JPH10125813A - Nonvolatile semiconductor storage device and manufacture thereof - Google Patents

Nonvolatile semiconductor storage device and manufacture thereof

Info

Publication number
JPH10125813A
JPH10125813A JP8293363A JP29336396A JPH10125813A JP H10125813 A JPH10125813 A JP H10125813A JP 8293363 A JP8293363 A JP 8293363A JP 29336396 A JP29336396 A JP 29336396A JP H10125813 A JPH10125813 A JP H10125813A
Authority
JP
Japan
Prior art keywords
film
nitride film
nonvolatile semiconductor
memory device
semiconductor memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8293363A
Other languages
Japanese (ja)
Other versions
JP3818402B2 (en
Inventor
Shunichi Yoshikoshi
俊一 吉越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP29336396A priority Critical patent/JP3818402B2/en
Publication of JPH10125813A publication Critical patent/JPH10125813A/en
Application granted granted Critical
Publication of JP3818402B2 publication Critical patent/JP3818402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a superior memory hold characteristic even if the device is finely formed. SOLUTION: SiN films 14, 16 for trapping charges at trapping levels in the interface between SiO2 films 11, 13 to store information include an SiO2 film 15. This increases the areas of the interfaces between the SiN films 14, 16 and SiO2 films 11, 13, 15 and also trapped charge quantity and many deep trapping levels due to O in the SiN films 14, 16 are formed to make hard the spontaneous emission of the trapped charges.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願の発明は、窒化膜と酸化
膜との界面における捕獲準位に電荷を捕獲することによ
って情報を記憶する不揮発性半導体記憶装置及びその製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonvolatile semiconductor memory device for storing information by capturing charges at a trap level at an interface between a nitride film and an oxide film, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】情報を電気的に書き換えることができ且
つ電源を切っても情報を保持することができる不揮発性
半導体記憶装置の一種として、絶縁膜と酸化膜との界面
に存在する捕獲準位に電荷を捕獲してトランジスタの閾
値電圧をシフトさせることによって情報を記憶する不揮
発性半導体記憶装置がある。
2. Description of the Related Art As one type of a nonvolatile semiconductor memory device capable of electrically rewriting information and retaining information even when power is turned off, a trap level existing at an interface between an insulating film and an oxide film is known. There is a nonvolatile semiconductor memory device that stores information by capturing electric charges and shifting the threshold voltage of a transistor.

【0003】この不揮発性半導体記憶装置はMIOS
(Metal Insulator Oxide Semiconductor )型やMOI
OS(Metal Oxide Insulator Oxide Semiconductor )
型と称されているが、絶縁膜としては主に窒化膜が用い
られているので、これらは、特に、MNOS型やMON
OS型と称されている。
[0003] This nonvolatile semiconductor memory device is a MIOS.
(Metal Insulator Oxide Semiconductor) type and MOI
OS (Metal Oxide Insulator Oxide Semiconductor)
Although these are referred to as molds, nitride films are mainly used as insulating films.
It is called OS type.

【0004】図2は、MONOS型の不揮発性半導体記
憶装置の一従来例を示している。この一従来例では、S
i基板(図示せず)上に、厚さが2nmであるトンネル
用のSiO2 膜11と、厚さが8nmであるSiN膜1
2と、厚さが4nmであるSiO2 膜13とが順次に積
層されており、更に、このSiO2 膜13上にゲート電
極としての多結晶Si膜(図示せず)等が形成されてい
る。
FIG. 2 shows a conventional example of a MONOS type nonvolatile semiconductor memory device. In this conventional example, S
An SiO 2 film 11 for tunnel having a thickness of 2 nm and a SiN film 1 having a thickness of 8 nm are formed on an i-substrate (not shown).
2 and an SiO 2 film 13 having a thickness of 4 nm are sequentially laminated, and a polycrystalline Si film (not shown) or the like as a gate electrode is formed on the SiO 2 film 13. .

