introduced between the solution inlet and the solution outlet of the low-temperature regenerator. can do.
Moreover, in these single-effect absorption cold / hot water machines, a reheating high-temperature regenerator can be added to the solution flow path.

[0007]
DETAILED DESCRIPTION OF THE INVENTION
When the condensing temperature is the same and the inlet concentration to the regenerator is the same, if the solution flow rate is large, the increase in concentration up to the outlet of the regenerator is suppressed, the regenerator outlet temperature (boiling temperature at the outlet) is low, and the heat source temperature And the temperature difference between the solution temperature and the amount of heat recovered from the heat source increases. However, if the absorber, evaporator, condenser, and low temperature heat exchanger are the same, increasing the solution flow rate from the absorber will reduce the efficiency of the cycle, so the solution flow rate cannot be increased too much.
When the absorber, evaporator, condenser, and low-temperature heat exchanger are the same and the solution flow rate from the absorber is the same, the high-temperature regenerator of the absorbing solution, the exhaust heat low-temperature regenerator, the circulation path to the low-temperature regenerator, The boiling temperature of each regenerator varies depending on the circulation rate.
The present invention distributes a limited solution flow rate to each regenerator or determines the flow order to recover as much heat as possible from a heat source to obtain a large refrigeration output.
[0008]
There are at least three regenerators in a single-effect cycle: a high-temperature regenerator, a waste heat low-temperature regenerator, and a low-temperature regenerator, and the order of introducing absorbing solutions into these regenerators (parallel introduction, series introduction), etc. There are many cycles. Among these, the cycle to be selected depends on the temperature limit of the high temperature regenerator outlet solution (considering corrosion), the concentration limit of the cycle (considering crystal corrosion), the saturation temperature / saturation pressure limit of the high temperature regenerator (pressure vessel) In consideration of the above, the characteristics of the heat source to the high-temperature regenerator and the heat source to the exhaust heat low-temperature regenerator are considered, and are not simply determined by the amount of heat recovery.
In the present invention, the basic cycle is selected among the temperature limit of the hot regenerator outlet solution, the concentration limit of the cycle, and the saturation temperature / saturation pressure limit of the high temperature regenerator. In addition to increasing the heat utilization rate, the temperature of the heat source fluid coming out of the exhaust heat low-temperature regenerator is lowered as much as possible to increase the amount of recovered heat, and the refrigeration capacity, which is the output of the chiller / heater, is increased.
[0009]
If the absorber evaporator, the condenser, and the low-temperature heat exchanger are the same and the solution flow rate from the absorber is the same, depending on the circulation path to the high-temperature regenerator, exhaust heat low-temperature regenerator, The temperature available in the regenerator changes.
In the present invention, first, a dilute solution from the absorber is introduced into each of the high temperature regenerator, the exhaust heat low temperature regenerator, and the low temperature regenerator so that the temperature of the heat source heat fluid exiting each regenerator can be reduced as much as possible. Further, a description will be given of a solution flow in which a flow rate to be introduced to each regenerator is set according to the type of external heat source such as exhaust heat.
The outlet concentration of the regenerator in which a large amount of the diluted solution flow rate is introduced is low, and the outlet concentration of the regenerator in which the amount of the diluted solution introduced is small. If the concentration is high, the boiling temperature of the absorbing solution increases and the heat source fluid temperature cannot be lowered. In the present invention, the absorption solution of the regenerator having a low outlet concentration is introduced into the regenerator having a high outlet concentration, and the introduction position is set to a midway position from the solution inlet to the outlet to suppress an increase in outlet concentration.
[0010]
The heat source of the high-temperature regenerator is a heat source heat fluid with a large sensible heat change, and the heat source of the exhaust heat low-temperature regenerator is also a heat source heat fluid with a large sensible heat change. Is the heat source of the exhaust heat low-temperature regenerator as it is, the dilute solution is introduced into the low-temperature regenerator in a large proportion of the total solution circulation volume, and the outlet concentration of the low-temperature regenerator is kept low, and this low-temperature regenerator The outlet solution of the vessel is introduced into the middle part of the exhaust heat low temperature regenerator.
In the high-temperature regenerator, heat exchange is performed between the heat source heat fluid and the absorbing solution as a whole in a counter flow, and at the heat source heat fluid outlet of the high-temperature regenerator, the heat source heat fluid and the inlet dilute solution are configured to exchange heat. At the same time, in the exhaust heat low-temperature regenerator, the heat source heat fluid and the absorbing solution are exchanged in a counter flow as a whole, and at the heat source heat fluid outlet of the exhaust heat low-temperature regenerator, the heat source heat fluid and the inlet dilute solution exchange heat. To be configured.
As a result of introducing a large number of dilute solutions into the low-temperature regenerator and keeping the boiling temperature at the outlet of the low-temperature regenerator low, the refrigerant vapor of the high-temperature regenerator that is the heat source of the low-temperature regenerator is converted into a refrigerant with a low saturation temperature (condensation temperature). Steam can be used, and the boiling temperature of the high temperature regenerator can be lowered. Accordingly, the heat source temperature of the high-temperature regenerator can be utilized to a low level, that is, the exhaust gas temperature at the outlet of the high-temperature regenerator is also reduced, and the amount of heat of the heat source heat fluid that can be used for double effect increases.
[0011]
On the other hand, at least the amount of the dilute solution is introduced into the exhaust heat low temperature regenerator, the boiling temperature of the solution inlet / exhaust gas outlet is kept low, and the outlet temperature of the heat source heat fluid is lowered. If the solution flow rate is kept low, the concentration range becomes large and the boiling temperature at the solution outlet becomes high. However, a part or all of the low temperature regenerator outlet solution having a low solution concentration is removed from the exhaust heat low temperature regenerator. If the solution flow rate is increased by introducing from the part of approximately the same concentration in the middle part, the outlet concentration and boiling temperature of the exhaust heat low temperature regenerator can be suppressed, and therefore the heat source temperature of the exhaust heat low temperature regenerator is also low. The exhaust gas temperature at the exhaust heat low-temperature regenerator outlet also decreases, and the amount of heat of the heat source heat fluid that can be used for single effect increases.
In addition, the heat source of the high-temperature regenerator is a heat source with a small sensible heat change or a heat source that changes the latent heat. Furthermore, the heat source temperature of the double effect cycle is low and there is no thermal margin, while the exhaust heat low-temperature regenerator When the heat source is a heat source heat fluid having a large sensible heat change, a dilute solution is introduced into the low-temperature regenerator in a large proportion and then a dilute solution is also introduced into the high-temperature regenerator in a large proportion.
[0012]
If the heat source of the high-temperature regenerator is a heat source with a small sensible heat change or a heat source that changes the latent heat, the pinch temperature of the high-temperature regenerator is the solution outlet temperature part of the high-temperature regenerator. Low is desired, i.e. low outlet concentration is desired, and many dilute solutions are also introduced into the high temperature regenerator. The reason why many dilute solutions are introduced into the low temperature regenerator is to lower the refrigerant vapor saturation temperature of the high temperature regenerator and lower the boiling temperature of the whole high temperature regenerator.
In this case, not only the low-temperature regenerator outlet concentration, but also the high-temperature regenerator outlet concentration is lower than the outlet heat low-temperature regenerator outlet concentration, so the low-temperature regenerator outlet solution is introduced into the middle part of the exhaust heat low-temperature regenerator. In addition, the outlet solution of the high-temperature regenerator also introduces the outlet heat low-temperature regenerator in the middle of the exhaust heat low-temperature regenerator at a position downstream of the previous introduction part, so that the solution flow rate is increased and the outlet heat low-temperature regenerator outlet concentration is increased. The boiling temperature can be suppressed.
[0013]
In addition, the heat source heat fluid of the exhaust heat low temperature regenerator is a heat source mainly composed of latent heat such as steam and the temperature is low, while the heat source of the high temperature regenerator is a heat source heat fluid having a large sensible heat change due to exhaust gas or high temperature water. In this case, the solution outlet temperature (boiling temperature) of the exhaust heat low-temperature regenerator dominates the heat source temperature that changes latent heat (the solution outlet side of the exhaust heat low-temperature regenerator becomes the pinch temperature). If a large amount is introduced and the concentration at the outlet of the solution is lowered, it is effective for exhaust heat at low temperatures. On the other hand, the high-temperature regenerator is a sensible heat source, and the pinch temperature is on the solution inlet side, so that the influence of the solution flow rate is at least small.
In this case, when a large amount of dilute solution is introduced into the exhaust heat low temperature regenerator and the solution outlet temperature becomes lower than the low temperature regenerator outlet concentration, the exhaust heat low temperature regenerator outlet solution is introduced into the middle part of the low temperature regenerator. Then, the low temperature regenerator outlet concentration and the boiling temperature can be suppressed. The heat source of the low temperature regenerator is the refrigerant vapor from the high temperature regenerator, which is a latent heat type heat source, and the solution outlet is at the pinch temperature, so this solution mixing is effective.
[0014]
In addition, the heat source heat fluid of the exhaust heat low-temperature regenerator is a heat source mainly composed of latent heat such as steam and the temperature is low, while the heat source of the high-temperature regenerator also has no change in temperature due to the latent heat change due to exhaust steam, or a large amount In the case of a heat source fluid having a small sensible heat change with high-temperature water, a dilute solution is introduced into the exhaust heat low-temperature regenerator and the high-temperature regenerator in a large proportion.
