JPS61190261A - Heat pipe type cooling and refrigerating device utilizing hydrogen storage alloy - Google Patents

Heat pipe type cooling and refrigerating device utilizing hydrogen storage alloy

Info

Publication number
JPS61190261A
JPS61190261A JP60028338A JP2833885A JPS61190261A JP S61190261 A JPS61190261 A JP S61190261A JP 60028338 A JP60028338 A JP 60028338A JP 2833885 A JP2833885 A JP 2833885A JP S61190261 A JPS61190261 A JP S61190261A
Authority
JP
Japan
Prior art keywords
heat
chamber
low
alloy
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60028338A
Other languages
Japanese (ja)
Inventor
昌司 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP60028338A priority Critical patent/JPS61190261A/en
Publication of JPS61190261A publication Critical patent/JPS61190261A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水素貯蔵合金が水素を吸収または放出する際
の反応熱をヒートノソイブにて熱輸送を行う水素貯蔵合
金を利用したヒートパイプ式冷房・冷凍装置に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides a heat pipe type cooling system using a hydrogen storage alloy that transports the heat of reaction when the hydrogen storage alloy absorbs or releases hydrogen using a heat sink.・Regarding refrigeration equipment.

(従来の技術) はぼ等しい水素平衡圧の下で高温度を示す高温側水素貯
蔵合金Mと、低温度を示す低温側水素貯蔵合金M′とを
それぞれ別個の反応槽に充填し、両反応槽を水素流通路
で連絡し、両反応槽へ熱媒体を供給して、該両合金M、
Vに水素の吸収又は放出を交互にさせて、両反応槽間で
水素を移動させると共に、水素の吸収または放出の際の
反応熱を利用することが行なわれている。
(Prior art) Under approximately equal hydrogen equilibrium pressure, a high-temperature side hydrogen storage alloy M exhibiting a high temperature and a low-temperature side hydrogen storage alloy M′ exhibiting a low temperature are filled in separate reaction vessels, and both reactions are carried out. The tanks are connected through a hydrogen flow path, a heat medium is supplied to both reaction tanks, and both alloys M,
Hydrogen is moved between both reaction vessels by alternately absorbing or desorbing hydrogen in V, and the heat of reaction during hydrogen absorption or desorption is utilized.

従来例として、第4図に、水素貯蔵合金が水素を放出す
る際の吸熱反応を冷房・冷凍装置の熱交換器の熱媒体の
冷却に利用した概略図を示す。
As a conventional example, FIG. 4 shows a schematic diagram in which an endothermic reaction when a hydrogen storage alloy releases hydrogen is used to cool a heat medium in a heat exchanger of an air-conditioning/refrigeration device.

】1け高温側反応槽であり、高温側水素貯蔵合金Mを内
蔵する。12は低温側反応槽であり、低温側水素貯蔵合
金M′を内蔵している。13は内核反応槽11.12を
連絡して気体水素を流通させる水素流通路である。14
は高熱源であり、高温側水素貯蔵合金Mを加熱する熱交
換手段15にポンプP14およびバルブ■I4を介して
接続している。17は、低熱源であり、低温側水素貯蔵
合金M′を冷却する熱交換手段18にポンプP1.およ
びバルブVIgを介して接続し、更に低熱源17は%両
温側水素貯蔵合金Mを冷却する熱交換手段16にポンプ
P′17およびバルブV16 を介して接続している。
】This is a high-temperature side reaction tank with a built-in high-temperature side hydrogen storage alloy M. Reference numeral 12 denotes a low-temperature side reaction tank, which contains a low-temperature side hydrogen storage alloy M'. Reference numeral 13 denotes a hydrogen flow path that connects the inner nuclear reactors 11 and 12 and allows gaseous hydrogen to flow therethrough. 14
is a high heat source, and is connected to the heat exchange means 15 for heating the hydrogen storage alloy M on the high temperature side via a pump P14 and a valve I4. 17 is a low heat source, and a pump P1. The low heat source 17 is further connected to a heat exchange means 16 for cooling the hydrogen storage alloy M on both hot sides via a pump P'17 and a valve V16.

】9は、冷房・冷凍装置の熱交換器であり、低温側反応
槽12からの熱交換手段20にポンプP、。
9 is a heat exchanger of the cooling/refrigeration system, and a pump P is connected to the heat exchange means 20 from the low temperature side reaction tank 12.

およびバルブ■1゜を介して接続している。and are connected via valve ■1°.

かかる装置の作動について、第6図のヒートポンプの圧
力一温度特性線図に基づいて説明する。
The operation of such a device will be explained based on the pressure-temperature characteristic diagram of the heat pump shown in FIG.

同図の縦軸は水素圧Pを、横軸は水素の絶対温度をTと
してその逆数値降を示す6 同図において、点(r)は、高温側水素貯蔵合金Mが水
素を充分に吸収して、高温側反応槽11内には気体水素
は極めて少い状態を示す。ここでバルブ”14のみを開
としてポンプP14を駆動し、高熱源14よシ熱媒体を
熱交換手段15に供給して高温側水素貯蔵合金Mを加熱
すると該合金Mより水素を放出して水素圧Pおよび水素
温度Tが上昇してB行程を経て水素温度Tが高熱源温度
THEはぼ等しい点(C1に至る。点((ロ)は、高温
側水素貯蔵合金Mの放出になる気体水素が水素流通路1
3を経て低温側反応槽12に至り、低温側水素貯蔵合金
M′が水素を吸収し始めた状態を示す。この時点で両バ
ルブvill * VtOは閉、バルブV14を開のま
まとして、高温側水素貯蔵合金Mへの加熱を継続し、バ
ルブv18 を開として低温側水素貯蔵合金M′の水素
吸収による発熱を奪いながら水素の吸収がほぼ平衡圧で
なされ、水素温度Tは次第に低下し、C行程(再生過程
)を経て低熱源17の温度TMにほぼ等しい点(−うに
至る。
In the figure, the vertical axis indicates the hydrogen pressure P, and the horizontal axis indicates the absolute temperature of hydrogen, T, and its reciprocal value decrease.6 In the figure, the point (r) indicates that the hydrogen storage alloy M on the high temperature side has sufficiently absorbed hydrogen. Therefore, there is very little gaseous hydrogen in the high temperature side reaction tank 11. Here, only the valve "14" is opened to drive the pump P14, and when the high temperature side hydrogen storage alloy M is heated by supplying the heat medium from the high heat source 14 to the heat exchange means 15, hydrogen is released from the alloy M and the hydrogen is hydrogenated. The pressure P and the hydrogen temperature T rise, and after the B process, the hydrogen temperature T reaches a point (C1) where the high heat source temperature THE is almost equal. is hydrogen flow path 1
3 and reaches the low-temperature side reaction tank 12, where the low-temperature side hydrogen storage alloy M' begins to absorb hydrogen. At this point, both valves vill * VtO are closed, valve V14 is left open to continue heating the hydrogen storage alloy M on the high temperature side, and valve v18 is opened to release heat due to hydrogen absorption in the hydrogen storage alloy M' on the low temperature side. While absorbing hydrogen, hydrogen is absorbed at approximately equilibrium pressure, and the hydrogen temperature T gradually decreases, reaching a point (-) that is approximately equal to the temperature TM of the low heat source 17 through the C process (regeneration process).