【0005】[0005]

【発明が解決しようとする課題】ところが、MNOS型
やMONOS型の不揮発性半導体記憶装置では、大容量
化のための微細化や低消費電力化のための低電圧動作化
に伴って、1ビット当たりの面積やSiN膜12等の厚
さが減少してきている。この結果、SiN膜12とSi
2 膜11、13との界面の面積が減少すると共にSi
N膜12中に含まれる捕獲準位量も減少することによっ
て、捕獲電荷量が減少して記憶保持特性が低下してい
た。
However, in the MNOS and MONOS nonvolatile semiconductor memory devices, one bit is required in accordance with miniaturization for large capacity and low voltage operation for low power consumption. The area per contact and the thickness of the SiN film 12 and the like are decreasing. As a result, the SiN film 12 and Si
The area of the interface with the O 2 films 11 and 13 is reduced and Si
Since the amount of trap levels contained in the N film 12 also decreased, the amount of trapped charges decreased, and the memory retention characteristics deteriorated.

【0006】[0006]

【課題を解決するための手段】本願の発明による不揮発
性半導体記憶装置は、窒化膜と酸化膜との界面における
捕獲準位に電荷を捕獲することによって情報を記憶する
不揮発性半導体記憶装置において、前記窒化膜中に酸化
膜が含まれていることを特徴としている。
According to the present invention, there is provided a nonvolatile semiconductor memory device for storing information by capturing electric charges at a trap level at an interface between a nitride film and an oxide film. An oxide film is included in the nitride film.

【0007】本願の発明による不揮発性半導体記憶装置
は、前記窒化膜中の前記酸化膜が前記界面に沿って連続
的に広がっていてもよい。
In the nonvolatile semiconductor memory device according to the present invention, the oxide film in the nitride film may continuously spread along the interface.

【0008】本願の発明による不揮発性半導体記憶装置
は、前記窒化膜中の前記酸化膜が前記界面に沿って離散
的に広がっていてもよい。
[0008] In the nonvolatile semiconductor memory device according to the present invention, the oxide film in the nitride film may be discretely spread along the interface.

【0009】本願の発明による不揮発性半導体記憶装置
は、前記窒化膜中の前記酸化膜が前記窒化膜と交互に積
層された状態の複数層であってもよい。
In the nonvolatile semiconductor memory device according to the present invention, a plurality of layers in which the oxide film in the nitride film is alternately stacked with the nitride film may be provided.

【0010】本願の発明による不揮発性半導体記憶装置
の製造方法は、窒化膜と酸化膜との界面における捕獲準
位に電荷を捕獲することによって情報を記憶する不揮発
性半導体記憶装置の製造方法において、前記窒化膜中に
酸化膜を形成することを特徴としている。
A method for manufacturing a nonvolatile semiconductor memory device according to the present invention is directed to a method for manufacturing a nonvolatile semiconductor memory device for storing information by capturing electric charges at a trap level at an interface between a nitride film and an oxide film. An oxide film is formed in the nitride film.

【0011】本願の発明による不揮発性半導体記憶装置
の製造方法は、前記窒化膜とこの窒化膜中の前記酸化膜
とを順次に堆積させて形成してもよい。
The method of manufacturing a nonvolatile semiconductor memory device according to the present invention may be formed by sequentially depositing the nitride film and the oxide film in the nitride film.

【0012】本願の発明による不揮発性半導体記憶装置
の製造方法は、前記窒化膜の表面を酸化することによっ
てこの窒化膜中の前記酸化膜を形成してもよい。
In the method of manufacturing a nonvolatile semiconductor memory device according to the present invention, the oxide film in the nitride film may be formed by oxidizing a surface of the nitride film.

【0013】本願の発明による不揮発性半導体記憶装置
の製造方法は、前記窒化膜中にイオン注入した酸素によ
って前記窒化膜中の前記酸化膜を形成してもよい。
In the method of manufacturing a nonvolatile semiconductor memory device according to the present invention, the oxide film in the nitride film may be formed by oxygen ion-implanted in the nitride film.