The solution outlet temperature (boiling temperature) of the exhaust heat low-temperature regenerator dominates the heat source temperature that changes latent heat (the solution outlet side of the exhaust heat low-temperature regenerator becomes the pinch temperature). It is possible to lower the solution outlet concentration and boiling temperature, which is effective for low-temperature exhaust heat. On the other hand, if the change in temperature of the high-temperature regenerator is small, the pinch temperature is on the solution outlet side. Therefore, if the solution flow rate is small, the necessary inlet temperature becomes too high. In this case, when many dilute solutions are also introduced into the high temperature regenerator and the high temperature regenerator outlet concentration is lower than the low temperature regenerator outlet concentration, the exhaust heat low temperature regenerator outlet solution is placed in the middle of the low temperature regenerator. In addition to the introduction, the outlet solution of the high temperature regenerator is also introduced into the intermediate portion of the low temperature regenerator, so that the solution flow rate can be increased and the outlet concentration and boiling temperature of the low temperature regenerator can be suppressed.
When the amount of exhaust heat is not sufficient, the heat source is backed up, that is, replenished at the position where the double effect is used instead of the single effect.
[0015]
Next, in the present invention, it is assumed that the heat source fluid to the exhaust heat low temperature regenerator is a heat source heat fluid having a large sensible heat change, and the cycle is as follows. The heat source fluid to the high temperature regenerator Either sensible heat change or latent heat change may be used.
If the heat source fluid and the absorption solution of the exhaust heat cryogenic regenerator are flowed in opposite directions, a pinch temperature (temperature difference of the portion with the smallest heat exchange temperature difference) exists at the heat source fluid outlet / absorption solution inlet, and the heat source Since it is not on the fluid inlet side / solution outlet side, the outlet solution temperature may be raised to some extent, the flow rate of the solution introduced into the exhaust heat low temperature regenerator is reduced, and the amount of that is replaced with other regenerators (high temperature regenerator, low temperature regenerator). The heat recovery in the regenerator increased by turning to the regenerator can be improved. Increasing the amount introduced into the low temperature regenerator has the effect of lowering the boiling temperature of the low temperature regenerator and lowering the saturation temperature of the refrigerant vapor of the high temperature regenerator that serves as the heat source. It is effective because it can reduce the boiling temperature.
[0016]
When the flow rate of the solution introduced into the exhaust heat low temperature regenerator is reduced, the outlet concentration becomes higher than the concentration at the other regenerator outlets. However, when the solution that has been concentrated in another regenerator is introduced into the middle position from the solution inlet to the solution outlet of the exhaust heat low temperature regenerator, the exhaust heat regenerator outlet is more effective than the case where the solution is not introduced from the middle. The concentration can be suppressed low, the boiling temperature is suppressed, the temperature difference for heat transfer can be increased, and the heat recovery amount is increased.
In this case, in the present invention, in particular, a large amount of absorbing solution is passed through the low-temperature regenerator, and the concentrated solution is introduced to an intermediate position of the exhaust heat low-temperature regenerator.
Further, in the present invention, a dilute solution having the lowest concentration in the solution cycle is introduced into the exhaust heat low-temperature regenerator to reduce the boiling temperature on the solution inlet side of the exhaust heat low-temperature regenerator that becomes the pinch temperature. The outlet temperature is lowered. Further, the flow rate of the solution introduced into the exhaust heat low temperature regenerator is limited, and the flow rate to other regenerators is increased. That is, since the heat source fluid of the exhaust heat low temperature regenerator is assumed to be a heat fluid with a large sensible heat change, the boiling temperature on the solution inlet side of the exhaust heat low temperature regenerator that becomes the pinch temperature may be lowered. Although the temperature on the outlet side may rise to some extent, in the present invention, the solution flow rate is increased halfway to suppress the outlet concentration boiling temperature of the exhaust heat low temperature regenerator.
[0017]
Further, in the present invention, the heat source temperature of the high temperature regenerator corresponds to the case where the heat source temperature is not so high with respect to the double effect cycle, and all the dilute solutions from the absorber are introduced into the high temperature regenerator, The solution concentrated in 1 is divided and introduced into the exhaust heat low temperature regenerator and the low temperature regenerator. The number of divisions is small in the exhaust heat low-temperature regenerator, and is increased in the low-temperature regenerator so that the low-temperature regenerator outlet solution is introduced midway from the inlet to the outlet of the exhaust heat low-temperature regenerator.
Furthermore, the present invention is a cycle in which a solution is distributed and flowed to a high temperature regenerator and another regenerator, and when a large amount of solution is distributed to the high temperature regenerator, the solution concentration at the outlet of the high temperature regenerator is not high. By utilizing this, the amount of heat recovered from the heat source is increased to increase the freezing capacity.
When the absorption solution heated and concentrated in the high temperature regenerator is lower than the concentration of the absorption solution outlet of the exhaust heat low temperature regenerator, the absorption solution at the outlet of the high temperature regenerator is located halfway from the absorption solution inlet to the outlet of the exhaust heat low temperature regenerator. Is introduced to lower the boiling temperature and suppress the gradient of temperature rise thereafter.
[0018]
Alternatively, when the absorption solution heated and concentrated in the high-temperature regenerator is lower than the concentration of the absorption solution outlet of the low-temperature regenerator, the absorption solution at the high-temperature regenerator outlet is introduced midway from the absorption solution inlet to the outlet of the low-temperature regenerator In addition to lowering the boiling temperature, it is possible to suppress the gradient of temperature rise thereafter.
Specifically, in the present invention, the dilute solution from the absorber is branched and a part thereof is led to the high temperature regenerator, and the remaining part is led to the low temperature regenerator or the exhaust heat low temperature regenerator, The absorbent solution which has been guided and heated and concentrated is introduced into the exhaust heat low-temperature regenerator or an intermediate position from the absorption solution inlet to the outlet of the low-temperature regenerator.
In this case, a large amount of dilute solution is introduced into the high-temperature regenerator and the boiling temperature is lowered to take measures against the temperature of the high-temperature regenerator heat source, making use of the fact that the outlet concentration of the high-temperature regenerator is not so high. It is introduced in the middle of the regenerator or exhaust heat low temperature regenerator to lower the boiling temperature.
[0019]
In the present invention, the dilute solution from the absorber is guided to the low temperature regenerator, and the absorption solution heated and concentrated is divided into the high temperature regenerator and the exhaust heat low temperature regenerator and guided to the high temperature regenerator. The absorption solution heated and concentrated is introduced to a midway position from the absorption solution inlet to the outlet of the exhaust heat low-temperature regenerator.
In this case, the heat source of the exhaust heat low temperature regenerator has a large sensible heat change, and the heat source of the high temperature regenerator is a cycle suitable for a case where the sensible heat change is small or a latent heat change. The outlet concentration can be used to suppress the rise in the concentration and boiling point of the exhaust heat low temperature regenerator.
[0020]
In the present invention, the dilute solution from the absorber is led to the exhaust heat low temperature regenerator and the absorbed solution heated and concentrated is divided into a high temperature regenerator and a low temperature regenerator and led to the high temperature regenerator. The absorption solution heated and concentrated is introduced into the intermediate position from the absorption solution inlet to the outlet of the low-temperature regenerator. In this case, the heat source of the exhaust heat low-temperature regenerator is low and the sensible heat temperature difference is small or has a latent heat change, and the heat source of the high-temperature regenerator is suitable for a small sensible heat change or a latent heat change. This is a cycle. By flowing the entire amount of dilute solution to the exhaust heat low temperature regenerator, the heat source of the low temperature exhaust heat low temperature regenerator can be used, and most of the concentrated solution is led to the high temperature regenerator. While preventing the outlet temperature from being raised too much, the high temperature regenerator outlet solution can be introduced from the middle part of the low temperature regenerator to prevent overconcentration of the low temperature regenerator and excessive temperature rise.
[0021]
Further, in the present invention, the dilute solution from the absorber is led to the low temperature regenerator and the exhaust heat low temperature regenerator, and the absorption solution which is led to the low temperature regenerator and concentrated by heating is led to the high temperature regenerator and further concentrated. The absorbent solution is introduced into the exhaust heat low temperature regenerator halfway from the absorption solution inlet to the outlet, or the heat absorption concentrated solution introduced into the exhaust heat low temperature regenerator is guided to the high temperature regenerator. Further, the solution is concentrated, and the absorbing solution is introduced at a midpoint from the absorbing solution inlet to the outlet of the low-temperature regenerator.
When most of the dilute solution from the absorber is led to the low-temperature regenerator and then to the high-temperature regenerator, the double-effect cycle part becomes a so-called reverse flow, and the boiling temperature of the low-temperature regenerator is low and indirectly. In addition, the boiling temperature of the high temperature regenerator can be suppressed. If many solutions are sent to the high temperature regenerator, the flow rate to the exhaust heat low temperature regenerator will be insufficient and the exhaust heat low temperature regenerator outlet concentration will rise too much, but this will be diluted with the absorbing solution from the high temperature regenerator and boiled The temperature can be suppressed. In this method, the inlet temperature of the low-temperature regenerator can be lowered, while the outlet temperature is high, so the cycle is suitable when the heat source to the exhaust heat low-temperature regenerator is a heat source having a large sensible heat temperature difference. . Note that when the entire amount of the low-temperature regenerator outlet solution is sent to the high-temperature regenerator, special control for adjusting the flow rate is required. Therefore, most of the absorption solution is sent, and the rest is sent to the exhaust heat low-temperature regenerator. When sent, no special control is required.
[0022]
For example, in a high-temperature regenerator, the discharge amount to be sent using a pump is specified by an orifice, etc., and the remaining solution is not sucked by the pump and overflows to the exhaust heat regenerator side, so that no special control is required. be able to.
On the other hand, when the heat source to the exhaust heat low temperature regenerator is low, most of the dilute solution from the absorber is led to the exhaust heat low temperature regenerator and then to the high temperature regenerator, while the flow rate to the low temperature regenerator is increased. In order to increase, the solution from the high temperature regenerator is introduced halfway. In this case, the heat source temperature to the high-temperature regenerator is slightly increased, but the heat source temperature to the exhaust heat regenerator can be lowered. If the exhaust heat low temperature regenerator outlet solution is to be sent to the high temperature regenerator, special control is required to adjust the flow rate. Therefore, most of the absorption solution is sent, and the rest is sent to the low temperature regenerator. When sent, no special control is required.