この時点で、)々ルゾV、、 、 V、、を閉、ノ々ル
プv16を開として低熱源17よりポンプP′1.にて
高温側反応槽1】に熱媒体を供給して、高温側水素貯蔵
合金Mを冷却し、低温側水素貯蔵合金M′から放出する
水素を高温側水素貯蔵合金Mに吸収させると。
At this point, the pumps P'1. A heat medium is supplied to the high temperature side reaction tank 1 to cool the high temperature side hydrogen storage alloy M, and the hydrogen released from the low temperature side hydrogen storage alloy M' is absorbed into the high temperature side hydrogen storage alloy M.

水素圧P、水素源!Tは共に次第に低下してD行程を経
て点に)に至る。この間に、バルブVl11 を開とし
、ポンプptoを駆動して熱交換手段20に熱媒体を流
して低温となった熱媒体を冷房・冷凍装置の熱交換器1
9に供給する。
Hydrogen pressure P, hydrogen source! Both T gradually decrease and reach a point (after passing D). During this time, the valve Vl11 is opened and the pump PTO is driven to flow the heat medium to the heat exchange means 20, and the low temperature heat medium is transferred to the heat exchanger 1 of the cooling/refrigeration system.
Supply to 9.

引き続いて、バルブv14 + villは閉、バルブ
■1゜。
Subsequently, valve v14 + ville is closed, and valve ■1°.

Vtaは開のままとし、高温側水素貯蔵合金Mを冷却し
て水素を吸収させ、低温側水素貯蔵合金M′から水素を
放出させ、放出による吸熱反応によって冷房・冷凍装置
へ供給する熱媒体を冷却し、A行程(冷却行程)を経て
高温側水素貯蔵合金Mが充分に水素を吸収して水素温度
Tが低熱源17の温度TM に11ぼ等しい点(イ)に
至って−サイクルを終了する、 第7図は、サイクル時間中の熱交換手段20の出口の熱
媒体の一例としての冷水の温度変化を各行程を付記して
示したものであり、縦軸に冷水温度を、横軸に時間を示
し、tは−サイクル時間である。現実に、低温側水素貯
蔵合金M′の吸熱反応により低温となった冷水を冷房・
冷凍装置の熱交換器19に利用できるのはD行程とへ行
程の低熱源17の温度Ty  より低い部分からである
、(発明が解決しようとする問題点) ところで、従来の反応槽としては、顕熱利用型熱交換器
が使用され、例えば第5図に示すようなシェルアンドチ
ューブ型熱交換器である。熱媒体は、入口103から入
ってチューブ102を通過し、その間にシェル101内
に内蔵された水素貯蔵合金部と熱交換して出口104か
ら排出され、熱交換器の作動は顕熱利用となる。なお、
105は水素出入口である。このために次のような問題
点かある。
Vta remains open, the high-temperature side hydrogen storage alloy M is cooled to absorb hydrogen, the low-temperature side hydrogen storage alloy M' releases hydrogen, and the endothermic reaction caused by the release causes the heat medium to be supplied to the cooling/refrigeration equipment. After cooling, the hydrogen storage alloy M on the high temperature side sufficiently absorbs hydrogen through the A process (cooling process), and the hydrogen temperature T reaches a point (A) that is approximately 11 times the temperature TM of the low heat source 17, and the cycle ends. , FIG. 7 shows the temperature change of cold water as an example of the heat medium at the outlet of the heat exchange means 20 during the cycle time, with each stroke indicated. The vertical axis represents the cold water temperature, and the horizontal axis represents the temperature change of cold water. Time is indicated and t is -cycle time. In reality, cold water that has become low temperature due to the endothermic reaction of the low-temperature side hydrogen storage alloy M' is used for cooling and cooling.
What can be used in the heat exchanger 19 of the refrigeration system is a portion lower than the temperature Ty of the low heat source 17 in the D and H steps. (Problem to be Solved by the Invention) By the way, as a conventional reaction tank, A sensible heat utilization type heat exchanger is used, for example a shell and tube type heat exchanger as shown in FIG. The heat medium enters from the inlet 103 and passes through the tube 102, during which it exchanges heat with the hydrogen storage alloy part built in the shell 101, and is discharged from the outlet 104, and the heat exchanger operates using sensible heat. . In addition,
105 is a hydrogen inlet/outlet. This causes the following problems.

(1)  顕熱利用であるから、熱媒体側の熱伝達率の
向上には限界があシ、水素貯蔵合金と熱媒体との熱交換
量には限界がある。
(1) Since it uses sensible heat, there is a limit to the improvement of the heat transfer coefficient on the heat medium side, and there is a limit to the amount of heat exchange between the hydrogen storage alloy and the heat medium.

(2)  従って、サイクル時間が長くなり単位時間光
りに熱負荷に供給される冷房・冷凍熱量が少ない。
(2) Therefore, the cycle time becomes longer and the amount of cooling/freezing heat supplied to the heat load per unit time is small.

(3)  成績係数(熱媒体が冷房・冷凍装置から奪っ
た熱量/水素貯蔵合金に与えられた熱量)か比較的小さ
いために冷房・冷凍装置の熱交換器の熱媒体から奪う熱
量を確保するために必要な水素貯蔵合金を多量に要し、
冷房・冷凍装置の製造費か高くなる。
(3) Since the coefficient of performance (amount of heat taken by the heat medium from the cooling/refrigeration equipment/amount of heat given to the hydrogen storage alloy) is relatively small, the amount of heat taken from the heat medium of the heat exchanger of the cooling/refrigeration equipment is secured. This requires a large amount of hydrogen storage alloy,
The manufacturing cost of air conditioning and refrigeration equipment will increase.