【0014】本願の発明による不揮発性半導体記憶装置
の製造方法は、前記イオン注入を点状に行ってもよい。
In the method of manufacturing a nonvolatile semiconductor memory device according to the invention of the present application, the ion implantation may be performed in a dot shape.

【0015】本願の発明による不揮発性半導体記憶装置
では、窒化膜中に酸化膜が含まれているので、同じ平面
的な面積で比べると、窒化膜と酸化膜との界面の面積が
広くて、捕獲電荷量が多い。しかも、窒化膜中の酸素に
起因する深い捕獲準位も多く形成されているので、捕獲
された電荷が自然放出されにくい。
In the nonvolatile semiconductor memory device according to the present invention, since the oxide film is contained in the nitride film, the area of the interface between the nitride film and the oxide film is large when compared with the same planar area. Large amount of trapped charge. In addition, since many trap levels due to oxygen in the nitride film are also formed, the trapped charges are not easily released spontaneously.

【0016】また、窒化膜中の酸化膜がそれらの界面に
沿って離散的に広がっていれば、窒化膜中の酸化物の含
有量が同じでも、窒化膜と酸化膜との界面の面積が更に
広くて、捕獲電荷量が更に多い。
If the oxide film in the nitride film is discretely spread along the interface between them, the area of the interface between the nitride film and the oxide film is increased even if the oxide content in the nitride film is the same. Wider and more trapped charge.

【0017】また、窒化膜中の酸化膜が窒化膜と交互に
積層された状態の複数層であれば、同じ平面的な面積で
比べると、窒化膜と酸化膜との界面の面積が更に広く
て、捕獲電荷量が更に多い。
Further, if the oxide film in the nitride film is a plurality of layers alternately stacked with the nitride film, the area of the interface between the nitride film and the oxide film becomes wider as compared with the same planar area. Therefore, the amount of trapped charges is even larger.

【0018】本願の発明による不揮発性半導体記憶装置
の製造方法では、窒化膜中に酸化膜を形成しているの
で、同じ平面的な面積が比べると、窒化膜と酸化膜との
界面の面積を広くして、捕獲電荷量を多くすることがで
きる。しかも、窒化膜中の酸素に起因する深い捕獲準位
も多く形成されるので、捕獲された電荷が自然放出され
にくくすることができる。
In the method of manufacturing a nonvolatile semiconductor memory device according to the present invention, since the oxide film is formed in the nitride film, the area of the interface between the nitride film and the oxide film can be reduced in comparison with the same planar area. By making it wider, the amount of trapped charges can be increased. In addition, since many deep trap levels due to oxygen in the nitride film are also formed, the trapped charges can be hardly released spontaneously.

【0019】また、窒化膜中に酸化膜を形成する際に酸
素を窒化膜中に点状にイオン注入すれば、窒化膜との界
面に沿って離散的に広がる酸化膜を形成することができ
るので、イオン注入する酸素の量が同じでも、窒化膜と
酸化膜との界面の面積を更に広くして、捕獲電荷量を更
に多くすることができる。
Further, when oxygen is ion-implanted into the nitride film in a dotted manner when forming the oxide film in the nitride film, an oxide film which spreads discretely along the interface with the nitride film can be formed. Therefore, even if the amount of oxygen to be ion-implanted is the same, the area of the interface between the nitride film and the oxide film can be further increased, and the trapped charge amount can be further increased.

【0020】[0020]

【発明の実施の形態】以下、本願の発明の第1及び第2
実施形態を、図1を参照しながら説明する。第1実施形
態では、例えば、抵抗加熱型の熱処理炉にO2 /N2
300SCCM/10SLMのガスを供給してSi基板
(図示せず)を希釈酸化することによって、このSi基
板の表面に厚さが2nmのSiO2 膜11を形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the first and second embodiments of the present invention will be described.
An embodiment will be described with reference to FIG. In the first embodiment, for example, O 2 / N 2 =
By supplying 300 SCCM / 10 SLM gas to dilute and oxidize a Si substrate (not shown), a SiO 2 film 11 having a thickness of 2 nm is formed on the surface of the Si substrate.