In the single-effect absorption chiller / heater of the present invention, by adding a high-temperature regenerator for replenishment, it is possible to take measures when the refrigeration load cannot be covered only by exhaust heat. Naturally, the reheating is performed in a double-effect part with high thermal efficiency, that is, in the pressure part of the high-temperature regenerator.
[0023]
Next, the present invention will be described with reference to the drawings for an absorption chiller / heater using water as a refrigerant and an aqueous inorganic salt solution as an absorption solution.
1, 2, 7, 8, 13, and 14 are flow configuration diagrams of the absorption chiller / heater used in the present invention, and FIGS. 3 to 6, 9 to 12, and 15 to 15. 22, (a) is a simplified flow diagram, (b) is an absorption solution cycle diagram on the pressure-concentration diagram, and (c), (d) are temperature relationships between the heat source liquid and the solution of the regenerator. It is a graph to show.
In the figure, A is an absorber, GL is a low temperature regenerator, GH is a high temperature regenerator, GX is an exhaust heat low temperature regenerator, GH1 is a reheating high temperature regenerator, C is a condenser, E is an evaporator, and X is a low temperature. Heat exchanger, XH is a high-temperature heat exchanger, SP and SP1 are solution pumps, RP is a refrigerant pump, V1 to V3 are valves, 1 and 1 'are heat sources, 2 is cold and hot water, 3 and 4 are cooling water, and 5 , 6 and 7 are intermediate portions, 11 to 18 are solution flow paths, and 21 to 25 are refrigerant flow paths.
Thus, in the example of the present invention, the absorber A, the evaporator E, the low temperature regenerator GL, and the condenser C are housed in one square can body, and the high temperature exhaust heat is used as a heat source separately from the can body. A high temperature regenerator GH, a waste heat low temperature regenerator GX, and solution heat exchangers XH, X are provided. The absorber A and the low temperature regenerator GL of the can body are connected to the high temperature regenerator GH, the exhaust heat low temperature regenerator GX, and the reheating high temperature regenerator GH1 through a solution channel and a refrigerant channel, respectively. Yes.
[0024]
Next, FIG. 1 will be described. FIG. 1 is an example in which the absorbing solution is divided into three parts and guided to each regenerator. The heat source of the high-temperature regenerator and the heat source of the exhaust heat low-temperature regenerator are heat source heat fluids with large sensible heat changes. It is an example in the case of.
In particular, as a heat source, exhaust gas from a gas turbine, a gas engine, or the like is first guided to a high-temperature regenerator and then to an exhaust heat low-temperature regenerator, and used as a driving heat source for a cold / hot water machine.
First, in the cooling operation, the valves V1, V2, and V3 are closed and a cooling cycle is performed.
The dilute solution from the absorber A is divided into three parts, a part is led to the high temperature regenerator GH, a part is exhaust heat low temperature regenerator GX, and the rest is led to the low temperature regenerator GL. In the high-temperature regenerator GH and the exhaust heat low-temperature regenerator GX, as shown in the figure, the exhaust gas and the absorbing solution that are the heat source 1 are flowed in a counterflow as a whole to exchange heat, and the absorbing solution is heated and concentrated. At the exhaust gas outlet of the high temperature regenerator GH, the outlet exhaust gas and the diluted solution at the solution inlet side exchange heat, and also at the exhaust gas outlet of the exhaust heat low temperature regenerator GX, the outlet exhaust gas exchanges heat with the rare solution.
In the low temperature regenerator GL, the absorbing solution is heated and concentrated using the refrigerant vapor generated in the high temperature regenerator GH as a heat source.
[0025]
The solution heated and concentrated by the low-temperature regenerator GL is introduced into the middle part 5 of the solution flow from the solution inlet to the outlet of the exhaust heat low-temperature regenerator GX, and the amount of the solution is increased. The refrigerant vapor generated in the low temperature regenerator GL enters the condenser C together with the refrigerant vapor from the exhaust heat low temperature regenerator GX, and is cooled and condensed with cooling water. The refrigerant vapor generated in the high temperature regenerator GH and serving as the heat source for the low temperature regenerator GL enters the condenser C as a condensate, and enters the evaporator E together with the refrigerant liquid condensed in the condenser C.
In the evaporator E, the refrigerant liquid takes heat from the cold water 2 and exhibits a refrigeration effect to become refrigerant vapor.
The concentrated solution coming out of the high-temperature regenerator GH and exhaust heat low-temperature regenerator GX returns to the absorber A, is spread on the heat transfer surface cooled by the cooling water, absorbs the refrigerant vapor from the evaporator E, and dilutes the solution. It becomes.
[0026]
FIG. 3A is a flow diagram in which the flow of the absorbing solution in FIG. 1 is simplified, and FIG. 3B shows a cycle of the absorbing solution on the pressure-concentration diagram.
FIG. 3 (c) shows the temperature relationship between the exhaust gas and the absorbing solution in the high temperature regenerator GH, where the boiling start temperature portion of the absorbing solution is the pinch temperature (minimum temperature difference), and the exhaust gas outlet temperature. It has become the temperature that dominates.
FIG. 3 (d) shows the temperature relationship between the exhaust gas and the absorbing solution in the exhaust heat low-temperature regenerator GX. The boiling start temperature portion of the absorbing solution is the pinch temperature (minimum temperature difference). It is the temperature that governs the outlet temperature. When the solution from the low-temperature regenerator G is not introduced into the exhaust heat low-temperature regenerator GX, the boiling temperature at the solution outlet becomes high as shown by a broken line. However, when the present invention is applied, the broken line changes from a broken line to a solid line. The temperature of the absorbing solution is lowered, the exhaust gas outlet temperature is lowered, and the recovered heat amount is increased.
In this figure, the low temperature regenerator GL outlet solution is led to the exhaust heat low temperature regenerator GX, but it is also possible to introduce it into the intermediate position from the solution inlet to the outlet of the high temperature regenerator GH via the heat exchanger. is there.
[0027]
About heating operation, valve V1, V2, V3 is opened and cooling / heating is switched. Do not flow cooling water.
Divide the dilute solution from the absorber A into three parts, lead a part to the high temperature regenerator GH, a part to the exhaust heat low temperature regenerator GX, and the rest to the low temperature regenerator GL, and exhaust the concentrated solution from the low temperature regenerator GL The flow of the absorption solution led to the low temperature regenerator GX is the same as that in the cooling operation, but the concentrated solution coming out of the high temperature regenerator GH and the exhaust heat low temperature regenerator GX is put into the evaporator E through the valve V2, and the solution To the evaporator E.
Through the valve V1 in the pipe connecting the low pressure regenerator GL pressure level equipment (low temperature regenerator GL, exhaust heat low temperature regenerator GX, condenser C) and the evaporator E or the evaporator E, the refrigerant vapor is evaporated into the evaporator E. Then, it is absorbed in the previous spray solution, and the hot water that is the output during heating is heated with this absorbed heat. The solution that has absorbed the refrigerant vapor in the evaporator E returns to the absorber A through the valve V3. Instead of the valve V3, it may be returned to the absorber A through an overflow pipe (not shown) of the evaporator liquid reservoir.
[0028]
FIG. 2 shows a chiller / heater that can be recharged with fuel or the like when a heat source heat fluid alone cannot cover the heating / cooling capacity in FIG. 1, and a high-temperature regenerator GH1 using fuel is added.
FIG. 4 shows a state in which the solution heated and concentrated in the high temperature regenerator GH in FIG. 1 is also introduced into the middle portion of the solution flow in the exhaust heat low temperature regenerator GX. FIG. 4 (a) shows the flow of the absorbing solution. 4B is a simplified flow diagram, FIG. 4B is a pressure-concentration diagram showing the cycle of the absorbing solution, FIG. 4C is a temperature relationship between the heat source fluid and the solution in the high-temperature regenerator GH, and FIG. 4 (d) shows the temperature relationship between the heat source fluid and the solution in the exhaust heat low temperature regenerator GX.
[0029]
The heat source of the high-temperature regenerator GH is a heat source with small sensible heat change or a heat source that changes latent heat, and there is not much room for the heat source temperature of the double effect cycle, and it is desirable that the cycle temperature is low, The heat source heat fluid of the exhaust heat low temperature regenerator GX is a cycle applied when the heat source heat fluid has a large sensible heat change.
A lot of solution is allowed to flow through the low temperature regenerator GL to lower the boiling temperature, and the saturation pressure of the high temperature regenerator GH is reduced. In addition, the flow rate to the high temperature regenerator GH is increased to some extent to suppress the outlet concentration and the boiling temperature.
The heat source heat fluid outlet of the exhaust heat low temperature regenerator GX exchanges heat with the dilute solution. The absorbing solution enters the solution from the low temperature regenerator GL in the middle from the inlet to the outlet, and further, the solution from the high temperature regenerator GH is introduced.
The order of entering may be reversed between the low temperature regenerator GL and the high temperature regenerator GH. It is desirable to put the lower concentration in the solution inlet side.
[0030]
FIG. 5 is a modification in which the solution heated and concentrated in the exhaust heat low-temperature regenerator GX in FIG. 1 is introduced into an intermediate portion of the solution flow in the low-temperature regenerator GL. FIG. 5 (b) shows the absorption solution cycle on the pressure-concentration diagram, and FIG. 5 (c) shows the temperature of the heat source fluid and the solution in the high-temperature regenerator GH. FIG. 5D shows the temperature relationship between the heat source fluid and the solution in the exhaust heat low temperature regenerator GX.
The heat source of the high temperature regenerator GH is a heat source heat fluid with a large sensible heat change, while the heat source heat fluid of the exhaust heat low temperature regenerator GX is a heat source with a low temperature and a small sensible heat change or a latent heat change. This is the cycle that applies in some cases.