(問題点を解決するための手段) 本発明になる水素貯蔵合金を利用したヒートパイプ式冷
房・冷凍装置は、下記のように構成されている。
(Means for Solving the Problems) A heat pipe type cooling/refrigeration device using a hydrogen storage alloy according to the present invention is configured as follows.

低温側反応槽に、低温側水素貯蔵合金を充填した合金充
填室と、合金充填室と区画した熱媒体室とを設け、熱媒
体室をポンプおよびバルブを設けて低熱源に接続する熱
媒体循環路中に介在させ、かつ合金充填室と熱媒体室と
の間にヒートパイプを配置し、高温側反応槽に、高温側
水素貯蔵合金を充填した合金充填室と、合金充填室と区
画した熱媒体室とを設け、熱媒体室を、ポンプおよびバ
ルブを設けて高熱源および低熱源に、接続する熱媒体循
環路中に介在させ、かつ合金充填室と熱媒体室との間に
ヒートパイプを配置し、前記両合金充填室を水素流通路
で接続し、かつ低温側反応槽の熱媒体室を、ノ々ルプお
よびポンプを設けた熱媒体循環路にて冷房装置または冷
凍装置の熱交換器に接続した、水素貯蔵合金を利用した
ヒートパイプ式冷房・冷凍装置である。
The low-temperature side reaction tank is provided with an alloy filling chamber filled with a low-temperature side hydrogen storage alloy and a heat medium chamber separated from the alloy filling chamber, and the heat medium chamber is connected to a low heat source by providing a pump and a valve. A heat pipe is placed between the alloy filling chamber and the heating medium chamber, and the high temperature side reaction tank is divided into the alloy filling chamber filled with the high temperature side hydrogen storage alloy and the alloy filling chamber. A medium chamber is provided, the heat medium chamber is interposed in a heat medium circulation path connected to a high heat source and a low heat source by providing a pump and a valve, and a heat pipe is provided between the alloy filling chamber and the heat medium chamber. The two alloy filling chambers are connected by a hydrogen flow passage, and the heat medium chamber of the low temperature side reaction tank is connected to the heat exchanger of the air conditioner or refrigeration system through a heat medium circulation path equipped with a nozzle and a pump. This is a heat pipe type cooling/refrigeration system that uses a hydrogen storage alloy and is connected to a hydrogen storage alloy.

更には、前記装置の高熱源に太陽熱を利用して、高熱源
として熱媒体のストレージタンクを設け、該ストレージ
タンクを太陽熱コレクターに熱媒体循環路にて接続し、
太陽熱コレクターの出口付近とストレージタンクとに温
度センサを設け、該両温度センサからの電気信号値を比
較して熱媒体循環路を流通する熱媒体の流量制御を行う
と共に該ストレージタンクの熱媒体を加熱する補助熱源
を設けである。
Furthermore, using solar heat as a high heat source of the device, a storage tank for a heat medium is provided as the high heat source, and the storage tank is connected to a solar heat collector through a heat medium circulation path,
Temperature sensors are provided near the outlet of the solar heat collector and in the storage tank, and electric signal values from both temperature sensors are compared to control the flow rate of the heat medium flowing through the heat medium circulation path and to control the heat medium in the storage tank. An auxiliary heat source for heating is provided.

(作 用) 本発明になる水素貯蔵合金を利用したヒートパイプ式冷
房・冷凍装置は下記のように作用する、高温側反応槽内
の高温側水素貯蔵合金に充分に水素を吸収させておき、
高温側反応槽の熱媒体室に高熱源から熱媒体を送り、ヒ
ートパイプを介して高温側水素貯蔵合金を加熱して水素
を放出させ、該気体水素を水素流通路を経て低温側反応
槽の合金充填室へ送り、低熱源により冷却されるヒート
パイプにて低温側水素貯蔵合金が水素吸収時に出す反応
熱を吸熱して低温側水素貯蔵合金に水素を充分に吸収さ
せる。
(Function) The heat pipe type cooling/refrigeration device using the hydrogen storage alloy according to the present invention functions as follows.The high temperature side hydrogen storage alloy in the high temperature side reaction tank is made to sufficiently absorb hydrogen,
A heat medium is sent from a high heat source to the heat medium chamber of the high temperature side reaction tank, heats the high temperature side hydrogen storage alloy through a heat pipe to release hydrogen, and the gaseous hydrogen is transferred to the low temperature side reaction tank through the hydrogen flow path. The reaction heat generated by the hydrogen storage alloy on the low temperature side when absorbing hydrogen is absorbed by a heat pipe that is sent to the alloy filling chamber and cooled by a low heat source, thereby causing the hydrogen storage alloy on the low temperature side to sufficiently absorb hydrogen.

次いで、高温側反応槽の熱媒体室を低熱源に接続し、ヒ
ートパイプにて高温側水素貯蔵合金を冷却し、低温側水
素貯蔵合金が放出する水素を高温側水素貯蔵、合金に吸
収させ、低温側水素貯蔵合金の水素放出による吸熱反応
を利用して、冷房・冷凍装置の熱交換器の熱媒体を冷却
する。
Next, the heat medium chamber of the high temperature side reaction tank is connected to a low heat source, the high temperature side hydrogen storage alloy is cooled with a heat pipe, and the hydrogen released by the low temperature side hydrogen storage alloy is absorbed by the high temperature side hydrogen storage alloy. The endothermic reaction caused by hydrogen release from the low-temperature hydrogen storage alloy is used to cool the heat medium in the heat exchanger of the cooling/refrigeration system.

このようにして、水素を高温側水素貯蔵合金と低温側水
素貯蔵合金との間を交互に移動させて、低温側水素貯蔵
合金の水素放出に伴う吸熱反応を継続させて、冷房・冷
凍装置の熱交換器の熱媒体を冷却させる。
In this way, hydrogen is alternately transferred between the high-temperature side hydrogen storage alloy and the low-temperature side hydrogen storage alloy, and the endothermic reaction associated with hydrogen release from the low-temperature side hydrogen storage alloy is continued, and the cooling/refrigeration equipment is Cools the heat medium of the heat exchanger.