【0021】次に、例えば、抵抗加熱型の減圧CVD装
置にNH3 /SiH2 Cl2 =2000SCCM/50
SCCMのガスを70Paで供給し、760℃、2分間
の堆積を行って、厚さが3nmのSiN膜14をSiO
2 膜11上に形成する。なお、減圧CVD装置にロード
ロック機構を設けておいて、CVD炉内へSi基板を挿
入する際は真空搬送を行い、且つ、純度の高いガスを用
いることによって、酸素や炭化水素がSiN膜14中に
混入することを極力避ける様にする。
Next, for example, NH 3 / SiH 2 Cl 2 = 2000 SCCM / 50 is applied to a resistance heating type low pressure CVD apparatus.
An SCCM gas is supplied at 70 Pa, deposition is performed at 760 ° C. for 2 minutes, and a 3 nm-thick SiN film 14 is
2 Formed on the film 11. In addition, a load lock mechanism is provided in the low pressure CVD apparatus, and when inserting the Si substrate into the CVD furnace, vacuum transfer is performed and high purity gas is used so that oxygen and hydrocarbon can be removed from the SiN film 14. Avoid mixing in as much as possible.

【0022】また、上述の堆積時の温度が比較的高温で
あるので、SiN膜14中への水素の混入も比較的抑制
されている。以上の条件によって、膜質が均一で、緻密
で、不純物や構造欠陥の少ないSiN膜14を形成する
ことができる。この様なSiN膜14では、不純物や構
造欠陥を介したリーク電流が少なくて、記憶保持特性を
向上させることができる。
Further, since the above-mentioned deposition temperature is relatively high, the incorporation of hydrogen into the SiN film 14 is also relatively suppressed. Under the above conditions, it is possible to form the SiN film 14 which is uniform, dense, and has few impurities and structural defects. In such a SiN film 14, the leakage current via impurities and structural defects is small, and the memory retention characteristics can be improved.

【0023】次に、例えば、抵抗加熱型の減圧CVD装
置にN2 O/SiH2 Cl2 =200SCCM/100
0SCCMのガスを70Paで供給し、800℃、5分
間の堆積を行って、厚さが1nmのSiO2 膜15をS
iN膜14上に形成する。そして、SiN膜14を形成
した場合と同じ条件で、厚さが3nmのSiN膜16を
SiO2 膜15上に形成する。
Next, for example, N 2 O / SiH 2 Cl 2 = 200 SCCM / 100 is applied to a resistance heating type low pressure CVD apparatus.
A gas of 0 SCCM is supplied at 70 Pa, deposition is performed at 800 ° C. for 5 minutes, and the SiO 2 film 15 having a thickness of 1 nm is
It is formed on the iN film 14. Then, a 3 nm-thickness SiN film 16 is formed on the SiO 2 film 15 under the same conditions as those for forming the SiN film 14.

【0024】その後、堆積時間を20分にすること以外
はSiO2 膜15を形成した場合と同じ条件で、厚さが
4nmのSiO2 膜13をSiN膜16上に形成する。
そして、更に、ゲート電極等を従来公知の工程で形成し
て、この不揮発性半導体記憶装置を完成させる。
Thereafter, an SiO 2 film 13 having a thickness of 4 nm is formed on the SiN film 16 under the same conditions as in the case of forming the SiO 2 film 15 except that the deposition time is set to 20 minutes.
Then, a gate electrode and the like are further formed by a conventionally known process to complete the nonvolatile semiconductor memory device.