A lot of solution is allowed to flow through the exhaust heat low temperature regenerator GX to lower the boiling temperature, and the solution outlet temperature of the exhaust heat low temperature regenerator GX that becomes the pinch temperature is lowered as much as possible.
The flow rate to the high temperature regenerator GH and the low temperature regenerator GL is determined in consideration of the heat source temperature to the high temperature regenerator GH.
Since the outlet solution of the exhaust heat low temperature regenerator GX has a low concentration, it is introduced halfway from the absorption solution inlet to the outlet of the low temperature regenerator GL. Instead of the low temperature regenerator GL, it may be introduced into the high temperature regenerator GH.
[0031]
FIG. 6 is a modification of FIG. 1 in which the heat-concentrated solution of both the high-temperature regenerator GH and the exhaust heat low-temperature regenerator GX is introduced into an intermediate portion of the solution flow of the low-temperature regenerator GL. 6 (a) shows a simplified flow diagram of the absorbent solution, FIG. 6 (b) shows the cycle of the absorbent solution on the pressure-concentration diagram, and FIG. 6 (c) shows the high temperature regenerator GH. FIG. 6 (d) shows the temperature relationship between the heat source fluid and the solution in the exhaust heat low temperature regenerator GX.
The heat source of the high-temperature regenerator GH is a heat source with a small sensible heat change or a heat source that changes the latent heat, while the heat source heat fluid of the exhaust heat low-temperature regenerator GX also has a small sensible heat change or a latent heat change. This is a cycle to be applied when the heat source is a heat source.
A lot of solution is allowed to flow through the exhaust heat low-temperature regenerator GX to lower the boiling temperature, and the solution outlet temperature of the low-temperature regenerator GL that becomes the pinch temperature is lowered as much as possible.
The flow rate to the high temperature regenerator GH and the low temperature regenerator GL is determined in consideration of the heat source temperature to the high temperature regenerator GH. However, since the pinch temperature of the high temperature regenerator GH is on the solution outlet side, It is preferable to increase the flow rate.
[0032]
Since the solution outlet concentration of the exhaust heat low-temperature regenerator GX and the solution outlet concentration of the high-temperature regenerator GH are lower than the outlet concentration of the low-temperature regenerator GL, When the solution from the regenerator GX is added and further the solution from the high temperature regenerator GH is introduced, the concentration at the outlet of the low temperature regenerator GL is lowered, the boiling temperature is also lowered, and the boiling temperature of the high temperature regenerator GH is further lowered. The effect comes out.
Note that the order in which the solutions are added may be reversed between the exhaust heat low temperature regenerator GX and the high temperature regenerator GH. It is desirable to put the lower concentration in the solution inlet side.
In addition, here, the heat source of the present invention is a heat source fluid to the high-temperature regenerator GH and a heat source heat fluid to the exhaust heat low-temperature regenerator GX, or the same fluid and the high-temperature regenerator GH. After passing, you may pass to the exhaust heat low temperature regenerator GX.
[0033]
Alternatively, a heat fluid coming from another heat source may be introduced into the heat source fluid after passing through the high temperature regenerator GH, and both fluids may be used as the heat source of the exhaust heat low temperature regenerator GX.
When the heat source of the high-temperature regenerator GH is a heat-source heat fluid that changes sensible heat, the heat-source heat fluid and the absorbing solution should flow in opposite directions, and the same applies to the exhaust heat low-temperature regenerator GX.
In addition, the switching to heating according to the present invention can be applied to the flows shown in FIGS.
Other heating switching methods such as introducing refrigerant vapor from the high-temperature regenerator GH are possible, and heating methods such as condensing refrigerant vapor in the evaporator E without applying the solution to the evaporator E are also applicable. Yes, it is not limited to heating system and cooling / heating switching.
[0034]
Next, in the present invention, the case where the solution flow introduces the outlet solution of the low temperature regenerator GL into the middle part of the solution flow of the exhaust heat low temperature regenerator GX or vice versa will be described.
FIG. 7 shows a cycle suitable for the case where the heat sources of the high-temperature regenerator GH and the exhaust heat low-temperature regenerator GX are heat sources having a large sensible heat change, and the supply temperature of the heat source to the high-temperature regenerator GH is high. Assuming that the heat source fluid and the absorbing solution are caused to flow in opposite directions, the heat source outlet / absorbing solution inlet becomes the pinch temperature. In FIG. 7, description will be made assuming that the exhaust gas from the gas turbine is driven by the heat source.
First, the cooling operation will be described. The valves V1, V2, and V3 are closed and a cooling cycle is performed.
The dilute solution from the absorber A is branched at the heated outlet of the low-temperature heat exchanger X, and a part is led to the low-temperature regenerator GL and the remaining part is led to the exhaust heat low-temperature regenerator GX. A large amount of solution, for example, 75%, is introduced into the low temperature regenerator GL, and a part of the solution concentrated in the low temperature regenerator GL is introduced into the middle position from the solution inlet to the outlet of the exhaust heat low temperature regenerator GX. The remainder is introduced into the high temperature regenerator GH solution inlet via the heated side of the high temperature heat exchanger.
[0035]
The heat source 1 is exhaust gas from the gas turbine, the high temperature regenerator GH inlet is about 300 ° C. and the outlet is about 180 ° C., and is then led to the exhaust heat low temperature regenerator GX for use up to about 110 ° C. The exhaust gas and the solution serving as the heat source 1 are counterflowed to improve heat transfer efficiency. In the high temperature generator GH and the exhaust heat low temperature regenerator GX, the solution is heated by the exhaust gas and concentrated while generating refrigerant vapor.
In the low temperature regenerator GL, the absorbing solution is heated and concentrated using the refrigerant vapor generated in the high temperature regenerator GH as a heat source. The solution heated and concentrated in the low-temperature regenerator GL is introduced into the middle position 5 of the solution flow from the solution inlet to the outlet of the exhaust heat low-temperature regenerator GX to increase the amount of the solution. On the other hand, the generated refrigerant vapor enters the condenser C together with the refrigerant vapor from the exhaust heat low-temperature regenerator GX, and is cooled and condensed with cooling water. The refrigerant vapor generated in the high temperature regenerator GH and serving as a heat source for the low temperature regenerator GL enters the condenser C as a condensed liquid, and enters the evaporator E together with the refrigerant liquid condensed in the condenser C.
In the evaporator E, the refrigerant liquid takes heat from the cold water, exhibits a refrigeration effect, and becomes refrigerant vapor.
The concentrated solution coming out of the high-temperature regenerator GH and exhaust heat low-temperature regenerator GX returns to the absorber A, is spread on the heat transfer surface cooled by the cooling water, absorbs the refrigerant vapor from the evaporator E, and dilutes the solution. It becomes.
[0036]
Fig.9 (a) is the flowchart which simplified the flow of the absorption solution of FIG.
FIG. 9B shows the cycle of the absorbing solution on the pressure-curve diagram. The pressures of GL and GX are almost the same and should overlap in the drawing, but the pressures are slightly shifted so that they can be distinguished (the same applies to FIGS. 10 (a) to 12 (b)).
FIG. 9C shows the temperature relationship between the exhaust gas and the absorbing solution in the high-temperature regenerator GH, where the boiling start temperature portion of the absorbing solution is the pinch temperature (minimum temperature difference), and the exhaust gas outlet temperature It has become the temperature that dominates.
FIG. 9 (d) shows the temperature relationship between the exhaust gas and the absorbing solution in the exhaust heat low-temperature regenerator GX. The boiling start temperature portion of the absorbing solution is a pinch temperature (minimum temperature difference). It is the temperature that governs the outlet temperature.
[0037]
In FIG. 7, in the heating operation, the valves V1, V2, and V3 are opened to switch between cooling and heating. Do not flow cooling water.
The dilute solution from the absorber A is branched, a part is led to the low temperature regenerator GL, the remaining part is led to the exhaust heat low temperature regenerator GX, and the concentrated solution from the low temperature regenerator GL is sent to the high temperature regenerator GH and the exhaust heat low temperature regenerator GX. The flow of the absorbing solution to be guided is the same as in the cooling operation, but the concentrated solution coming out of the high temperature regenerator GH and the exhaust heat low temperature regenerator GX is put into the evaporator E through the valve V2, and the solution is supplied to the evaporator E To spray.
Through the valve V1 in the pipe connecting the low pressure regenerator GL pressure level equipment (low temperature regenerator GL, exhaust heat low temperature regenerator GX, condenser C) and the evaporator E or the evaporator E, the refrigerant vapor is evaporated into the evaporator E. Then, it is absorbed in the previous spray solution, and the hot water that is the output during heating is heated with this absorbed heat. The solution that has absorbed the refrigerant vapor in the evaporator E returns to the absorber A through the valve V3. Instead of the valve V3, it may be returned to the absorber A through an overflow pipe (not shown) of the evaporator liquid reservoir.
[0038]
FIG. 8 is a chiller / heater that can be reheated with fuel or the like when a heat source heat fluid alone cannot cover the heating / cooling capacity by adding a high-temperature regenerator GH with fuel. ing.
FIG. 10 is a flow diagram in which the outlet solution of the exhaust heat low temperature regenerator GX is branched and introduced into the high temperature regenerator GH in FIG. 7, and FIG. 10 (b) shows the absorption solution cycle on the pressure-concentration diagram, FIG. 10 (c) shows the temperature relationship between the heat source fluid and the solution in the high temperature regenerator GH, and FIG. 10 (d) shows the temperature relationship. The temperature relationship between the heat source fluid and the solution in the exhaust heat low temperature regenerator GX is shown.
The heat source of the high-temperature regenerator GH is a temperature that can afford a double effect (whether it is a heat fluid with a latent heat change or a heat fluid with a large sensible heat change), while the exhaust heat low-temperature regenerator GX The heat source heat fluid is a cycle suitable for a case where the sensible heat change is large to some extent and it is desired to use the heat source as low as possible.