更に、上記のような水素貯蔵合金を利用したヒートノソ
イプ式冷房・冷凍装置において、ストレージタンク内の
熱媒体の温度と太陽熱コレクターの出口の熱媒体の温度
とを温度センサで測定して電気信号を発信させ、ストレ
ージタンク内の熱媒体の温度が太陽熱コレクターの出口
温度よシ低い場合には熱媒体を環流させ、温度が逆の場
合は環流を停止させ、またストレージタンク内の熱媒体
の温度が所定温度よシ低い場合には補助熱源にて熱媒体
を加熱してストレージタンク内の熱媒体の温度を所定に
保持して高熱源として機能させる。
Furthermore, in the heat-not-soup type cooling and freezing equipment using hydrogen storage alloys as described above, a temperature sensor measures the temperature of the heat medium in the storage tank and the temperature of the heat medium at the outlet of the solar heat collector and transmits an electrical signal. If the temperature of the heat medium in the storage tank is lower than the outlet temperature of the solar collector, the heat medium is circulated, and if the temperature is opposite, the circulation is stopped. When the temperature is lower than the temperature, the heat medium is heated by the auxiliary heat source to maintain the temperature of the heat medium in the storage tank at a predetermined level, thereby functioning as a high heat source.

(実施例) 本発明に係る水素貯蔵合金を利用したヒート・ソイプ式
冷房・冷凍装置の第一実施例を第1図、2図に基づいて
説明する。
(Example) A first example of a heat soap type cooling/freezing device using a hydrogen storage alloy according to the present invention will be described based on FIGS. 1 and 2.

第1図において、IFi高温側反応槽であシ、仕切板1
cにて高温側水素貯蔵合金Mを収容する合金充填室】a
と熱媒体室1bに区画されて一定の温度範囲で作動する
作動流体を内蔵する複数個のヒートパイプ】0を配置し
である。2は低温側反応槽であり、仕切板2cにて低温
側水素貯蔵合金M′を収容する合金充填室2aと熱媒体
室2bに区画されて一定の温度範囲で作動する作動流体
を内蔵するヒートノぐイブ10′を配置しである。なお
、それぞれの合金充填室1aと熱媒体室1bおよび合金
充填室2aと熱媒体室2bとを2枚の仕切板にて区画分
離して、この間の両ヒートパイプ10゜10′の外周を
断熱材で包被してもよい。
In Figure 1, in the IFi high temperature side reaction tank, there is a partition plate 1.
Alloy filling chamber accommodating high temperature side hydrogen storage alloy M at c]a
A plurality of heat pipes each containing a working fluid that operates within a certain temperature range are partitioned into a heat medium chamber 1b and a heat medium chamber 1b. Reference numeral 2 designates a low-temperature side reaction tank, which is divided by a partition plate 2c into an alloy filling chamber 2a containing a low-temperature side hydrogen storage alloy M' and a heat medium chamber 2b. The guide tube 10' is arranged. The alloy filling chamber 1a and heat medium chamber 1b and the alloy filling chamber 2a and heat medium chamber 2b are separated by two partition plates, and the outer circumferences of both heat pipes 10° and 10' are insulated. It may be covered with wood.

4は高熱源であり、ポンプP4およびノ々ルプV、を介
在して低高温往き回路L4にて熱媒体室1bに接続し、
バルブv6を介在させて低高温帰り回路Ll。
4 is a high heat source, which is connected to the heat medium chamber 1b via a pump P4 and a nozzle V through a low and high temperature circuit L4;
Low and high temperature return circuit Ll with valve v6 interposed.

を構成している。It consists of

7は、低熱稼であり 、+fンゾP7およびバルブv7
を介在させて低温往き回路Lγにて熱媒体室2bに接続
し、かつバルブv3を介在きせて低温帰り回路    
L′、に接続している。更に、低熱の7は、バルブv8
を介在させて低高温往き回路L4にて熱媒体室1bに接
続し、かつ・々ルプv4を介在させて低高温帰り回路L
l、に接続しているー 9は、冷房・冷凍装置の熱交換器であり、低温往き回路
り、のバルブV、より熱媒体室2b側の分岐管にてノル
ゾ■、およびポンプP9 を介在させて該回路り、に接
続し、かつノ々ルプv1を介在させて低温帰り回路L/
、  に接続している。
7 is low heat operation, +fnzo P7 and valve v7
is connected to the heat medium chamber 2b through the low temperature outgoing circuit Lγ, and the low temperature return circuit is connected through the valve v3.
It is connected to L'. Furthermore, low heat 7 is valve v8
is connected to the heat medium chamber 1b through the low and high temperature outgoing circuit L4, and the low and high temperature return circuit L is connected through the intervening loop v4.
-9 connected to the air conditioner/refrigeration system is a heat exchanger for the cooling/refrigeration system, and a valve V of the low-temperature circulation circuit, a branch pipe on the heat medium chamber 2b side, and a pump P9 are interposed. and the low temperature return circuit L/ with intervening node loop v1.
, is connected to .

々お、両ノ々ルプvl + v3け仮想線で示す三方切
換弁V13に、両バルブ■4 + ■6は同じく三方切
換弁V46に、両バルブ■7.■8は同じく三方切換弁
v、8にそれぞれ置き替えてもよい。
Both valves vl + v3 are connected to the three-way switching valve V13 shown by the imaginary line, both valves ■4 + ■6 are connected to the three-way switching valve V46, and both valves ■7. (2) 8 may be similarly replaced with three-way switching valves v and 8, respectively.

次に作用について説明する。Next, the effect will be explained.

いま、高温側水素貯蔵合金Mが水素を充分に吸収して合
金充填室la内には気体水素が極めて少い状態で、水素
温度Tは低熱源温度Tyにほぼ等しい第6図の点(ハ)
の状態にある。ここで両ノ々ルプv、。
Now, the hydrogen storage alloy M on the high temperature side has sufficiently absorbed hydrogen and there is very little gaseous hydrogen in the alloy filling chamber la, and the hydrogen temperature T is approximately equal to the low heat source temperature Ty at a point in FIG. )
is in a state of Here, both Nororupu v.