【0025】SiO2 膜11、13、15及びSiN膜
14、16は巨視的には非晶質であるが、微視的には何
れも規則的な構造を有しており、それらの界面には、結
晶格子の様な構造欠陥が生じていて、この構造欠陥に起
因する捕獲準位が形成されている。
The SiO 2 films 11, 13, 15 and the SiN films 14, 16 are macroscopically amorphous, but microscopically all have a regular structure. Has a structural defect such as a crystal lattice, and a trap level due to this structural defect is formed.

【0026】また、窒化膜内の酸素に起因して深い捕獲
準位の形成されることが報告されており(V.J.Kapoor a
nd S.B.Bibyk,"Energy distribution and electron tra
pping defects in thick-oxide MNOS structures",in"T
he Physics of MOS Insulators",edited by G.Lucousky
et al.(Pergamon,New York,1980)p.117)、SiO2
11、13、15とSiN膜14、16との界面には、
この深い捕獲準位も形成されている。
It has also been reported that a deep trap level is formed due to oxygen in a nitride film (VJ Kapoor a.
nd SBBibyk, "Energy distribution and electron tra
pping defects in thick-oxide MNOS structures ", in" T
he Physics of MOS Insulators ", edited by G. Lucousky
et al. (Pergamon, New York, 1980) p. 117), at the interface between the SiO 2 films 11, 13, 15 and the SiN films 14, 16,
This deep trap level is also formed.

【0027】しかも、深い捕獲準位に捕獲された電荷が
そこから脱出するためには、より大きなエネルギーが必
要であるので、深い捕獲準位に捕獲された電荷は自然放
出されにくい。このことは、一旦記憶された情報が失わ
れにくいことを意味しており、このことによっても記憶
保持特性を向上させることができる。
Moreover, since the charge trapped in the deep trap level needs more energy in order to escape therefrom, the charge trapped in the deep trap level is unlikely to be spontaneously released. This means that the information once stored is hard to be lost, and this can also improve the storage retention characteristics.

【0028】次に、第2実施形態を説明する。この第2
実施形態も、SiN膜16の堆積に先立って、例えば、
ランプ加熱型の熱処理装置にNH3 を1SLMで供給し
て、SiO2 膜15の表面に対して1000℃、1分間
の高速熱窒化を行うことを除いて、上述の第1実施形態
と実質的に同様の工程を実行する。
Next, a second embodiment will be described. This second
In the embodiment, for example, prior to the deposition of the SiN film 16, for example,
Except that NH 3 is supplied at 1 SLM to the heat treatment apparatus of the lamp heating type and the surface of the SiO 2 film 15 is subjected to high-speed thermal nitridation at 1000 ° C. for 1 minute, substantially the same as the above-described first embodiment. A similar process is performed.

【0029】この様な熱窒化を行うと、次に行うSiN
膜16の堆積に際して、堆積初期のSiO2 膜15の表
面における堆積種のマイグレーション等に起因するSi
N膜16の表面荒れが抑制される。この結果、より膜質
が均一で、より緻密なSiN膜16を形成することがで
きて、記憶保持特性を更に向上させることができる。
When such thermal nitriding is performed, SiN to be performed next is performed.
When depositing the film 16, Si caused by migration of deposited species on the surface of the SiO 2 film 15 in the initial stage of the deposition.
The surface roughness of the N film 16 is suppressed. As a result, a denser SiN film 16 having a more uniform film quality can be formed, and the memory retention characteristics can be further improved.

【0030】なお、以上の第1及び第2実施形態では、
図1に示した様に、SiN膜14、16の間に単層のS
iO2 膜15が含まれているだけであるが、SiN膜と
SiO2 膜とが交互に積層された状態でSiN膜の間に
複数層のSiO2 膜が含まれていてもよい。
In the first and second embodiments described above,
As shown in FIG. 1, a single layer of S is formed between the SiN films 14 and 16.
Although only the iO 2 film 15 is included, a plurality of SiO 2 films may be included between the SiN films in a state where the SiN films and the SiO 2 films are alternately stacked.