In the exhaust heat low-temperature regenerator GX, the solution inlet has a pinch temperature, and a small amount of dilute solution is introduced to lower the boiling temperature at the inlet.
By flowing a large amount of solution through the low temperature regenerator GL and lowering the boiling temperature, the saturation temperature of the high temperature regenerator GH is lowered and the solution temperature of the high temperature regenerator GH is lowered. The total amount of the solution concentrated in the low temperature regenerator GL is introduced into the intermediate position of the exhaust heat low temperature regenerator GX, and then almost the entire amount of the exhaust heat low temperature regenerator GX is led to the high temperature regenerator GH.
[0039]
In FIG. 11, the dilute solution from the absorber is divided and introduced into the high temperature regenerator GH and the exhaust heat low temperature regenerator GX, and the outlet solution of the high temperature regenerator GH is guided to the low temperature regenerator GL. The outlet solution is introduced into the middle part of the solution flow of the exhaust heat low-temperature regenerator GX. FIG. 11 (a) is a flow chart in which the flow of the absorbing solution is simplified, and FIG. 11 (b) is the absorbing solution. FIG. 11C shows the temperature relationship between the heat source fluid and the solution in the high temperature regenerator GH, and FIG. 11D shows the heat source fluid in the exhaust heat low temperature regenerator GX. Shows the temperature relationship between the solution and the solution.
The heat source of the high-temperature regenerator GH is a heat source heat fluid having a small sensible heat change, and the temperature for driving the double effect cycle is low, while the heat source heat fluid of the exhaust heat low-temperature regenerator GX is This cycle is suitable for a heat source with a large change in sensible heat.
A large amount of dilute solution is allowed to flow through the high-temperature regenerator GH, and the boiling temperature is lowered by keeping the solution concentration low from the inlet to the outlet.
A small amount of dilute solution is introduced into the exhaust heat low temperature regenerator GX to lower the solution inlet temperature of the exhaust heat low temperature regenerator GX that becomes the pinch temperature. On the way, the whole amount of the branched solution is mixed so that the outlet temperature does not become excessive.
[0040]
FIG. 12 shows a case where the entire amount of the absorbing solution is led from the absorber A to the high temperature regenerator GH, and the outlet solution is branched and introduced into the exhaust heat low temperature regenerator GX and the low temperature regenerator GL. FIG. 12B is a flow chart showing the flow of the absorbing solution in a simplified manner, FIG. 12B shows the cycle of the absorbing solution on the pressure curve, and FIG. 12C shows the heat source fluid and solution in the high-temperature regenerator GH. FIG. 12D shows the temperature relationship between the heat source fluid and the solution in the exhaust heat low temperature regenerator GX.
The heat source of the high-temperature regenerator GH is a heat source heat fluid having a small sensible heat change, and the temperature for driving the double effect cycle is low, while the heat source heat fluid of the exhaust heat low-temperature regenerator GX is Although the sensible heat change is a small heat source, it is a suitable cycle when there is a margin of temperature for a single effect cycle.
The whole flow rate of the dilute solution is supplied to the high-temperature regenerator GH, and the boiling temperature is lowered by keeping the solution concentration low from the inlet to the outlet. The solution exiting the high temperature regenerator GH is branched and flows to the low temperature regenerator GL and the exhaust heat low temperature regenerator GX.
Pour a large amount to the low temperature regenerator GL side, which affects the high temperature regenerator GH, and return the concentrated solution to the middle position of the exhaust heat low temperature regenerator GX so that the solution outlet temperature of the exhaust heat low temperature regenerator GX does not become excessive. ing.
[0041]
7 to 12, the heat source is the same fluid, even if the heat source fluid to the high temperature regenerator GH and the heat source heat fluid to the exhaust heat low temperature regenerator GX are different fluids. After passing, you may pass to the exhaust heat low temperature regenerator GX.
Alternatively, a heat fluid coming from another heat source may be introduced into the heat source fluid after passing through the high temperature regenerator GH, and both fluids may be used as the heat source of the exhaust heat low temperature regenerator GX.
When the heat source of the high-temperature regenerator GH is a heat-source heat fluid that changes sensible heat, the heat-source heat fluid and the absorbing solution should flow in opposite directions, and the same applies to the exhaust heat low-temperature regenerator GX.
Also in this case, the switching to heating can be applied to the flows shown in FIGS.
Another method of heating switching such as introducing refrigerant vapor from the high-temperature regenerator GH is possible, and a heating method such as condensing the refrigerant vapor with the evaporator without spraying the solution to the evaporator can be applied, It is not limited to heating system and cooling / heating switching.
[0042]
Next, in the present invention, the case where the outlet solution of the high temperature regenerator GH is introduced into an intermediate portion of the solution flow of the low temperature regenerator GL or the exhaust heat low temperature regenerator GX will be described.
In FIG. 13, as a heat source fluid supplied from a plant, a large amount of high-temperature water is guided to the high-temperature regenerator GH, and exhaust steam is guided to the exhaust heat low-temperature regenerator GX to drive the cold / hot water machine.
In the cooling operation, the valves V1, V2, and V3 are closed and a cooling cycle is performed.
The dilute solution from the absorber A is branched at the heated side outlet of the low-temperature heat exchanger X, a part thereof goes to the low-temperature regenerator GL, and the remaining part passes through the heated side of the high-temperature heat exchanger XH. Lead to.
In the high-temperature regenerator GH, the high-temperature water serving as a heat source and the absorbing solution exchange heat in a counterflow. When a heat source with a small sensible heat change or a latent heat such as steam is used with a large amount of high-temperature water, the pinch temperature (the minimum value of the temperature difference for heat transfer) of the high-temperature regenerator XH is on the solution outlet side. In this flow, it is assumed that high temperature water is low enough to drive a double effect cycle, and a dilute solution is introduced into the high temperature regenerator GH, and more dilute solution than the dilute solution to the low temperature regenerator GL is added to the high temperature regenerator. By leading to GH, the solution concentration at the outlet of the high-temperature regenerator GH is suppressed, and the boiling temperature is kept low. The hot water outlet is a dilute solution with a low boiling temperature and increases the amount of heat recovered from the hot water.
[0043]
Since the outlet concentration of the high temperature regenerator GH is lower than the concentration of the outlet of the low temperature regenerator GL, the outlet solution of the high temperature regenerator GH is used as the dilute solution of the low temperature regenerator GL in order to use this low concentration for heat transfer. It mixes in an intermediate position from the inlet to the outlet, and suppresses the outlet side concentration and outlet side boiling temperature of the low temperature regenerator GL.
In the low-temperature regenerator GL, the absorption solution is heated and concentrated using the refrigerant vapor generated in the high-temperature regenerator GH as a heat source, and then is led to the exhaust heat low-temperature regenerator GX where it is heated and concentrated with exhaust steam. In this flow, the exhaust solution is heated and concentrated at the most concentrated position, assuming that the exhaust steam has a sufficient temperature for a single effect.
The refrigerant vapor generated in the high temperature regenerator GH and serving as the heat source of the low temperature regenerator GL enters the condenser C as a condensate. The refrigerant vapor generated in the low-temperature regenerator GL and the refrigerant vapor generated in the exhaust heat low-temperature regenerator GX both enter the condenser C, are cooled and condensed with cooling water, and are fed into the evaporator E together with the refrigerant liquid of a higher degree. enter.
In the evaporator E, the refrigerant liquid takes heat from the cold water, exhibits a refrigeration effect, and becomes refrigerant vapor.
The concentrated solution coming out of the exhaust heat low temperature regenerator GX returns to the absorber A and is spread on the heat transfer surface cooled by the cooling water, absorbs the refrigerant vapor from the evaporator E, and becomes a dilute solution.
[0044]
FIG. 15A is a flow chart of a solution obtained by simplifying FIG.
FIG. 15B shows the absorption solution cycle on the pressure-concentration diagram.
FIG. 15C shows the temperature relationship between the high temperature water and the absorbing solution in the high temperature regenerator GH, where the outlet portion of the absorbing solution has a pinch temperature (minimum temperature difference), and the required temperature of the high temperature water It has become the temperature that dominates.
FIG. 15 (d) shows the temperature relationship between the exhaust steam and the absorbing solution in the exhaust heat low-temperature regenerator GX.
The outlet portion of the absorbing solution has a pinch temperature (minimum temperature difference), which dominates the required steam temperature.
[0045]
In FIG. 13, in the heating operation, the valves V1, V2, and V3 are opened to switch between cooling and heating. Do not flow cooling water.
The dilute solution from the absorber A is branched, part of it is led to the high temperature regenerator GH, and the remainder is led to the exhaust heat low temperature regenerator GX or the low temperature regenerator GL. The concentrated solution returning from the exhaust heat low temperature regenerator GX is put into the evaporator E through the valve V2, and the solution is sprayed on the evaporator E.
The refrigerant vapor generated in the high temperature regenerator GH heats the low temperature regenerator GL to generate refrigerant vapor. Through the valve V1 in the pipe connecting the low pressure regenerator GL pressure level equipment (low temperature regenerator GL, exhaust heat low temperature regenerator GX, condenser C) and the evaporator E or the evaporator E, the refrigerant vapor is evaporated into the evaporator E. Then, it is absorbed in the previous spray solution, and the hot water that is the output during heating is heated with this absorbed heat. The solution that has absorbed the refrigerant vapor in the evaporator returns to the absorber A through the valve V3. Instead of the valve V3, it may be returned to the absorber through an overflow pipe (not shown) of the evaporator liquid reservoir.
[0046]
FIG. 14 shows a chiller / heater that can be recharged with fuel or the like when the exhaust / heat capacity cannot be provided by exhaust heat alone in FIG. 13, and a high-temperature regenerator GH using fuel is added.