V6を開とし、その他のノζルゾを閉とし、ポンプP4
を駆動して従高温往き回路L4.熱媒体室1bおよび低
高温帰り回路L′4に高温の熱媒体を循環させると、ヒ
ートパイプ10の熱媒体室lb側が蒸発部となって作動
流体は気化し、合金充填室】a側が凝縮部と左って高温
側水素貯蔵合金Mを加熱して水素を放出させ、水素圧力
P、水素温度T共に上昇してB行程を経て点(時に至る
。この間に発生した気体水素は、水素流通路3を経て低
温側反応槽2に至り、低温側水素貯蔵合金M′は水素を
吸収し始める。ここで両)々ルブ■!l + vllを
開のままとし、かつ両ノ々ルプV3.V、を開とし、そ
の他のバルブは閉として、低熱源7を熱媒体室2bに接
続してポンプPフを駆動する。はぼ平衡圧で水素を吸収
し始めた低温側水素貯蔵合金M′の反応熱は2ヒートパ
イゾ10’の合金充填室2a側が蒸発部となシ、作動流
体にて熱媒体室2 b イlt++に運ばれて熱媒体に
熱を奪われて、低温側水素貯蔵合金M′は水素吸収を継
続し、C行程(再生行程)f経て水素を吸収して水素温
度Tがほぼ低熱源温度TMに等しい点eつに至る。ここ
で、各バルブv3.V6.■3.Vフを閉とし、かつ各
バルブ■1.■2.■4.■8を開として低熱源7を熱
媒体室1bに接続し、ポンプP、を駆動してヒートパイ
プ10の熱媒体室Jb側を凝縮部とじて高温側水素貯蔵
合金Mを冷却し、低温側水素貯蔵合金M/から放出され
る水素を高温側水素貯蔵合金Mに吸収させる。かくして
、低温側水素貯蔵合金M′の水素放出に伴う吸熱反応に
てヒートパイプ10’の合金充填室側2aを凝縮部とし
て熱媒体室2bを冷却する。水素温度Tが、冷房・冷凍
装置の熱媒体の所定温度となった際にポンプP、を駆動
して、冷房・冷凍装置の熱交換器9に低温となった熱媒
体を送って冷房または冷凍に利用する。かくしてD行程
を経て点に)に至る。
Open V6, close the other nozzles, and turn off pump P4.
to drive the secondary high temperature forwarding circuit L4. When a high temperature heat medium is circulated through the heat medium chamber 1b and the low/high temperature return circuit L'4, the heat medium chamber 1b side of the heat pipe 10 becomes an evaporation section and the working fluid is vaporized, and the alloy filling chamber 1a side becomes a condensation section. On the left, the hydrogen storage alloy M on the high temperature side is heated to release hydrogen, and both the hydrogen pressure P and the hydrogen temperature T rise and reach the point (time) through the B process. 3 and reaches the low-temperature side reaction tank 2, where the low-temperature side hydrogen storage alloy M' begins to absorb hydrogen. l + vll open, and both nodes V3. V is opened, the other valves are closed, the low heat source 7 is connected to the heat medium chamber 2b, and the pump P is driven. The reaction heat of the hydrogen storage alloy M' on the low temperature side, which has started absorbing hydrogen at almost equilibrium pressure, is transferred to the heat medium chamber 2b with the working fluid, since the alloy filling chamber 2a side of the 2-heat piezo 10' is the evaporation section. The hydrogen storage alloy M' on the low temperature side continues to absorb hydrogen as it is carried away and the heat is taken away by the heat medium, and after the C process (regeneration process) f, the hydrogen temperature T is almost equal to the low heat source temperature TM. Reach point e. Here, each valve v3. V6. ■3. Close the V valve and close each valve ■1. ■2. ■4. ■8 is opened, the low heat source 7 is connected to the heat medium chamber 1b, the pump P is driven, the heat medium chamber Jb side of the heat pipe 10 is closed as a condensing part, the high temperature side hydrogen storage alloy M is cooled, and the low temperature side Hydrogen released from the hydrogen storage alloy M/ is absorbed into the hydrogen storage alloy M on the high temperature side. In this manner, the heat medium chamber 2b is cooled by using the alloy-filled chamber side 2a of the heat pipe 10' as a condensing part by an endothermic reaction accompanying hydrogen release from the low-temperature side hydrogen storage alloy M'. When the hydrogen temperature T reaches a predetermined temperature of the heat medium of the cooling/refrigeration system, the pump P is driven to send the low temperature heat medium to the heat exchanger 9 of the cooling/freezing system for cooling or freezing. Use it for. In this way, it reaches point ) through process D.

更に引き続いて、各バルブ”! t v2 + v、 
I v、を開のままとし、その他のバルブは閉として低
熱源7の熱媒体で高温側反応槽の熱媒体室1bを冷却し
てヒートパイプ10の熱媒体室lb側を凝縮部として高
温側水素貯蔵合金Mの水素吸収による発熱を奪い、低温
側水素貯蔵合金M′の水素放出による吸熱反応にて熱媒
体を冷却し、ポンプP、の駆動によって低温となった熱
媒体を引き続いて冷房・冷凍装置の熱交換器9へ送る。
Furthermore, each valve "! t v2 + v,
Iv remains open, the other valves are closed, and the heat medium chamber 1b of the high temperature side reaction tank is cooled with the heat medium of the low heat source 7, and the heat medium chamber 1b side of the heat pipe 10 is used as a condensing part to cool the high temperature side. The heat generated by the hydrogen absorption of the hydrogen storage alloy M is taken away, and the heat medium is cooled by an endothermic reaction caused by hydrogen release from the hydrogen storage alloy M' on the low temperature side. It is sent to the heat exchanger 9 of the refrigeration system.

かくして、低温側水素貯蔵合金M′から放出された気体
水素をほぼ平衡圧にて水素流通路3を経て高温側水素貯
蔵合金Mが吸収し、へ行程を経て、水素温度Tがほぼ低
熱源温度TMに等しい点(イ)に至って−サイクルを光
子する。
In this way, the gaseous hydrogen released from the low-temperature side hydrogen storage alloy M' is absorbed by the high-temperature side hydrogen storage alloy M through the hydrogen flow path 3 at approximately equilibrium pressure, and through the process, the hydrogen temperature T becomes almost the low heat source temperature. A photon cycle is reached at a point (a) equal to TM.