【0031】また、以上の第1及び第2実施形態では、
SiO2 膜11上のSiN膜14、16及びSiO2
13、15の総てを堆積によって形成したが、例えばS
iN膜14の表面を熱酸化することによってSiO2
15を形成してもよく、SiN膜14、16中に酸素を
多量にイオン注入した後に熱処理を行うことによってS
iO2 膜15を形成してもよい。
In the first and second embodiments,
All of the SiN films 14, 16 and the SiO 2 films 13, 15 on the SiO 2 film 11 were formed by deposition.
The SiO 2 film 15 may be formed by thermally oxidizing the surface of the iN film 14, and heat treatment is performed after a large amount of oxygen is ion-implanted into the SiN films 14 and 16.
An iO 2 film 15 may be formed.

【0032】更に、SiN膜14、16中に酸素をイオ
ン注入する際に、SiN膜14、16の全面に対してイ
オン注入を行うのではなく点状に行えば、SiN膜1
4、16との界面に沿って離散的に広がるSiO2 膜1
5を形成することができるので、イオン注入する酸素の
量が同じでも、SiN膜14、16とSiO2 膜15と
の界面の面積を更に広くして、捕獲電荷量を更に多くす
ることができる。
Further, when oxygen is ion-implanted into the SiN films 14 and 16, the ion implantation is not performed on the entire surfaces of the SiN films 14 and 16 but is performed in a dot-like manner.
SiO 2 film 1 discretely spreads along the interface with 4 and 16
5, it is possible to further increase the area of the interface between the SiN films 14, 16 and the SiO 2 film 15 and to further increase the trapped charge amount, even if the amount of oxygen to be ion-implanted is the same. .

【0033】[0033]

【発明の効果】本願の発明による不揮発性半導体記憶装
置では、同じ平面的な面積で比べると捕獲電荷量が多
く、しかも、捕獲された電荷が自然放出されにくいの
で、微細化されていても記憶保持特性が優れている。
In the nonvolatile semiconductor memory device according to the present invention, the amount of trapped charges is large compared to the same planar area, and the trapped charges are unlikely to be released spontaneously. Excellent retention characteristics.

【0034】また、窒化膜中の酸化膜がそれらの界面に
沿って離散的に広がっていれば、捕獲電荷量が更に多い
ので、記憶保持特性が更に優れている。
Further, if the oxide films in the nitride film are spread discretely along their interfaces, the amount of trapped charges is further increased, so that the memory retention characteristics are further improved.

【0035】また、窒化膜中の酸化膜が窒化膜と交互に
積層された状態の複数層であれば、捕獲電荷量が更に多
いので、記憶保持特性が更に優れている。
If the oxide film in the nitride film is a plurality of layers alternately stacked with the nitride film, the amount of trapped charges is further increased, so that the memory retention characteristics are further improved.

【0036】本願の発明による不揮発性半導体記憶装置
の製造方法では、同じ平面的な面積が比べると捕獲電荷
量を多くすることができ、しかも、捕獲された電荷が自
然放出されにくくすることができるので、微細化されて
いても記憶保持特性が優れている不揮発性半導体記憶装
置を製造することができる。
In the method of manufacturing a nonvolatile semiconductor memory device according to the present invention, the amount of trapped charges can be increased as compared with the same planar area, and the trapped charges can be made less likely to be spontaneously released. Therefore, it is possible to manufacture a nonvolatile semiconductor memory device which has excellent memory retention characteristics even if it is miniaturized.

【0037】また、窒化膜中に酸化膜を形成する際に酸
素を窒化膜中に点状にイオン注入すれば、捕獲電荷量が
更に多くすることができるので、記憶保持特性が更に優
れている不揮発性半導体記憶装置を製造することができ
る。
Further, when oxygen is ion-implanted into the nitride film at the time of forming the oxide film in the nitride film, the amount of trapped charges can be further increased, so that the memory retention characteristics are further improved. A non-volatile semiconductor storage device can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願の発明の第1及び第2実施形態の要部の側
断面図である。
FIG. 1 is a side sectional view of a main part of first and second embodiments of the present invention.