Although this figure adds the high temperature regenerator by fuel to FIG. 13, it can add similarly to the other flow mentioned later.
FIG. 16 is a modification of FIG. 13 in which the outlet solution of the high-temperature regenerator GH is changed to be introduced into an intermediate portion of the solution flow of the exhaust heat low-temperature regenerator GX. FIG. FIG. 16 (b) shows the absorption solution cycle on the pressure-concentration diagram, and FIG. 16 (c) shows the temperature relationship between the heat source fluid and the solution in the high-temperature regenerator GH. FIG. 16 (d) shows the temperature relationship between the heat source fluid and the solution in the exhaust heat low temperature regenerator GX.
[0047]
The heat source of the high-temperature regenerator GH is a thermal fluid with a large sensible heat change, and the solution inlet / exhaust heat outlet of the high-temperature regenerator GH becomes a pinch temperature, while the heat source heat fluid of the exhaust heat low-temperature regenerator GX This cycle is suitable for a case where the heat change is small to some extent or a latent heat change.
In the high-temperature regenerator GH, the solution inlet has a pinch temperature, so a small amount of dilute solution is introduced to lower the boiling temperature at the inlet.
By flowing a large amount of solution through the low temperature regenerator GL and lowering the boiling temperature, the saturation temperature of the high temperature regenerator GH is lowered and the solution temperature of the high temperature regenerator GH is lowered. The solution concentrated in the low temperature regenerator GL is entirely introduced into the exhaust heat low temperature regenerator GX, and the solution concentrated in the high temperature regenerator GH is led to an intermediate position of the exhaust heat low temperature regenerator GX.
[0048]
FIG. 17 is a modification of FIG. 13 in which the dilute solution is divided and introduced into the high temperature regenerator GH and the exhaust heat low temperature regenerator GX, and the outlet solution of the high temperature regenerator GH is changed to the exhaust heat low temperature regenerator GX. FIG. 17A shows a simplified flow diagram of the absorbing solution, and FIG. 17B shows the absorbing solution, which is changed to be introduced into the middle portion of the solution flow and led to the low temperature regenerator GL. FIG. 17C shows the temperature relationship between the heat source fluid and the solution in the high temperature regenerator GH, and FIG. 17D shows the heat source fluid in the exhaust heat low temperature regenerator GX. Shows the temperature relationship between the solution and the solution.
The heat source of the high-temperature regenerator GH and the exhaust heat low-temperature regenerator GX is a heat source heat fluid having a small sensible heat change, and is a cycle suitable for a case where the heat source temperature is low.
A large amount of dilute solution is allowed to flow through the high-temperature regenerator GH, and the boiling temperature is lowered by keeping the solution concentration low from the inlet to the outlet. The dilute solution is also introduced into the exhaust heat low temperature regenerator GX, and the solution of the high temperature regenerator GH that has been branched in the middle is mixed to lower the outlet temperature. Whether the example of FIG. 13 or the example of FIG. 17 is selected depends on a comparison between the temperature margin on the high temperature regenerator GH side and the margin on the low temperature regenerator GL side. FIG. 13 shows that the temperature margin on the high temperature regenerator GH side is small, and FIG. 17 shows the case where the temperature margin on the low temperature regenerator GL side is small.
[0049]
FIG. 18 is a modification of FIG. 13 in which the dilute solution is divided and introduced into the high temperature regenerator GH and the exhaust heat low temperature regenerator GX, and the outlet solution of the high temperature regenerator GH is changed to the solution flow of the low temperature regenerator GL. 18 (a) is a flow diagram in which the flow of the absorbent solution is simplified, and FIG. 18 (b) is a diagram of the cycle of the absorbent solution on the pressure-concentration diagram. FIG. 18C shows the temperature relationship between the heat source fluid and the solution in the high temperature regenerator GH, and FIG. 18D shows the temperature relationship between the heat source fluid and the solution in the exhaust heat low temperature regenerator GX. Is.
The heat source of the high-temperature regenerator GH is suitable for the case where the sensible heat change is large in FIG. On the other hand, the heat source heat fluid of the exhaust heat low temperature regenerator GX is a heat source with a small sensible heat change, and is a suitable cycle when the temperature is lower than the single effect cycle.
[0050]
In FIG. 19, the entire amount of the absorbing solution is introduced into the low temperature regenerator GL, the outlet solution is branched, and a part thereof is introduced into the intermediate portion of the solution flow of the exhaust heat low temperature regenerator GX via the high temperature regenerator GH. FIG. 19 (a) is a flow diagram in which the flow of the absorbing solution is simplified, FIG. 19 (b) is a cycle of the absorbing solution on the pressure-concentration diagram, and FIG. 19 (c) is a high-temperature regenerator. FIG. 19 (d) shows the temperature relationship between the heat source fluid and the solution in the exhaust heat low temperature regenerator GX.
When the heat source of the high temperature regenerator GH is a heat source heat fluid with a small sensible heat change and the heat source temperature is low, while the heat source of the exhaust heat low temperature regenerator GX is a heat source heat fluid with a large sensible heat change This is a suitable cycle.
By flowing the whole amount of the dilute solution through the low temperature regenerator GL and lowering the boiling temperature, the saturation temperature of the high temperature regenerator GH is lowered and the solution temperature of the high temperature regenerator GH is lowered. The solution concentrated in the low-temperature regenerator GL is divided and introduced into the high-temperature regenerator GH and the exhaust heat low-temperature regenerator GX. Leading to the middle position of the device GX.
[0051]
In FIG. 20, the absorption solution is entirely introduced into the exhaust heat low-temperature regenerator GX, the outlet solution is branched, and introduced into the middle part of the solution flow of the low-temperature regenerator GL via the high-temperature regenerator GH. (A) is a flow chart in which the flow of the absorption solution is simplified, FIG. 20 (b) is a cycle of the absorption solution on the pressure-concentration diagram, and FIG. 20 (c) is a graph in the high temperature regenerator GH. FIG. 20D shows the temperature relationship between the heat source fluid and the solution, and FIG. 20D shows the temperature relationship between the heat source fluid and the solution in the exhaust heat low temperature regenerator GX.
The heat source of the exhaust heat low-temperature regenerator GX is suitable for the case where the sensible heat change is small in FIG.
[0052]
FIG. 21 is a modification of FIG. 7 in which the outlet solution of the high-temperature regenerator GH that has passed through the low-temperature regenerator GL is introduced into an intermediate portion of the solution flow of the exhaust heat low-temperature regenerator GX. Fig. 21 (b) is a flow diagram showing a simplified flow of the absorbing solution, Fig. 21 (b) is a pressure-concentration diagram of the cycle of the absorbing solution, and Fig. 21 (c) is a diagram showing the heat source fluid in the high-temperature regenerator GH. FIG. 21 (d) shows the temperature relationship between the heat source fluid and the solution in the exhaust heat low temperature regenerator GX.
When the heat source of the high temperature regenerator GH is a heat source heat fluid with a small sensible heat change and the heat source temperature is low, while the heat source of the exhaust heat low temperature regenerator GX is a heat source heat fluid with a large sensible heat change This is a suitable cycle.
[0053]
By flowing a large proportion of the dilute solution through the low temperature regenerator GL and lowering the boiling temperature, the saturation temperature of the high temperature regenerator GH is lowered and the solution temperature of the high temperature regenerator GH is lowered. All or most of the solution concentrated in the low temperature regenerator GL is led to the high temperature regenerator GH.
In the exhaust heat high-temperature regenerator GX, the solution inlet has a pinch temperature, and a small amount of diluted solution is introduced to lower the boiling temperature at the inlet. However, the concentrated solution from the high temperature regenerator GH is led to an intermediate position of the exhaust heat low temperature regenerator GX so that the temperature on the outlet side does not become too high.
Whether to select the example of FIG. 19 or the example of FIG. 21 is selected depending on the magnitude of the effect of the solution inlet temperature on the heat source on the exhaust heat low temperature regenerator side.
[0054]
FIG. 22 is a modification of FIG. 7 in which the outlet solution of the high-temperature regenerator GH that has passed through the exhaust heat low-temperature regenerator GX is introduced into an intermediate portion of the solution flow of the low-temperature regenerator GL. ) Is a simplified flow diagram of the absorbent solution, FIG. 22B is a pressure-concentration diagram of the absorbent solution cycle, and FIG. 22C is a heat source fluid in the high-temperature regenerator GH. FIG. 22 (d) shows the temperature relationship between the heat source fluid and the solution in the exhaust heat low temperature regenerator GX.
The heat source of the exhaust heat low temperature regenerator GX is a heat source heat fluid having a large sensible heat change in FIG. 21, whereas FIG. 22 is suitable for a case where the sensible heat change is small.
Whether to select the example of FIG. 20 or the example of FIG. 22 is selected depending on the magnitude of the effect of the solution outlet temperature on the heat source on the exhaust heat low temperature regenerator side.
[0055]
The switching to heating according to the present invention can be performed by another method such as introducing refrigerant vapor from a high-temperature regenerator.
Also, a heating method such as condensing refrigerant vapor with an evaporator without spraying the solution to the evaporator can be applied.
The present invention provides a hot water supply heat exchanger that uses refrigerant vapor as a heat source,
Cooling operation + hot water supply operation
Heating operation + hot water supply operation
Etc. are also possible.
On the side of the absorber and the evaporator, there are a normal absorber / evaporator and a configuration in which the absorber and the evaporator are arranged in two stages, but the present invention can be freely combined with these.
[0056]
【The invention's effect】
According to the present invention, a single-effect cycle in which exhaust heat having two types of various temperature levels described above is used as a heat source, or a thermal fluid that greatly changes temperature by sensible heat change is classified into a high temperature portion and a low temperature portion. As a result, it is possible to recover as much heat as possible from the high-temperature heat source fluid that is the heat source in the high-temperature regenerator, and to keep the temperature of the heat source heat fluid in the exhaust heat low-temperature regenerator as low as possible. An absorption chiller / heater that performs a single-effect cycle that can increase the amount of heat recovered and increase the refrigeration capacity, which is the output of the chiller / heater, can be provided.