第2図に、本発明において高・低温側反応槽1゜2とし
て使用される潜熱利用型反応槽を具体化した一例を示す
。51は反応槽の胴体であって、仕切板52にて水素貯
蔵合金M。を収容する合金充填室51aと熱媒体室51
bに区画されてヒートパイプ50を内蔵しである。53
は外部からの熱媒体の入口、54は同出口、55は水素
出入口である。
FIG. 2 shows an example of a latent heat utilization type reaction tank used as the high/low temperature side reaction tank 1°2 in the present invention. 51 is the body of the reaction tank, and a partition plate 52 contains hydrogen storage alloy M. The alloy filling chamber 51a and the heat medium chamber 51 that accommodate the
It is divided into sections b and has a built-in heat pipe 50. 53
54 is an inlet for a heat medium from the outside, 54 is an outlet thereof, and 55 is an inlet and an inlet for hydrogen.

次に第2実施例について第3図に基づいて説明する。第
1笑施例の尚熱源4に主として太陽熱を利用する場合で
ある。第1実施例と同符号は同一部分を示し、説明を省
略する。
Next, a second embodiment will be described based on FIG. 3. This is the case in which solar heat is mainly used as the heat source 4 in the first embodiment. The same reference numerals as in the first embodiment indicate the same parts, and the explanation will be omitted.

4′は熱媒体、例えば温水を収容したストレージタンク
であり、第1実施例の高熱源4に該当する。
4' is a storage tank containing a heat medium, for example hot water, and corresponds to the high heat source 4 of the first embodiment.

4’aは太陽熱コレクターであり、ポンプP4’af介
在する往き回路L4’aおよび帰り回路L/ 4 /2
  にてストレージタンク4′に接続してストレージタ
ンク4′内の熱媒体を循環させて加熱し得る。4’ c
はストレージタンク4内の熱媒体の温度センサであり、
4’dは太陽熱コレクター4’ aの出口の熱媒体の温
度センサである。(eは比較器であり、温度センサ4’
eの電気信号と温度センサ4′dからの電気信号とを比
較して、ストレージタンク4′内の熱媒体の温度θTの
値が、太陽熱コレクター4’ aの出口の熱媒体の温度
θCの値より大きい場合にはポンプP4Iaの駆動を停
止する信号をポンプP4taの電源制御部に送り、逆の
場合にはポンプp4taを駆動する信号を送ってポンプ
Pa’a’;:’駆動制御する。なお、ポンプp4ta
の駆動制御に替えて、往き回路L4taの?ンプP4t
aの出口側と帰り回路Lj41a  間に熱媒体の短絡
回路を設け、該短絡回路と両回路L4tB、L’4’a
とをそれぞれ三方切換弁にて接続し、該両バルブの開閉
制御とすることもできる。
4'a is a solar heat collector, and the outgoing circuit L4'a and return circuit L/4/2 are interposed with pump P4'af.
The storage tank 4' is connected to the storage tank 4' so that the heat medium in the storage tank 4' can be circulated and heated. 4'c
is a temperature sensor of the heat medium in the storage tank 4,
4'd is a temperature sensor of the heat medium at the outlet of the solar collector 4'a. (e is a comparator, temperature sensor 4'
By comparing the electric signal of e and the electric signal from temperature sensor 4'd, the value of the temperature θT of the heat medium in the storage tank 4' becomes the value of the temperature θC of the heat medium at the outlet of the solar collector 4'a. If it is larger, a signal to stop the drive of the pump P4Ia is sent to the power supply control section of the pump P4ta, and in the opposite case, a signal to drive the pump p4ta is sent to control the drive of the pump Pa'a';:'. In addition, pump p4ta
In place of the drive control of the forward circuit L4ta? pump P4t
A short circuit for the heat medium is provided between the exit side of a and the return circuit Lj41a, and the short circuit and both circuits L4tB and L'4'a
It is also possible to connect the two valves with a three-way switching valve to control the opening and closing of both valves.

4′bは、電気ヒータ、排熱源等の補助熱源であり、デ
ンジPa1bf介在させてストレージタンク4′内の熱
媒体を加熱する加熱回路L41bに接続している。
4'b is an auxiliary heat source such as an electric heater or a waste heat source, and is connected to a heating circuit L41b that heats the heat medium in the storage tank 4' through a power source Pa1bf.

なお、補助熱源4’ b ’)ボイラーとして熱媒体を
直接加熱することもできる。4’ fは温度リレーであ
り、ストレージタンク4′内の熱媒体の温度θTか所定
温度以下となった場合に温度センサ4’ cからの電気
信号にてポンプPa’b’E駆動させる。なお、ポンプ
P4/bの駆動制御に替えて加熱回路L4g、に短絡回
路および三方切換弁を設け、ポンプp4tbは常時駆動
として該三方切換弁の開閉を温度センサ4’cからの電
気信号にて制御することもできる。
Note that the auxiliary heat source 4'b') can also be used as a boiler to directly heat the heat medium. 4'f is a temperature relay, and when the temperature θT of the heat medium in the storage tank 4' falls below a predetermined temperature, the pump Pa'b'E is driven by an electric signal from the temperature sensor 4'c. In addition, instead of controlling the drive of the pump P4/b, a short circuit and a three-way switching valve are provided in the heating circuit L4g, and the pump p4tb is constantly driven, and the opening and closing of the three-way switching valve is controlled by an electric signal from the temperature sensor 4'c. It can also be controlled.

従って、ストレージタンク4′内の熱媒体の温度θTは
、太陽熱コレクター4′’aまたは補助熱源4’bの加
熱によって所定の温度に保持されて、第1実施例におけ
る高熱#t4の代替えとして実施に供せられる。
Therefore, the temperature θT of the heat medium in the storage tank 4' is maintained at a predetermined temperature by heating the solar collector 4''a or the auxiliary heat source 4'b, and is implemented as an alternative to the high heat #t4 in the first embodiment. It is offered to

なお、複数個の本装置を並列に配置して、一つの冷房・
冷凍装置の熱交換器に熱媒体を供給してもよく、才た、
一つの本装置で得られた低温の熱媒体を他の本装置の低
熱源となるように直列に配置して使用してもよい。
In addition, multiple units of this device can be arranged in parallel to create a single cooling system.
It can also be used to supply heat medium to the heat exchanger of refrigeration equipment.
A low-temperature heat medium obtained by one device may be used by arranging it in series to serve as a low heat source for another device.

(発明の効果) 以上の説明から理解されるように、この発明によれは下
記の効果を有する。
(Effects of the Invention) As understood from the above explanation, the present invention has the following effects.