【図2】本願の発明の一従来例の要部の側断面図であ
る。
FIG. 2 is a side sectional view of a main part of a conventional example of the present invention.

【符号の説明】[Explanation of symbols]

11、13、15 SiO2 膜 14、16 S
iN膜
11, 13, 15 SiO 2 film 14, 16 S
iN film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 27/115 ──────────────────────────────────────────────────の Continued on front page (51) Int.Cl. 6 Identification code FI H01L 27/115

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 窒化膜と酸化膜との界面における捕獲準
位に電荷を捕獲することによって情報を記憶する不揮発
性半導体記憶装置において、 前記窒化膜中に酸化膜が含まれていることを特徴とする
不揮発性半導体記憶装置。
1. A non-volatile semiconductor memory device which stores information by capturing electric charges at a trap level at an interface between a nitride film and an oxide film, wherein the nitride film includes an oxide film. Nonvolatile semiconductor memory device.
【請求項2】 前記窒化膜中の前記酸化膜が前記界面に
沿って連続的に広がっていることを特徴とする請求項1
記載の不揮発性半導体記憶装置。
2. The semiconductor device according to claim 1, wherein said oxide film in said nitride film continuously spreads along said interface.
14. The nonvolatile semiconductor memory device according to claim 1.
【請求項3】 前記窒化膜中の前記酸化膜が前記界面に
沿って離散的に広がっていることを特徴とする請求項1
記載の不揮発性半導体記憶装置。
3. The semiconductor device according to claim 1, wherein said oxide film in said nitride film is discretely spread along said interface.
14. The nonvolatile semiconductor memory device according to claim 1.
【請求項4】 前記窒化膜中の前記酸化膜が前記窒化膜
と交互に積層された状態の複数層であることを特徴とす
る請求項1記載の不揮発性半導体記憶装置。
4. The nonvolatile semiconductor memory device according to claim 1, wherein said oxide film in said nitride film is a plurality of layers alternately stacked with said nitride film.
【請求項5】 窒化膜と酸化膜との界面における捕獲準
位に電荷を捕獲することによって情報を記憶する不揮発
性半導体記憶装置の製造方法において、 前記窒化膜中に酸化膜を形成することを特徴とする不揮
発性半導体記憶装置の製造方法。
5. A method for manufacturing a nonvolatile semiconductor memory device in which information is stored by capturing electric charge at a trap level at an interface between a nitride film and an oxide film, wherein an oxide film is formed in the nitride film. A method for manufacturing a nonvolatile semiconductor memory device, characterized by:
【請求項6】 前記窒化膜とこの窒化膜中の前記酸化膜
とを順次に堆積させて形成することを特徴とする請求項
5記載の不揮発性半導体記憶装置の製造方法。
6. The method for manufacturing a nonvolatile semiconductor memory device according to claim 5, wherein said nitride film and said oxide film in said nitride film are sequentially deposited and formed.
【請求項7】 前記窒化膜の表面を酸化することによっ
てこの窒化膜中の前記酸化膜を形成することを特徴とす
る請求項5記載の不揮発性半導体記憶装置の製造方法。
7. The method according to claim 5, wherein said oxide film in said nitride film is formed by oxidizing a surface of said nitride film.
【請求項8】 前記窒化膜中にイオン注入した酸素によ
って前記窒化膜中の前記酸化膜を形成することを特徴と
する請求項5記載の不揮発性半導体記憶装置の製造方
法。
8. The method for manufacturing a nonvolatile semiconductor memory device according to claim 5, wherein said oxide film in said nitride film is formed by oxygen implanted into said nitride film.
【請求項9】 前記イオン注入を点状に行うことを特徴
とする請求項8記載の不揮発性半導体記憶装置の製造方
法。
9. The method for manufacturing a nonvolatile semiconductor memory device according to claim 8, wherein said ion implantation is performed in a point-like manner.
JP29336396A 1996-10-15 1996-10-15 Nonvolatile semiconductor memory device and manufacturing method thereof Expired - Fee Related JP3818402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29336396A JP3818402B2 (en) 1996-10-15 1996-10-15 Nonvolatile semiconductor memory device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29336396A JP3818402B2 (en) 1996-10-15 1996-10-15 Nonvolatile semiconductor memory device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10125813A true JPH10125813A (en) 1998-05-15
JP3818402B2 JP3818402B2 (en) 2006-09-06

Family

ID=17793826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29336396A Expired - Fee Related JP3818402B2 (en) 1996-10-15 1996-10-15 Nonvolatile semiconductor memory device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3818402B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222875A (en) * 2001-01-25 2002-08-09 Sony Corp Non-volatile semiconductor memory device and method of manufacturing the same
JP2002222876A (en) * 2001-01-25 2002-08-09 Sony Corp Non-volatile semiconductor memory device and method of manufacturing the same
JP2009289823A (en) * 2008-05-27 2009-12-10 Renesas Technology Corp Nonvolatile semiconductor storage device
KR101086497B1 (en) 2006-06-29 2011-11-25 주식회사 하이닉스반도체 Non volatile memory device and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222875A (en) * 2001-01-25 2002-08-09 Sony Corp Non-volatile semiconductor memory device and method of manufacturing the same
JP2002222876A (en) * 2001-01-25 2002-08-09 Sony Corp Non-volatile semiconductor memory device and method of manufacturing the same
KR101086497B1 (en) 2006-06-29 2011-11-25 주식회사 하이닉스반도체 Non volatile memory device and method for manufacturing the same
JP2009289823A (en) * 2008-05-27 2009-12-10 Renesas Technology Corp Nonvolatile semiconductor storage device

Also Published As

Publication number Publication date
JP3818402B2 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
US7585725B2 (en) Use of dilute steam ambient for improvement of flash devices
US6455372B1 (en) Nucleation for improved flash erase characteristics
US7371640B2 (en) Semiconductor device with floating trap type nonvolatile memory cell and method for manufacturing the same
JP2007043147A (en) Method of forming silicon-rich nanocrystal structure using atomic layer deposition process and method of manufacturing nonvolatile semiconductor device using the same
JP2007059872A (en) Nonvolatile semiconductor memory device and semiconductor device, and method for producing nonvolatile semiconductor memory device
JPH10135207A (en) Formation of thin film by using n2o gas
JP4617574B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
KR100596484B1 (en) Method of Forming Insulator Layer and Method of Manufacturing Non-Volatile Memory Device Using the same
JP2004193413A (en) Nonvolatile semiconductor memory and its manufacturing process
JP4358504B2 (en) Method for manufacturing nonvolatile semiconductor memory device
US6162684A (en) Ammonia annealed and wet oxidized LPCVD oxide to replace ono films for high integrated flash memory devices
JP3818402B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
JP3288796B2 (en) Semiconductor device
KR100543209B1 (en) Method for fabrication of transistor having sonos structure
JPH06350093A (en) Manufacture of nonvolatile semiconductor memory
JP4590744B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
JPH02277269A (en) Manufacture of nonvolatile memory
US20090068850A1 (en) Method of Fabricating Flash Memory Device
JP2004014711A (en) Semiconductor device and method for manufacturing the same
KR20070106155A (en) Method for manufacturing non volatile memory device
JPH0422031B2 (en)
KR20050039339A (en) Method of manufacturing a nonvolatile memory device
JPH06296029A (en) Semiconductor nonvolatile storage element and manufacture thereof
JPH0665232B2 (en) Method of manufacturing semiconductor memory device
JP3492718B2 (en) Method for manufacturing semiconductor memory device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060607

LAPS Cancellation because of no payment of annual fees