Also, when the heat source temperature of the high-temperature regenerator is not sufficient as a heat source for the double effect cycle, or when the heat source temperature to the exhaust heat low-temperature regenerator is low and the heat of the heat source is difficult to enter the solution cycle, etc. On the other hand, by devising the circulation cycle of the solution, it was possible to use as much waste heat as possible and effectively use it.
In particular, the exhaust heat can be effectively used in consideration of the circulation path of the solution depending on the temperature level of the high-temperature heat source fluid and the low-temperature heat source fluid, the characteristics of temperature change, and the like.
[Brief description of the drawings]
FIG. 1 is a flow configuration diagram showing an example of an absorption chiller / heater used in the present invention.
FIG. 2 is a flow configuration diagram showing another example of the absorption chiller / heater used in the present invention.
3A is a simplified flow diagram of the example of FIG. 1, FIG. 3B is a cycle diagram on the pressure-concentration diagram, and FIGS. 3C and 3D show the temperature relationship between the heat source of the regenerator and the absorbing solution. Graph.
FIG. 4 shows another example of the present invention, (a) a simplified flow diagram, (b) a cycle diagram on the pressure-concentration diagram, (c), (d) a heat source and an absorbing solution of the regenerator. The graph which shows temperature relationship.
5 shows another example of the present invention, (a) a simplified flow diagram, (b) a cycle diagram on the pressure-concentration diagram, (c), (d) a heat source and an absorption solution of the regenerator. The graph which shows temperature relationship.
FIG. 6 shows another example of the present invention, (a) a simplified flow diagram, (b) a cycle diagram on the pressure-concentration diagram, (c), (d) a heat source of the regenerator and the absorption solution. The graph which shows temperature relationship.
FIG. 7 is a flow diagram showing another example of the absorption chiller / heater used in the present invention.
FIG. 8 is a flow configuration diagram showing another example of the absorption chiller / heater used in the present invention.
FIG. 9 shows another example of the present invention, (a) a simplified flow diagram, (b) a cycle diagram on the pressure-concentration diagram, (c), (d) a heat source of the regenerator and the absorption solution. The graph which shows temperature relationship.
FIG. 10 shows another example of the present invention, (a) a simplified flow diagram, (b) a cycle diagram on the pressure-concentration diagram, (c), (d) a heat source of the regenerator and the absorption solution. The graph which shows temperature relationship.
FIG. 11 shows another example of the present invention, (a) a simplified flow diagram, (b) a cycle diagram on the pressure-concentration diagram, (c), (d) a heat source of the regenerator and the absorption solution. The graph which shows temperature relationship.
FIG. 12 shows another example of the present invention, (a) a simplified flow diagram, (b) a cycle diagram on the pressure-concentration diagram, (c), (d) a heat source of the regenerator and the absorption solution. The graph which shows temperature relationship.
FIG. 13 is a flow configuration diagram showing another example of the absorption chiller / heater used in the present invention.
FIG. 14 is a flow configuration diagram showing another example of the absorption chiller / heater used in the present invention.
FIG. 15 shows another example of the present invention, (a) a simplified flow diagram, (b) a cycle diagram on the pressure-concentration diagram, (c), (d) a heat source and an absorption solution of the regenerator. The graph which shows temperature relationship.
FIG. 16 shows another example of the present invention, (a) simplified flow diagram, (b) cycle diagram on pressure-concentration diagram, (c), (d) regenerator heat source and absorbing solution. The graph which shows temperature relationship.
FIG. 17 shows another example of the present invention, (a) a simplified flow diagram, (b) a cycle diagram on the pressure-concentration diagram, (c), (d) a heat source of the regenerator and the absorption solution. The graph which shows temperature relationship.
FIG. 18 shows another example of the present invention, (a) a simplified flow diagram, (b) a cycle diagram on the pressure-concentration diagram, (c), (d) a heat source of the regenerator and the absorption solution. The graph which shows temperature relationship.
FIG. 19 shows another example of the present invention, (a) a simplified flow diagram, (b) a cycle diagram on the pressure-concentration diagram, (c), (d) a heat source of the regenerator and the absorption solution. The graph which shows temperature relationship.
20 shows another example of the present invention, (a) simplified flow diagram, (b) cycle diagram on pressure-concentration diagram, (c), (d) regenerator heat source and absorbing solution. The graph which shows temperature relationship.
FIG. 21 shows another example of the present invention, (a) simplified flow diagram, (b) cycle diagram on pressure-concentration diagram, (c), (d) regenerator heat source and absorbing solution. The graph which shows temperature relationship.
22 shows another example of the present invention, (a) simplified flow diagram, (b) cycle diagram on pressure-concentration diagram, (c), (d) regenerator heat source and absorbent solution. The graph which shows temperature relationship.
[Explanation of symbols]
A: Absorber, GL: Low temperature regenerator, GH: High temperature regenerator, GX: Waste heat low temperature regenerator, GH1: Reheating high temperature regenerator, C: Condenser, E: Evaporator, X: Low temperature heat exchanger , XH: high temperature heat exchanger, SP, SP1: solution pump, RP: refrigerant pump, V1 to V3: valve, 1 ': heat source, 2: cold / hot water, 3, 4: cooling water, 5, 6, 7: Intermediate part, 11-18: Solution flow path, 21-25: Refrigerant flow path

Claims (11)

外部熱源を熱源とする高温再生器、該高温再生器の熱源とは異なる温度レベルを有する外部熱源を熱源とする排熱低温再生器、及び、前記高温再生器で発生した冷媒蒸気を熱源とする低温再生器のそれぞれ別々の機器と熱源で構成される3つの再生器、凝縮器、吸収器、蒸発器及びこれらの機器を接続する溶液流路と冷媒流路とを備えた一二重効用吸収冷温水機において、前記高温再生器、排熱低温再生器、低温再生器のうち、溶液出口濃度の低い1又は2の再生器により加熱濃縮された溶液を、前記再生器より溶液出口濃度の高い再生器の溶液入口と溶液出口の途中位置から導入するように溶液流路を形成したことを特徴とする一二重効用吸収冷温水機。 A high temperature regenerator using an external heat source as a heat source, a waste heat low temperature regenerator using an external heat source having a temperature level different from that of the heat source of the high temperature regenerator, and a refrigerant vapor generated in the high temperature regenerator as a heat source Single regenerator with three regenerators, condensers, absorbers, evaporators, solution channels and refrigerant channels connecting these devices, each consisting of a separate device and heat source for the low temperature regenerator In the chiller / heater, a solution heated and concentrated by one or two regenerators having a low solution outlet concentration among the high temperature regenerator, exhaust heat low temperature regenerator, and low temperature regenerator has a higher solution outlet concentration than the regenerator. A single-effect absorption chiller / heater characterized in that a solution flow path is formed so as to be introduced from an intermediate position between a solution inlet and a solution outlet of a regenerator. 前記溶液流路が、吸収器からの吸収溶液を、高温再生器と排熱低温再生器と低温再生器とに三方向に分割して導くように構成され、溶液出口濃度の低い再生器が低温再生器であり、前記低温再生器からの溶液が排熱低温再生器の溶液入口と溶液出口の途中位置から導入されるか、又は、溶液出口濃度の低い再生器が低温再生器と高温再生器であり、前記低温再生器からの溶液及び高温再生器からの溶液が排熱低温再生器の溶液入口と溶液出口の途中位置から導入されるように構成されたことを特徴とする請求項1記載の一二重効用吸収冷温水機。The solution flow path is configured to guide the absorption solution from the absorber divided into a high temperature regenerator, a waste heat low temperature regenerator, and a low temperature regenerator in three directions, and the regenerator with a low solution outlet concentration is a low temperature a regenerator, said cold or solution from the regenerator is introduced from the middle position of the solution inlet and a solution outlet of the exhaust heat low temperature regenerator, or a low solution outlet concentration regenerator low-temperature regenerator and the high-temperature regenerator The solution from the low-temperature regenerator and the solution from the high-temperature regenerator are configured to be introduced from midway between the solution inlet and the solution outlet of the exhaust heat low-temperature regenerator. Single-effect absorption cold / hot water machine. 前記溶液流路が、吸収器からの吸収溶液を、高温再生器と排熱低温再生器と低温再生器とに三方向に分割して導くように構成され、溶液出口濃度の低い再生器が排熱低温再生器であり、前記排熱低温再生器からの溶液が低温再生器の溶液入口と溶液出口の途中位置から導入されるか、又は、溶液出口濃度の低い再生器が排熱低温再生器と高温再生器であり、前記排熱低温再生器からの溶液及び高温再生器からの溶液が低温再生器の溶液入口と溶液出口の途中位置から導入されるよう構成されたことを特徴とする請求項1記載の一二重効用吸収冷温水機。 The solution flow path is configured to guide the absorbent solution from the absorber divided into a high temperature regenerator, a waste heat low temperature regenerator, and a low temperature regenerator in three directions, and a regenerator with a low solution outlet concentration is discharged. A low-temperature regenerator, wherein the solution from the exhaust heat low-temperature regenerator is introduced from an intermediate position between the solution inlet and the solution outlet of the low-temperature regenerator, or a regenerator with a low solution outlet concentration is an exhaust heat low-temperature regenerator and a high-temperature regenerator, claims, characterized in that the solution from the solution and the high-temperature regenerator from said exhaust heat low temperature generator is configured to be introduced from the middle position of the solution inlet and a solution outlet of the low-temperature regenerator Item 1. A double-effect absorption chiller / heater according to item 1. 