(1)反応槽内の水素貯蔵合金の反応熱と熱媒体との熱
交換がヒートパイプによる潜熱利用でなされるので、従
来の頭熱利用に比して熱交換量を大巾に増大できる。
(1) Since heat exchange between the reaction heat of the hydrogen storage alloy in the reaction tank and the heat medium is performed by utilizing latent heat using a heat pipe, the amount of heat exchange can be greatly increased compared to conventional head heat utilization.

(2)サイクル時間が短縮され、冷房・冷凍装置の熱交
換器の熱媒体から奮う単位時間当たりの熱量を大巾に増
大できる。
(2) The cycle time is shortened, and the amount of heat per unit time extracted from the heat medium of the heat exchanger of the cooling/freezing device can be greatly increased.

(3)成績係数が大となり、所定の冷房・冷凍熱量を得
るために必要な水素貯蔵合金量が減少し、該合金の費用
を低減できる。
(3) The coefficient of performance becomes large, the amount of hydrogen storage alloy required to obtain a predetermined amount of cooling/freezing heat is reduced, and the cost of the alloy can be reduced.

(4)  太陽熱を利用することによって、高熱源の電
力費または燃料費を節約できる。
(4) By using solar heat, electricity costs or fuel costs for high heat sources can be saved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る水素貯蔵合金を利用したヒート
パイプ式冷房・冷凍装置の第1実施例の機器配置を示す
図、第2図は、同装置に使用される反応槽の一部を切開
した斜視図、第3図は、本発明に係る水素貯蔵合金を利
用したヒートパイプ式冷房・冷凍装置の第2実施例の機
器配置を示す図、第4図は、従来の水素貯蔵合金を利用
したヒートパイプ式冷房φ冷凍装置の機器配置を示す図
、第5図は、従来の反応槽の一部断面図、第6図は、水
素貯蔵合金の水垢吸収、放出によるヒートポンプの圧カ
一温度特性佛図、第7図は、低温側反応槽の熱交換手段
の出口の熱媒体の温度一時間特性を示す線図である。 1:高温側反応槽、1a:合金充填室、1b:熱媒体室
、IC:仕切板、2:低温側反応槽、2a:合金充填室
、2b:熱媒体室、2C:仕切板、3:水素流通路、4
:高熱源、4′=(高熱源に該尚する)ストレージタン
ク、4′a :太陽熱コレクター、4’b:補助熱源、
4’c 、 4’d :温度センサ、4′e:比較器、
4′f:温度リレー、7:低熱源、9:冷房・冷凍装置
の熱交換器、10.10’:ヒートパイプ、M:高温側
水素貯蔵合金、M′:低温側水素貯蔵合金、L4:低高
温往き回路(熱媒体循環路)、L’4:低范1図 第5図 第6図 第7図 時叩
Figure 1 is a diagram showing the equipment layout of a first embodiment of a heat pipe type cooling/refrigeration system using a hydrogen storage alloy according to the present invention, and Figure 2 is a part of a reaction tank used in the system. FIG. 3 is a diagram showing the equipment arrangement of a second embodiment of the heat pipe type cooling/refrigeration device using the hydrogen storage alloy according to the present invention, and FIG. 4 is a perspective view of the conventional hydrogen storage alloy. Fig. 5 is a partial cross-sectional view of a conventional reaction tank, and Fig. 6 shows the pressure of the heat pump due to limescale absorption and release from the hydrogen storage alloy. FIG. 7 is a diagram showing the one-hour temperature characteristic of the heat medium at the outlet of the heat exchange means of the low-temperature side reaction tank. 1: High temperature side reaction tank, 1a: Alloy filling chamber, 1b: Heat medium chamber, IC: Partition plate, 2: Low temperature side reaction tank, 2a: Alloy filling chamber, 2b: Heat medium chamber, 2C: Partition plate, 3: Hydrogen flow path, 4
: High heat source, 4'=Storage tank (corresponding to high heat source), 4'a: Solar heat collector, 4'b: Auxiliary heat source,
4'c, 4'd: temperature sensor, 4'e: comparator,
4'f: Temperature relay, 7: Low heat source, 9: Heat exchanger for cooling/refrigeration equipment, 10.10': Heat pipe, M: High temperature side hydrogen storage alloy, M': Low temperature side hydrogen storage alloy, L4: Low and high temperature circuit (heat medium circulation path), L'4: Low capacity 1 Fig. 5 Fig. 6 Fig. 7 Time stroke

Claims (2)

【特許請求の範囲】[Claims] (1)低温側反応槽に、低温側水素貯蔵合金を充填した
合金充填室と、合金充填室と区画した熱媒体室とを設け
、熱媒体室をポンプおよびバルブを設けて低熱源に接続
する熱媒体循環路中に介在させ、かつ合金充填室と熱媒
体室との間にヒートパイプを配置し、高温側反応槽に、
高温側水素貯蔵合金を充填した合金充填室と、合金充填
室と区画した熱媒体室とを設け、熱媒体室を、ポンプお
よびバルブを設けて高熱源および低熱源に接続する熱媒
体循環路中に介在させ、かつ合金充填室と熱媒体室との
間にヒートパイプを配置し、前記両合金充填室を水素流
通路で接続し、かつ低温側反応槽の熱媒体室を、バルブ
およびポンプを設けた熱媒体循環路にて冷房装置または
冷凍装置の熱交換器に接続したことを特徴とする水素貯
蔵合金を利用したヒートパイプ式冷房・冷凍装置。
(1) The low-temperature side reaction tank is provided with an alloy filling chamber filled with a low-temperature side hydrogen storage alloy and a heat medium chamber separated from the alloy filling chamber, and the heat medium chamber is connected to a low heat source by providing a pump and a valve. A heat pipe is interposed in the heat medium circulation path and between the alloy filling chamber and the heat medium chamber, and the heat pipe is placed in the high temperature side reaction tank.
An alloy filling chamber filled with a hydrogen storage alloy on the high temperature side and a heating medium chamber separated from the alloy filling chamber are provided, and the heating medium chamber is connected to a high heat source and a low heat source by providing a pump and a valve. and a heat pipe is arranged between the alloy filling chamber and the heating medium chamber, the two alloy filling chambers are connected by a hydrogen flow passage, and the heating medium chamber of the low temperature side reaction tank is connected to a valve and a pump. A heat pipe type cooling/freezing device using a hydrogen storage alloy, characterized in that it is connected to a heat exchanger of a cooling device or a refrigeration device through a heat medium circulation path provided therein.
(2)低温側反応槽に、低温側水素貯蔵合金を充填した
合金充填室と、合金充填室と区画した熱媒体室とを設け
、熱媒体室をポンプおよびバルブを設けて低熱源に接続
する熱媒体循環路中に介在させ、かつ合金充填室と熱媒
体室との間にヒートパイプを配置し、高温側反応槽に、
高温側水素貯蔵合金を充填した合金充填室と、合金充填
室と区画した熱媒体室とを設け、熱媒体室を、ポンプお
よびバルブを設けて高熱源および低熱源に接続する熱媒
体循環路中に介在させ、かつ合金充填室と熱媒体室との
間にヒートパイプを配置し、前記両合金充填室を水素流
通路で接続し、かつ低温側反応槽の熱媒体室を、バルブ
およびポンプを設けた熱媒体循環路にて冷房装置または
冷凍装置の熱交換器に接続した水素貯蔵合金を利用した
ヒートパイプ式冷房・冷凍装置において、高熱源として
熱媒体のストレージタンクを設け、該ストレージタンク
を太陽熱コレクターに熱媒体循環路にて接続し、太陽熱
コレクターの出口付近とストレージタンクとに温度セン
サを設け、該両温度センサからの電気信号値を比較して
熱媒体循環路を流通する熱媒体の流量制御を行うと共に
該ストレージタンクの熱媒体を加熱する補助熱源を設け
たことを特徴とする水素貯蔵合金を利用したヒートパイ
プ式冷房・冷凍装置。
(2) The low-temperature side reaction tank is provided with an alloy filling chamber filled with a low-temperature side hydrogen storage alloy and a heat medium chamber separated from the alloy filling chamber, and the heat medium chamber is connected to a low heat source by providing a pump and a valve. A heat pipe is interposed in the heat medium circulation path and between the alloy filling chamber and the heat medium chamber, and the heat pipe is placed in the high temperature side reaction tank.
An alloy filling chamber filled with a hydrogen storage alloy on the high temperature side and a heating medium chamber separated from the alloy filling chamber are provided, and the heating medium chamber is connected to a high heat source and a low heat source by providing a pump and a valve. and a heat pipe is arranged between the alloy filling chamber and the heating medium chamber, the two alloy filling chambers are connected by a hydrogen flow passage, and the heating medium chamber of the low temperature side reaction tank is connected to a valve and a pump. In a heat pipe type cooling/refrigeration system using a hydrogen storage alloy connected to a heat exchanger of an air conditioner or refrigeration system through a heat medium circulation path provided, a heat medium storage tank is provided as a high heat source, and the storage tank is It is connected to the solar heat collector through a heat medium circulation path, and temperature sensors are installed near the outlet of the solar heat collector and in the storage tank, and the electric signal values from both temperature sensors are compared to determine the temperature of the heat medium flowing through the heat medium circulation path. A heat pipe type cooling/freezing device using a hydrogen storage alloy, characterized in that it controls the flow rate and is provided with an auxiliary heat source that heats the heat medium in the storage tank.
JP60028338A 1985-02-18 1985-02-18 Heat pipe type cooling and refrigerating device utilizing hydrogen storage alloy Pending JPS61190261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60028338A JPS61190261A (en) 1985-02-18 1985-02-18 Heat pipe type cooling and refrigerating device utilizing hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60028338A JPS61190261A (en) 1985-02-18 1985-02-18 Heat pipe type cooling and refrigerating device utilizing hydrogen storage alloy

Publications (1)

Publication Number Publication Date
JPS61190261A true JPS61190261A (en) 1986-08-23

Family

ID=12245817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60028338A Pending JPS61190261A (en) 1985-02-18 1985-02-18 Heat pipe type cooling and refrigerating device utilizing hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JPS61190261A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246170A (en) * 1985-08-26 1987-02-28 三洋電機株式会社 Heat transfer device
JPH02150676A (en) * 1988-11-30 1990-06-08 Fujikura Ltd Module for heating and cooling utilizing hydrogen occluding alloy
JP2002543360A (en) * 1999-02-26 2002-12-17 テンプラ テクノロジー,インコーポレーテッド Preparation of heat sink material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246170A (en) * 1985-08-26 1987-02-28 三洋電機株式会社 Heat transfer device
JPH044510B2 (en) * 1985-08-26 1992-01-28
JPH02150676A (en) * 1988-11-30 1990-06-08 Fujikura Ltd Module for heating and cooling utilizing hydrogen occluding alloy
JP2002543360A (en) * 1999-02-26 2002-12-17 テンプラ テクノロジー,インコーポレーテッド Preparation of heat sink material

Similar Documents

Publication Publication Date Title
JP6689801B2 (en) Solar air conditioning system
JPS61201996A (en) Heat-pipe type hydrogen storage device
KR100832851B1 (en) Latent heat storage type heat storage system for fuel cell using phase change materials
JPH031600B2 (en)
JPS6134335A (en) Waste heat utilization system for engine and absorption-type water heating/cooling unit
JPS61190261A (en) Heat pipe type cooling and refrigerating device utilizing hydrogen storage alloy
CN209016227U (en) The pump of semiconductor temperature for electric vehicle drives the two-phase circulatory system
EP0216629B1 (en) Air-cooled absorption type water cooling/heating apparatus
TW201319492A (en) Heat recovered cooling system
CN109149013A (en) The pump of semiconductor temperature for electric vehicle drives the two-phase circulatory system and its control method
JPS61119945A (en) Heat pipe type heating device utilizing hydrogen occlusion alloy
JP3031553B2 (en) Heat recovery device using latent heat recovery unit
JPS58150733A (en) Solar cooling/heating device
JPH0355752B2 (en)
JP3744689B2 (en) Co-generation system
JP3244774B2 (en) Automatic cooling / heating switching method and apparatus in absorption chiller / heater
JP3813340B2 (en) Heat utilization system using hydrogen storage alloy
JP3734949B2 (en) Heat utilization system container using hydrogen storage alloy and method of filling hydrogen into the container
JPH0768891B2 (en) Cogeneration system
JPH0220913B2 (en)
JP2703360B2 (en) Heat-driven chiller using metal hydride
JPS60569Y2 (en) Air conditioning equipment
JPS61129317A (en) Heater with heat accumulating system for automobile
JPH0744917Y2 (en) Absorption chiller / heater device
JP2543258B2 (en) Absorption heat source device