前記溶液流路が、吸収器からの吸収溶液を、排熱低温再生器と低温再生器とに分割して導くように構成され、溶液出口濃度の低い再生器が低温再生器であり、前記低温再生器からの溶液が高温再生器の溶液入口及び排熱低温再生器の溶液入口と溶液出口の途中位置に分割して導かれるか、又は、前記低温再生器からの溶液排熱低温再生器の溶液入口と溶液出口の途中位置に導入され、且つ前記排熱低温再生器からの溶液が高温再生器に導かれるように構成されたことを特徴とする請求項1記載の一二重効用吸収冷温水機。The solution flow path, the absorption solution from the absorber is configured to direct divided into a heat low temperature regenerator and the low temperature regenerator, a low solution outlet concentration regenerator is low-temperature regenerator, said cold or a solution of the regenerator or al and Charles electrically divided in the middle position of the solution inlet and a solution outlet of the solution inlet and the exhaust heat low temperature generator in a high temperature regenerator, or a solution of the low-temperature regenerator or colleagues heat cold 2. The duplex according to claim 1, wherein the duplex is introduced at a position between a solution inlet and a solution outlet of the regenerator and the solution from the exhaust heat low temperature regenerator is guided to the high temperature regenerator. Utility absorption cold / hot water machine. 前記溶液流路が、吸収器からの吸収溶液を、高温再生器又は高温再生器と排熱低温再生器とに分割して導くように構成され、低温再生器へは溶液が高温再生器を経由して導入され、溶液出口濃度の低い再生器が低温再生器であり、前記低温再生器からの溶液を排熱低温再生器の溶液入口と溶液出口の途中位置に導入するように構成したことを特徴とする請求項1記載の一二重効用吸収冷温水機。The solution flow path is configured to guide the absorption solution from the absorber divided into a high temperature regenerator or a high temperature regenerator and an exhaust heat low temperature regenerator, and the solution passes through the high temperature regenerator to the low temperature regenerator introduced by low regenerator of solution outlet concentration is low temperature regenerator, that constitute the solution of the low-temperature regenerator or al to introduce in the middle position of the solution inlet and a solution outlet of the waste heat the low temperature generator The single-effect absorption chiller / heater according to claim 1. 前記溶液流路が、吸収器からの吸収溶液を、高温再生器と低温再生器とに分割して導くように構成され、溶液出口濃度の低い再生器が高温再生器であり、前記高温再生器からの溶液が排熱低温再生器の溶液入口と溶液出口の途中位置又は低温再生器の溶液入口と溶液出口の途中位置に導かれるように構成されたことを特徴とする請求項1記載の一二重効用吸収冷温水機。The solution flow path, the absorption solution from the absorber is configured to direct divided into a high-temperature regenerator and the low temperature regenerator, a low solution outlet concentration regenerator is high temperature regenerator, the high temperature generator of the solution according to claim 1, characterized that it has been configured to be guided to the intermediate position of the solution inlet and a solution outlet in the middle position or the low temperature generator solution inlet and a solution outlet of the exhaust heat the low temperature generator from one Double-effect absorption chiller / heater. 前記溶液流路が、吸収器からの吸収溶液を、高温再生器と排熱低温再生器とに分割して導くように構成され、溶液出口濃度の低い再生器が高温再生器であり、前記高温再生器からの溶液が排熱低温再生器の溶液入口と溶液出口の途中位置又は低温再生器の溶液入口と溶液出口の途中位置に導かれるように構成されたことを特徴とする請求項1記載の一二重The solution flow path is configured to divide and guide the absorption solution from the absorber into a high temperature regenerator and an exhaust heat low temperature regenerator, a regenerator having a low solution outlet concentration is a high temperature regenerator, and the high temperature regenerator 2. The structure according to claim 1, wherein the solution from the regenerator is guided to a middle position between the solution inlet and the solution outlet of the exhaust heat low temperature regenerator or a middle position between the solution inlet and the solution outlet of the low temperature regenerator. Single duplex 効用吸収冷温水機。Utility absorption cold / hot water machine. 前記溶液流路が、吸収器からの吸収溶液を、低温再生器に導くように構成され、前記低温再生器からの溶液を、高温再生器と排熱低温再生器とに分割して導き、溶液出口濃度の低い再生器が高温再生器であり、前記高温再生器からの溶液が排熱低温再生器の溶液入口と溶液出口の途中位置に導入されるように構成したことを特徴とする請求項1記載の一二重効用吸収冷温水機。Directing the solution flow path, the absorption solution from the absorber is configured to direct the low temperature regenerator, prior Symbol a solution of low-temperature regenerator or al, it is divided into the high-temperature regenerator and the exhaust heat the low temperature generator , low solution outlet concentration regenerator is the high temperature regenerator, wherein the solution from the high temperature generator is configured to so that is introduced in the middle position of the solution inlet and a solution outlet of the exhaust heat the low temperature generator The single-effect absorption cold water heater according to claim 1. 前記溶液流路が、吸収器からの吸収溶液を、排熱低温再生器に導くように構成され、前記排熱低温再生器からの溶液を、高温再生器と低温再生器とに分割して導き、溶液出口濃度の低い再生器が高温再生器であり、前記高温再生器からの溶液が低温再生器の溶液入口と溶液出口の途中位置に導入されるように構成したことを特徴とする請求項1記載の一二重効用吸収冷温水機。The solution flow path is configured to guide the absorption solution from the absorber to the exhaust heat low temperature regenerator, and guides the solution from the exhaust heat low temperature regenerator divided into a high temperature regenerator and a low temperature regenerator. The regenerator having a low solution outlet concentration is a high-temperature regenerator, and the solution from the high-temperature regenerator is configured to be introduced at a midpoint between the solution inlet and the solution outlet of the low-temperature regenerator. 1. The single-effect absorption cold / hot water machine according to 1. 前記溶液流路が、吸収器からの吸収溶液を、低温再生器と排熱低温再生器とに分割して導くように構成され、高温再生器には低温再生器からの溶液が導かれて、溶液出口濃度の低い再生器が高温再生器であり、前記高温再生器からの溶液が前記排熱低温再生器の溶液入口と溶液出口の途中位置に導入されるように構成したことを特徴とする請求項1記載の一二重効用吸収冷温水機。The solution flow path, the absorption solution from the absorber is configured to direct divided into a low temperature regenerator and exhaust heat low temperature regenerator, a solution of the low-temperature regenerator or we are led to the Atsushi Ko regenerator Te, a lower regenerator temperature regenerator of the solution outlet concentration, characterized in that the solution from the high temperature generator is configured to so that is introduced in the middle position of the solution inlet and a solution outlet of the exhaust heat low temperature generator The single-effect absorption cold / hot water machine according to claim 1. 前記溶液流路が、吸収器からの吸収溶液を、低温再生器と排熱低温再生器とに分割して導くように構成され、高温再生器には排熱低温再生器からの溶液が導かれて、溶液出口濃度の低い再生器が高温再生器であり、前記高温再生器からの溶液が前記低温再生器の溶液入口と溶液出口の途中位置に導入されるように構成したことを特徴とする請求項1記載の一二重効用吸収冷温水機。The solution flow path is configured to guide the absorption solution from the absorber into a low temperature regenerator and an exhaust heat low temperature regenerator, and the high temperature regenerator is guided with the solution from the exhaust heat low temperature regenerator. The regenerator having a low solution outlet concentration is a high-temperature regenerator, and the solution from the high-temperature regenerator is configured to be introduced midway between the solution inlet and the solution outlet of the low-temperature regenerator. The single-effect absorption cold water heater according to claim 1.
JP2002260765A 2002-09-06 2002-09-06 Single-effect absorption chiller / heater Expired - Fee Related JP4175612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002260765A JP4175612B2 (en) 2002-09-06 2002-09-06 Single-effect absorption chiller / heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002260765A JP4175612B2 (en) 2002-09-06 2002-09-06 Single-effect absorption chiller / heater

Publications (2)

Publication Number Publication Date
JP2004100999A JP2004100999A (en) 2004-04-02
JP4175612B2 true JP4175612B2 (en) 2008-11-05

Family

ID=32261313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002260765A Expired - Fee Related JP4175612B2 (en) 2002-09-06 2002-09-06 Single-effect absorption chiller / heater

Country Status (1)

Country Link
JP (1) JP4175612B2 (en)

Also Published As

Publication number Publication date
JP2004100999A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP4885467B2 (en) Absorption heat pump
JP4242866B2 (en) Absorption refrigerator
WO2002018849A1 (en) Absorption refrigerating machine
JP2000257976A (en) Absorption refrigerating machine
JP4175612B2 (en) Single-effect absorption chiller / heater
KR101690303B1 (en) Triple effect absorption chiller
JP2010085006A (en) Absorption type water chiller and heater
KR100543484B1 (en) Single-and Double-Effect Absorption Refrigerator
KR20080094985A (en) Hot-water using absorption chiller
JP2000205691A (en) Absorption refrigerating machine
JP3083360B2 (en) Absorption heat pump
JP3083361B2 (en) Absorption heat pump
KR100449302B1 (en) Absorption refrigerator
WO2002018850A1 (en) Absorption refrigerating machine
JP4376788B2 (en) Absorption refrigerator
JP4086505B2 (en) Heating operation method and apparatus for a multi-effect absorption refrigerator / cooling / heating machine
JP2000249423A (en) Absorption refrigerating machine
JP4540086B2 (en) Exhaust gas driven absorption chiller / heater
JP2004011928A (en) Absorption refrigerator
JP4212083B2 (en) Exhaust heat input type single-effect absorption chiller / heater
JP2892519B2 (en) Absorption heat pump equipment
JP2003121021A (en) Double effect absorption refrigerating machine
JP2542537B2 (en) Absorption heat pump device
JP3723372B2 (en) Waste heat input type absorption chiller / heater
JP2006170611A (en) Absorption type refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees