JPH10106815A - Permanent magnetic for ultra high vacuum and method for manufacturing the same - Google Patents

Permanent magnetic for ultra high vacuum and method for manufacturing the same

Info

Publication number
JPH10106815A
JPH10106815A JP8281542A JP28154296A JPH10106815A JP H10106815 A JPH10106815 A JP H10106815A JP 8281542 A JP8281542 A JP 8281542A JP 28154296 A JP28154296 A JP 28154296A JP H10106815 A JPH10106815 A JP H10106815A
Authority
JP
Japan
Prior art keywords
magnet
film
thickness
permanent magnet
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8281542A
Other languages
Japanese (ja)
Other versions
JP3595082B2 (en
Inventor
Fumiaki Kikui
文秋 菊井
Masako Suzuki
雅子 鈴木
Masayuki Yoshimura
吉村  公志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP28154296A priority Critical patent/JP3595082B2/en
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to CN96192129A priority patent/CN1091537C/en
Priority to US08/875,768 priority patent/US6080498A/en
Priority to DE69630283T priority patent/DE69630283T2/en
Priority to KR1019970705834A priority patent/KR100302929B1/en
Priority to PCT/JP1996/003717 priority patent/WO1997023884A1/en
Priority to EP96942585A priority patent/EP0811994B1/en
Publication of JPH10106815A publication Critical patent/JPH10106815A/en
Priority to KR1020007013320A priority patent/KR100305974B1/en
Application granted granted Critical
Publication of JP3595082B2 publication Critical patent/JP3595082B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a permanent magnet for ultra high vacuum which has good adhesion of a coating film thereon, is tight, can prevent the generation and release of gas from the magnet body, and has a high magnetic characteristic used for an undulator, etc., in the ultra high vacuum of below 1×10<-9> Pa. SOLUTION: After the surface of an Fe-B-R permanent magnet body is cleaned by an ion sputtering method, etc., a titanium coating film of 0.1 to 3.0μm thickness is formed on the surface of the permanent magnet body by a method for forming a thin film such as an ion plating method, etc. An aluminum coating film of 0.1 to 5μm thickness is then formed on the titanium coating film by a method for forming a thin film such as an ion plating method, etc., and furthermore a Ti1- XAlXN (where 0.03<x<0.70) coating film of 0.5 to 10μm thickness is formed on the aluminum coating film in an atmosphere of N2 - containing gas by a method for forming a thin film such as an ion reaction plating method, etc. This can prevent the generation of a gas adhering to the magnet or absorbed by the magnet, and enables effective use of high magnetic characteristics of the magnet.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、被膜の密着性に
優れ、超高真空雰囲気のアンジュレーター等に使用可能
な高磁気特性を有した超高真空用永久磁石に係り、磁石
体表面にTi被膜とAl被膜を順次積層後にTi1-x
xN被膜層を形成することにより、密着性に優れ、緻
密で、磁石体からのガス発生、放出を防止して、1×1
-9Pa以下の超高真空に使用でき、極めて安定した磁
気特性を有する超高真空磁石とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra-high vacuum permanent magnet which has excellent adhesion of a coating film and has high magnetic properties which can be used as an undulator in an ultra-high vacuum atmosphere. After sequentially laminating a film and an Al film, Ti 1-x A
By forming the l x N coating layer, the adhesion is excellent, the density is high, and the generation and release of gas from the magnet body are prevented.
The present invention relates to an ultra-high vacuum magnet which can be used in an ultra-high vacuum of 0 -9 Pa or less and has extremely stable magnetic properties, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】先に、NdやPrを中心とする資源的に
豊富な軽希土類を用いてB,Feを主成分とし、高価な
SmやCoを含有せず、従来の希土類コバルト磁石の最
高特性を大幅に超える新しい高性能永久磁石として、R
−Fe−B系永久磁石が提案されている(特開昭59−
46008号公報、特開昭59−89401号公報)。
2. Description of the Related Art First, using rare earths, which are abundant in resources, mainly Nd and Pr, B and Fe as main components, do not contain expensive Sm and Co, and are the highest among conventional rare earth cobalt magnets. As a new high-performance permanent magnet that greatly exceeds the characteristics,
-Fe-B permanent magnets have been proposed (Japanese Patent Laid-Open No. 59-5978).
46008, JP-A-59-89401).

【0003】前記磁石合金のキュリー点は、一般に30
0℃〜370℃であるが、Feの一部をCoにて置換す
ることにより、より高いキュリー点を有するR−Fe−
B系永久磁石(特開昭59−64733号、特開昭59
−132104号)を得ており、さらに、前記Co含有
のR−Fe−B系希土類永久磁石と同等以上のキュリー
点並びにより高い(BH)maxを有し、その温度特
性、特にiHcを向上させるため、希土類元素(R)と
してNdやPr等の軽希土類を中心としたCo含有のR
−Fe−B系希土類永久磁石のRの一部にDy、Tb等
の重希土類のうち少なくとも1種を含有することによ
り、25MGOe以上の極めて高い(BH)maxを保
有したままで、iHcをさらに向上させたCo含有のR
−Fe−B系希土類永久磁石が提案(特開昭60−34
005号公報)されている。
The Curie point of the above magnet alloy is generally 30
0 ° C. to 370 ° C., but having a higher Curie point by substituting part of Fe with Co.
B-based permanent magnets (JP-A-59-64733, JP-A-59-64733)
-132104), and has a Curie point equal to or higher than that of the R-Fe-B-based rare earth permanent magnet containing Co and a higher (BH) max, and improves its temperature characteristics, particularly iHc. Therefore, as a rare earth element (R), a Co-containing R centered on a light rare earth such as Nd or Pr.
By including at least one of heavy rare earths such as Dy and Tb in a part of R of the Fe-B based rare earth permanent magnet, iHc can be further increased while retaining a very high (BH) max of 25 MGOe or more. Improved Co-containing R
-Fe-B rare earth permanent magnet proposed (Japanese Patent Laid-Open No. 60-34)
005).

【0004】従来、真空雰囲気用磁石としては、フェラ
イト磁石が10-3Paオーダーの真空で使用されている
が、フェライト磁石は磁気特性が低く、アンジュレータ
ー等に使用するには磁気特性が十分でない。
Conventionally, ferrite magnets have been used as vacuum atmosphere magnets in a vacuum of the order of 10.sup.-3 Pa. However, ferrite magnets have low magnetic properties and do not have sufficient magnetic properties for use in undulators and the like. .

【0005】1×10-9Pa以下の超高真空に使用でき
る超高真空用磁石としては、(1)磁石特性が優れるこ
と、(2)磁石よりの内蔵ガス、付着ガスの放出、放散
がないこと、(3)装置内に取り付けて1×10-9Pa
以下が、達成できることが重要である。
[0005] Ultra-high vacuum magnets that can be used in ultra-high vacuum of 1 × 10 -9 Pa or less include (1) excellent magnet properties, and (2) release and emission of built-in gas and attached gas from the magnet. (3) 1 × 10 -9 Pa mounted inside the device
It is important that the following can be achieved:

【0006】そこで、前記のごとくFe−B−R系磁石
が高磁気特性のため、1×10-9Pa以下の超高真空用
アンジュレーターへの使用が考えられるが、前記Fe−
B−R系磁石はガスの吸着、吸蔵が生じるため、真空雰
囲気での磁石からの発生、放出ガスにより、真空度1×
10-9Pa以下の超高真空雰囲気には、Fe−B−R系
磁石の使用は困難であった。
Therefore, as described above, since the Fe-BR based magnet has high magnetic properties, it can be used for an undulator for an ultrahigh vacuum of 1 × 10 −9 Pa or less.
Because the BR magnet absorbs and absorbs gas, the degree of vacuum is 1 × due to the gas generated and released from the magnet in a vacuum atmosphere.
In an ultra-high vacuum atmosphere of 10 −9 Pa or less, it was difficult to use a Fe—BR magnet.

【0007】従来、防食用にNiメッキ処理したFe−
B−R系磁石を超高真空に用いる場合、磁石は超高真空
チャンバー中には入れられず、外部より磁石を取付け、
アンジュレーター等を作製していたため、装置が大型化
し、Fe−B−R系磁石の高磁気特性を有効に利用でき
なかった。
Conventionally, Ni-plated Fe-
When a BR magnet is used in an ultra-high vacuum, the magnet cannot be placed in the ultra-high vacuum chamber, and a magnet is attached from the outside,
Since the undulator and the like were manufactured, the size of the apparatus was increased, and the high magnetic properties of the Fe-BR-based magnet could not be effectively used.

【0008】従来のFe−B−R系磁石体の耐食性の改
善を目的とした各種被膜を有する耐食性Fe−B−R系
永久磁石でも、真空雰囲気での磁石からの発生、放出ガ
スにより、真空度1×10-9Pa以下の超高真空雰囲気
での使用が困難であった。
[0008] Even conventional corrosion-resistant Fe-BR permanent magnets having various coatings for the purpose of improving the corrosion resistance of the conventional Fe-BR-based magnet body, the vacuum generated by the magnet in a vacuum atmosphere and the gas released therefrom cause a vacuum. It was difficult to use it in an ultra-high vacuum atmosphere having a degree of 1 × 10 −9 Pa or less.

【0009】この発明は、従来、Fe−B−R系磁石体
の耐食性の改善を目的とした各種被膜を有する耐食性F
e−B−R系永久磁石とは全く異なり、磁石体表面との
密着性に優れる上、被膜は緻密で、磁石体からのガス発
生、放出を防止する働きがある超高真空雰囲気のアンジ
ュレーター等に使用可能な高磁気特性を有した超高真空
用永久磁石の提供を目的としている。
The present invention relates to a conventional corrosion-resistant F having various coatings for the purpose of improving the corrosion resistance of Fe-BR-based magnet bodies.
An undulator in an ultra-high vacuum atmosphere that is completely different from eBR type permanent magnets, has excellent adhesion to the surface of the magnet body, has a dense coating, and has a function of preventing gas generation and release from the magnet body. It is an object of the present invention to provide an ultra-high vacuum permanent magnet having high magnetic properties that can be used for such purposes.

【0010】[0010]

【課題を解決するための手段】発明者らは、下地との密
着性がすぐれ、被着した緻密な金属被膜により、磁石に
付着あるいは吸蔵するガスの発生を防止することがで
き、その磁石特性の安定したFe−B−R系永久磁石を
目的に、永久磁石体表面へのTi1-xAlxN被膜の形成
法について種々検討した結果、磁石体表面をイオンスパ
ッター法等により清浄化した後、前記磁石体表面にイオ
ンプレーティング法等の薄膜形成法により特定膜厚のT
i被膜とAl被膜を順次形成後、N2含有ガス中にてイ
オン反応プレーティング等の薄膜形成法を行って、特定
膜厚のTi1-xAlxN被膜を形成することにより、Ti
は下地との密着性に優れることを知見した。
Means for Solving the Problems The inventors of the present invention have excellent adhesion to a base and can prevent generation of gas adhering to or occluded by a magnet by a dense metal coating applied thereto. As a result of various studies on the method of forming a Ti 1-x Al x N coating on the surface of a permanent magnet body for the purpose of producing a stable Fe—BR based permanent magnet, the magnet body surface was cleaned by an ion sputtering method or the like. Then, a specific film thickness T is formed on the surface of the magnet body by a thin film forming method such as an ion plating method.
After sequentially forming the i-coating and the Al coating, a thin film forming method such as ion reaction plating is performed in an N 2 -containing gas to form a Ti 1-x Al x N coating having a specific thickness.
Found that the adhesiveness to the substrate was excellent.

【0011】また、発明者らは、上記のAl被膜上にT
1-xAlxN被膜を形成するに際し、界面には、Ti1-
AlαN(0<α<1、0<β<1)なるTi,A
l,Nの複合被膜が生成し、このTi1- AlαN
組成、膜厚は、基板温度、バイアス電圧、成膜スピー
ド、Ti1-xAlxN組成等によって変化し、Ti1-x
xN界面に向かってTi,Nが連続的に増加する組成
となっており、これによりAl被膜とTi1-xAlxN被
膜との密着性は著しく改善できたことにより、この磁石
を装置内に取り付けて1×10-9Pa以下の真空度を達
成でき、超高真空用アンジュレーター等に使用できるこ
とを知見し、この発明を完成した。
Further, the present inventors have proposed that T
In forming the i 1-x Al x N coating, the interface is Ti 1 -x
AlαN Ti, A satisfying (0 <α <1, 0 <β <1)
l, the composite coating is produced of N, the Ti 1- AlαN composition, film thickness, substrate temperature, varies with the bias voltage, film formation speed, Ti 1-x Al x N composition, etc., Ti 1- x A
The composition is such that Ti and N continuously increase toward the l x N interface, whereby the adhesion between the Al coating and the Ti 1-x Al x N coating can be significantly improved. The present inventors have found that the present invention can achieve a degree of vacuum of 1 × 10 −9 Pa or less by being mounted in an apparatus and can be used as an undulator for an ultra-high vacuum, and have completed the present invention.

【0012】すなわち、この発明は、主相が正方晶相か
らなるFe−B−R系永久磁石体表面に形成された膜厚
0.1μm〜3.0μmのTi被膜上に、膜厚0.1μ
m〜5μmのAl被膜を介して膜厚0.5μm〜10μ
mのTi1-xAlxN(但し、0.03<x<0.70)
被膜層を有する超高真空用永久磁石である。
That is, according to the present invention, a Ti coating having a thickness of 0.1 μm to 3.0 μm formed on the surface of an Fe—BR based permanent magnet body having a tetragonal phase as a main phase is formed on a Ti coating having a thickness of 0.1 μm to 3.0 μm. 1μ
0.5 μm to 10 μm in thickness through an Al coating of m to 5 μm
m Ti 1-x Al x N (where 0.03 <x <0.70)
This is an ultra-high vacuum permanent magnet having a coating layer.

【0013】また、この発明は主相が正方晶相からなる
Fe−B−R系永久磁石体の清浄化された表面に、薄膜
形成法により、膜厚0.1μm〜3.0μmのTi被膜
を形成後、前記Ti被膜上に膜厚0.1μm〜5μmの
Al被膜を形成し、前記Al被膜上に膜厚0.5μm〜
10μmのTi1-xAlxN(但し、0.03<x<0.
70)被膜層を形成する超高真空用永久磁石の製造方法
である。
Further, the present invention provides a Ti coating having a film thickness of 0.1 μm to 3.0 μm on a cleaned surface of a Fe—BR based permanent magnet having a tetragonal phase as a main phase by a thin film forming method. Is formed, an Al film having a thickness of 0.1 μm to 5 μm is formed on the Ti film, and a 0.5 μm to
10 μm Ti 1-x Al x N (provided that 0.03 <x <0.
70) A method for manufacturing an ultra-high vacuum permanent magnet for forming a coating layer.

【0014】[0014]

【発明の実施の形態】この発明において、Fe−B−R
系永久磁石体表面に被着するAl被膜、Ti1-xAlx
被膜の形成方法としてはイオンプレーティング法、イオ
ンスパッタリング法、蒸着法等のいわゆる気相成膜法が
適宜利用できるのが、被膜緻密性、均一性、被膜形成速
度などの理由からイオンプレーティング、反応イオンプ
レーティングが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, Fe-BR
Coating, Ti 1-x Al x N on the surface of permanent magnet
As a method of forming a film, a so-called gas phase film forming method such as an ion plating method, an ion sputtering method, and a vapor deposition method can be appropriately used. Reactive ion plating is preferred.

【0015】また、反応被膜生成時の基板となる永久磁
石の温度は200℃〜500℃に設定するのが好まし
く、200℃未満では基板磁石との反応密着が十分でな
く、また500℃を超えると常温(25℃)との温度差
が大きくなり、処理後の冷却過程で被膜に亀裂が入り、
一部基板より剥離を発生するため、基板磁石の温度を2
00℃〜500℃に設定するとよい。
The temperature of the permanent magnet serving as the substrate when the reaction film is formed is preferably set to 200 ° C. to 500 ° C. If the temperature is lower than 200 ° C., the reaction adhesion with the substrate magnet is not sufficient, and the temperature exceeds 500 ° C. The temperature difference between the temperature and normal temperature (25 ° C) increases, and the coating cracks in the cooling process after the treatment,
The temperature of the substrate magnet is set to 2
It is good to set to 00 degreeC-500 degreeC.

【0016】Fe−B−R系永久磁石体表面にTi被膜
層を形成後、Ti被膜層上に形成されたAl被膜層を介
してTi1-xAlxN(但し、0.03<x<0.70)
被膜層を設けたことを特徴とするこの発明の超高真空用
永久磁石の製造方法の一例を以下に詳述する。 1)例えば、アークイオンプレーティング装置を用い
て、真空容器を到達真空度1×10-3pa以下まで真空
排気した後、Arガス圧10pa、−500VでArイ
オンによる表面スパッターにてR−Fe−B系磁石体表
面を清浄化する。次に、Arガス圧0.1pa、バイア
ス電圧−80Vにより、ターゲットのTiを蒸発させ
て、アークイオンプレーティング法にて、磁石体表面に
0.1μm〜3.0μm膜厚のTi被膜層を形成する。
After a Ti coating layer is formed on the surface of the Fe—BR system permanent magnet, Ti 1-x Al x N (where 0.03 <x) is passed through an Al coating layer formed on the Ti coating layer. <0.70)
An example of the method for manufacturing a permanent magnet for ultrahigh vacuum of the present invention, which is provided with a coating layer, will be described in detail below. 1) For example, after evacuating the vacuum container to an ultimate degree of vacuum of 1 × 10 −3 pa or less using an arc ion plating apparatus, R-Fe is subjected to surface sputtering with Ar ions at an Ar gas pressure of 10 pa and −500 V to perform R-Fe sputtering. -Clean the surface of the B-based magnet body. Next, the target Ti is evaporated by an Ar gas pressure of 0.1 pa and a bias voltage of -80 V, and a Ti coating layer having a thickness of 0.1 μm to 3.0 μm is formed on the surface of the magnet body by an arc ion plating method. Form.

【0017】2)次に、Arガス圧0.1pa、バイア
ス電圧−50Vにより、ターゲットのAlを蒸発させ
て、アークイオンプレーティング法にて、Ti被膜層上
に0.1μm〜5μm膜厚のAl被膜層を形成する。 3)続いて、ターゲットとして合金Ti1-xAlx(但
し、0.03<x<0.80)を用い、基板の磁石温度
を250℃に保持し、N2ガス圧3pa、バイアス電圧
−120Vの条件にて、Al被膜層上に特定厚のTi
1-xAlxN被膜層を形成する。
2) Next, the target Al is evaporated with an Ar gas pressure of 0.1 pa and a bias voltage of −50 V, and a 0.1 μm to 5 μm thick film is formed on the Ti coating layer by an arc ion plating method. An Al coating layer is formed. 3) Subsequently, using an alloy Ti 1-x Al x (however, 0.03 <x <0.80) as a target, keeping the substrate magnet temperature at 250 ° C., N 2 gas pressure 3 pa, and bias voltage − Under a condition of 120V, a specific thickness of Ti
Form a 1-x Al x N coating layer.

【0018】この発明において、磁石体表面のTi被膜
厚を0.1μm〜3.0μmに限定した理由は、0.1
μm未満では磁石表面との密着性が十分でなく、3.0
μmを越えると効果的には問題ないが、下地膜としては
コスト上昇を招来して、実用的でなく好ましくないの
で、Ti被膜厚は0.1μm〜3.0μmとする。
In the present invention, the reason why the thickness of the Ti coating on the surface of the magnet body is limited to 0.1 μm to 3.0 μm is as follows.
If it is less than μm, the adhesion to the magnet surface is not sufficient, and
When the thickness exceeds μm, there is no problem effectively, but the cost of the underlayer is increased, which is not practical and not preferable. Therefore, the thickness of the Ti coating is set to 0.1 μm to 3.0 μm.

【0019】また、この発明において、Ti被膜上に形
成されるAl被膜厚を0.1μm〜5μmに限定した理
由は、0.1μm未満ではTi被膜表面にAlが均一に
付着しにくく、中間層膜としての効果が十分でなく、ま
た5μmを越えると効果的には問題ないが、中間層膜と
してコスト上昇を招来して好ましくないので、Al被膜
厚は0.1μm〜5μmとする。
In the present invention, the reason why the thickness of the Al coating formed on the Ti coating is limited to 0.1 μm to 5 μm is that if it is less than 0.1 μm, it is difficult for Al to uniformly adhere to the surface of the Ti coating, and The effect as a film is not sufficient, and if it exceeds 5 μm, there is no problem. However, it is not preferable because the cost of the intermediate layer is increased, so that the thickness of the Al coating is set to 0.1 μm to 5 μm.

【0020】また、Ti1-xAlxN(但し、0.03<
x<0.70)被膜厚を0.5μm〜10μmに限定し
た理由は、0.5μm未満ではTi1-xAlxN被膜とし
ての耐食性、耐摩耗性が十分でなく、10μmを超える
と効果的には問題ないが、製造コスト上昇を招来するの
で好ましくない。また、被膜のTi1-xAlxNにおい
て、xが0.03以下ではTi1-xAlxNとしての性能
(耐食性、耐摩耗性等)が十分でなく、0.70以上で
は性能の向上が見られず、均一組成が得られ難いことか
ら好ましくなく、xは0.03を越え、0.70未満の
範囲に限定する。
In addition, Ti 1-x Al x N (however, 0.03 <
x <0.70) The reason for limiting the coating thickness to 0.5 μm to 10 μm is that if the coating thickness is less than 0.5 μm, the corrosion resistance and abrasion resistance of the Ti 1-x Al x N coating are not sufficient, and if it exceeds 10 μm, the effect is increased. Although there is no problem in terms of production, it is not preferable because it causes an increase in manufacturing cost. Further, in the Ti 1-x Al x N of the coating, when x is 0.03 or less, the performance (corrosion resistance, wear resistance, etc.) as Ti 1-x Al x N is not sufficient, and when x is 0.70 or more, the performance is not sufficient. It is not preferable because no improvement is observed and it is difficult to obtain a uniform composition, and x is limited to a range exceeding 0.03 and less than 0.70.

【0021】この発明の永久磁石に用いる希土類元素R
は、組成の10原子%〜30原子%を占めるが、Nd、
Pr、Dy、Ho、Tbのうち少なくとも1種、あるい
はさらに、La、Ce、Sm、Gd、Er、Eu、T
m、Yb、Lu、Yのうち少なくとも1種を含むものが
好ましい。また、通常Rのうち1種をもって足りるが、
実用上は2種以上の混合物(ミッシュメタル、ジジム
等)を入手上の便宜等の理由により用いることができ
る。なお、このRは純希土類元素でなくてもよく、工業
上入手可能な範囲で製造上不可避な不純物を含有するも
のでも差支えない。
The rare earth element R used in the permanent magnet of the present invention
Accounts for 10 to 30 atomic% of the composition, but Nd,
At least one of Pr, Dy, Ho, and Tb; or La, Ce, Sm, Gd, Er, Eu, T
Those containing at least one of m, Yb, Lu, and Y are preferable. Also, usually one of R is sufficient,
In practice, a mixture of two or more kinds (mish metal, dymium, etc.) can be used for reasons such as convenience in obtaining. Note that R may not be a pure rare earth element, and may contain impurities which are unavoidable in production within the industrially available range.

【0022】Rは、上記系永久磁石における必須元素で
あって、10原子%未満では結晶構造がα−鉄と同一構
造の立方晶組織となるため、高磁気特性、特に高保磁力
が得られず、30原子%を超えるとRリッチな非磁性相
が多くなり、残留磁束密度(Br)が低下してすぐれた
特性の永久磁石が得られない。よって、R10原子%〜
30原子%の範囲が望ましい。
R is an essential element in the above-mentioned permanent magnets. If it is less than 10 atomic%, the crystal structure becomes a cubic structure having the same structure as that of α-iron, so that high magnetic properties, particularly high coercive force cannot be obtained. , More than 30 atomic%, the R-rich nonmagnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet having excellent characteristics cannot be obtained. Therefore, R10 atomic% or more
A range of 30 atomic% is desirable.

【0023】Bは、上記系永久磁石における必須元素で
あって、2原子%未満では菱面体構造が主相となり、高
い保磁力(iHc)は得られず、28原子%を超えると
Bリッチな非磁性相が多くなり、残留磁束密度(Br)
が低下するため、すぐれた永久磁石が得られない。よっ
て、Bは2原子%〜28原子%の範囲が望ましい。
B is an essential element in the above permanent magnets. If it is less than 2 atomic%, the rhombohedral structure becomes the main phase, and a high coercive force (iHc) cannot be obtained. If it exceeds 28 atomic%, B becomes rich. Increase in non-magnetic phase, residual magnetic flux density (Br)
, The excellent permanent magnet cannot be obtained. Therefore, B is desirably in the range of 2 to 28 atomic%.

【0024】Feは、上記系永久磁石において必須元素
であり、65原子%未満では残留磁束密度(Br)が低
下し、80原子%を超えると高い保磁力が得られないの
で、Feは65原子%〜80原子%の含有が望ましい。
また、Feの一部をCoで置換することは、得られる磁
石の磁気特性を損うことなく、温度特性を改善すること
ができるが、Co置換量がFeの20%を超えると、逆
に磁気特性が劣化するため、好ましくない。Coの置換
量がFeとCoの合計量で5原子%〜15原子%の場合
は、(Br)は置換しない場合に比較して増加するた
め、高磁束密度を得るために好ましい。
Fe is an essential element in the above-mentioned permanent magnets. When the content is less than 65 atomic%, the residual magnetic flux density (Br) decreases, and when it exceeds 80 atomic%, a high coercive force cannot be obtained. % To 80 atomic%.
Further, substituting a part of Fe with Co can improve the temperature characteristics without impairing the magnetic characteristics of the obtained magnet. However, when the Co substitution amount exceeds 20% of Fe, conversely, It is not preferable because the magnetic properties deteriorate. When the substitution amount of Co is 5 atomic% to 15 atomic% in the total amount of Fe and Co, (Br) increases as compared with the case where the substitution is not performed, so that it is preferable to obtain a high magnetic flux density.

【0025】また、R、B、Feの他、工業的生産上不
可避的不純物の存在を許容でき、例えば、Bの一部を
4.0wt%以下のC、2.0wt%以下のP、2.0
wt%以下のS、2.0wt%以下のCuのうち少なく
とも1種、合計量で2.0wt%以下で置換することに
より、永久磁石の製造性改善、低価格化が可能である。
In addition to R, B, and Fe, the presence of unavoidable impurities in industrial production can be tolerated. For example, part of B may be 4.0 wt% or less of C, 2.0 wt% or less of P, .0
By replacing at least one of S by wt% or less and Cu by 2.0 wt% or less with a total amount of 2.0 wt% or less, it is possible to improve the productivity and reduce the cost of the permanent magnet.

【0026】さらに、Al、Ti、V、Cr、Mn、B
i、Nb、Ta、Mo、W、Sb、Ge、Sn、Zr、
Ni、Si、Zn、Hf、のうち少なくとも1種は、R
−Fe−B系永久磁石材料に対してその保磁力、減磁曲
線の角型性を改善あるいは製造性の改善、低価格化に効
果があるため添加することができる。なお、添加量の上
限は、磁石材料の(BH)maxを20MGOe以上と
するには、Brが少なくとも9kG以上必要となるた
め、該条件を満す範囲が望ましい。
Further, Al, Ti, V, Cr, Mn, B
i, Nb, Ta, Mo, W, Sb, Ge, Sn, Zr,
At least one of Ni, Si, Zn, and Hf is R
-It can be added to the Fe-B-based permanent magnet material because it has the effect of improving the coercive force and the squareness of the demagnetization curve, improving the productivity, and reducing the price. The upper limit of the addition amount is preferably in a range that satisfies the above condition, since Br needs to be at least 9 kG or more in order to make (BH) max of the magnet material 20 MGOe or more.

【0027】また、この発明の永久磁石は平均結晶粒径
が1〜80μmの範囲にある正方晶系の結晶構造を有す
る化合物を主相とし、体積比で1%〜50%の非磁性相
(酸化物相を除く)を含むことを特徴とする。この発明
による永久磁石は、保磁力iHc≧1kOe、残留磁束
密度Br>4kGを示し、最大エネルギー積(BH)m
axは、(BH)max≧10MGOeを示し、最大値
は25MGOe以上に達する。
The permanent magnet of the present invention comprises a compound having a tetragonal crystal structure having an average crystal grain size in the range of 1 to 80 μm as a main phase, and a nonmagnetic phase (1% to 50% by volume). (Excluding the oxide phase). The permanent magnet according to the present invention exhibits a coercive force iHc ≧ 1 kOe, a residual magnetic flux density Br> 4 kG, and a maximum energy product (BH) m
ax indicates (BH) max ≧ 10 MGOe, and the maximum value reaches 25 MGOe or more.

【0028】[0028]

【実施例】【Example】

実施例1 公知の鋳造インゴットを粉砕し、微粉砕後に成形、焼結
後に、熱処理して16Nd−76Fe−8B組成の外径
12mm×厚み2mm寸法の磁石体試験片を得た。その
磁石を真空容器内に入れ、真空容器内を1×10-3pa
以下に排気してArガス圧5pa、−600Vで20分
間、表面スパッターを行って磁石体表面を清浄化した
後、Arガス圧0.2pa、バイアス電圧−80V、基
板磁石温度を250℃にてターゲットとして金属Tiを
アークイオンプレーティング法にて磁石体表面に1μm
厚のTi被膜層を形成する。
Example 1 A known casting ingot was pulverized, finely pulverized, molded, sintered, and then heat-treated to obtain a magnet test piece having a composition of 16Nd-76Fe-8B having an outer diameter of 12 mm and a thickness of 2 mm. The magnet is put in a vacuum vessel, and the inside of the vacuum vessel is 1 × 10 −3 pa
After evacuating and cleaning the surface of the magnet body by performing surface sputtering at an Ar gas pressure of 5 Pa and -600 V for 20 minutes, an Ar gas pressure of 0.2 Pa, a bias voltage of -80 V and a substrate magnet temperature of 250 ° C. Metal Ti as a target is 1 μm on the surface of the magnet body by arc ion plating.
A thick Ti coating layer is formed.

【0029】その後、Arガス圧0.1Pa、バイアス
電圧−50V、基板磁石温度を250℃にして、ターゲ
ットとして金属Alを用いて、アークイオンプレーティ
ング法にて、Ti被膜表面に2μm厚のAl被膜層を形
成した。
Then, a 2 μm thick Al film was formed on the surface of the Ti film by arc ion plating using a metal Al as a target at an Ar gas pressure of 0.1 Pa, a bias voltage of −50 V, a substrate magnet temperature of 250 ° C. A coating layer was formed.

【0030】次に基板温度を320℃、バイアス電圧−
120V、N2ガス3Paにて、ターゲットとして合金
Ti0.4 Al0.6をアークイオンプレーティング法にて
Al被膜表面に膜厚3μmのTi1-xAlxN被膜を形成
した。被膜組成はTi0.45Al0.55Nであった。その
後、放冷後、得られたTiN被膜を有する永久磁石の磁
気特性を測定し、その結果を表1に示す。得られた永久
磁石を図1に示す超高真空装置で到達真空度を測定し
た。その測定結果を図2に示す。
Next, at a substrate temperature of 320 ° C.,
A Ti 1-x Al x N film having a thickness of 3 μm was formed on the surface of the Al film by an arc ion plating method using an alloy Ti 0.4 Al 0.6 as a target at 120 V and 3 Pa of N 2 gas. The coating composition was Ti 0.45 Al 0.55 N. Thereafter, after allowing to cool, the magnetic properties of the obtained permanent magnet having the TiN coating were measured, and the results are shown in Table 1. The ultimate vacuum degree of the obtained permanent magnet was measured by the ultrahigh vacuum apparatus shown in FIG. FIG. 2 shows the measurement results.

【0031】図1に示す超高真空装置による到達真空度
の測定方法を説明すると、超高真空装置1は、長尺筒状
からなる本体2にはTiゲッターポンプ4、イオンポン
プ5並びにBAゲージ6とエクストラクターゲージ7が
それぞれ配設されており、本体2の一方端には試料室3
が設けてある。
The method of measuring the ultimate vacuum degree by the ultra-high vacuum apparatus shown in FIG. 1 will be described. The ultra-high vacuum apparatus 1 has a long cylindrical main body 2, a Ti getter pump 4, an ion pump 5, and a BA gauge. 6 and an extractor gauge 7 are provided, respectively.
Is provided.

【0032】まず、試料室3に磁石試料8を挿入しない
で、Tiゲッターポンプ4、イオンポンプ5を作動させ
て真空引きしながら、150〜200℃に48時間ベー
キングした後、放冷して本体2内の温度が70℃以下に
なった後、BAゲージ6とエクストラクターゲージ7を
作動させて、最終到達真空度を測定する。この最終到達
真空度は7×10-10Paであった。図2中のaに示
す。
First, without inserting the magnet sample 8 into the sample chamber 3, the titanium getter pump 4 and the ion pump 5 were operated and baked at 150 to 200 ° C. for 48 hours while evacuating. After the temperature in 2 becomes 70 ° C. or lower, the BA gauge 6 and the extractor gauge 7 are operated to measure the ultimate vacuum degree. The final vacuum degree was 7 × 10 −10 Pa. This is indicated by a in FIG.

【0033】次に、試料室3に寸法、高さ8mm×幅8
mm×長さ50mm、数量60個の磁石試料8を挿入し
て、Tiゲッターポンプ4、イオンポンプ5を作動させ
て真空引きしながら、150〜200℃に48時間ベー
キングした後、放冷して本体2内の温度が70℃以下に
なった後、BAゲージ6とエクストラクターゲージ7を
作動させて、到達真空度を測定する。この際の最終到達
真空度とそれに至るまでの経過時間との関係を図2の曲
線bに示す。なお、○印はBAゲージ、□印はエクスト
ラクターゲージによる測定値を示す。
Next, the dimensions, height 8 mm × width 8 are set in the sample chamber 3.
The magnet sample 8 having a size of 50 mm × length 50 mm and a quantity of 60 was inserted, and the Ti getter pump 4 and the ion pump 5 were operated and evacuated, baked at 150 to 200 ° C. for 48 hours, and then allowed to cool. After the temperature in the main body 2 becomes 70 ° C. or lower, the ultimate vacuum degree is measured by operating the BA gauge 6 and the extractor gauge 7. At this time, the relationship between the ultimate vacuum degree and the elapsed time until reaching the final vacuum degree is shown by a curve b in FIG. In addition, ○ indicates a measurement value using a BA gauge, and □ indicates a measurement value using an extractor gauge.

【0034】比較例1 実施例1と同一組成の表面にTi被膜、Al被膜、Ti
1-xAlxN被膜を有しない、磁石体試験片の磁気特性を
第1表に表す。実施例1と同一寸法、数量の磁石体試験
片を実施例1と同一条件にて表面清浄化した後、図1の
超高真空装置で実施例1と同一条件にて到達真空度を測
定した。その結果を図2の曲線cに示す。
Comparative Example 1 A Ti film, an Al film, Ti
Table 1 shows the magnetic properties of the magnet test pieces without the 1-x Al x N coating. After cleaning the surface of a magnet body test piece having the same size and quantity as in Example 1 under the same conditions as in Example 1, the ultimate vacuum degree was measured using the ultrahigh vacuum apparatus of FIG. 1 under the same conditions as in Example 1. . The result is shown by curve c in FIG.

【0035】比較例2 実施例1と同一組成、同一寸法、数量の磁石体試験片を
実施例1と同一条件にて表面清浄化した後、通常の電気
メッキにてNi膜を20μm形成した。得られたNiメ
ッキ磁石の磁気特性を測定し、その結果を第1表に表
す。その後、Niメッキ磁石を表面洗浄後、図1の超高
真空装置で実施例1と同一条件にて到達真空度を測定し
た。その結果を図2の曲線dに示す。
Comparative Example 2 The surface of a magnet test piece having the same composition, the same dimensions and the same quantity as in Example 1 was cleaned under the same conditions as in Example 1, and then a 20 μm Ni film was formed by ordinary electroplating. The magnetic properties of the obtained Ni-plated magnet were measured, and the results are shown in Table 1. Then, after the surface of the Ni-plated magnet was washed, the ultimate vacuum degree was measured using the ultrahigh vacuum apparatus of FIG. 1 under the same conditions as in Example 1. The result is shown by a curve d in FIG.

【0036】この発明による磁石表面にTi被膜を形成
後、このTi被膜の上に形成されたAl被膜層を介して
Ti1-xAlxN被膜層を設けたFe−B−R系永久磁石
体は、実施例の如く、磁石体からのガスの発生がなく、
真空度1×10-9Pa以下を達成できるが、磁石素材そ
のまま、あるいはNiメッキ膜を設けた磁石体では磁石
体からのガスの発生により、目的の到達真空度が達成で
きないことが分かる。
A Fe-BR-based permanent magnet having a Ti 1-x Al x N coating layer provided on a surface of a magnet according to the present invention after a Ti coating is formed on the magnet surface and an Al coating layer formed on the Ti coating. As in the embodiment, the body does not generate gas from the magnet body,
Although it is possible to achieve a degree of vacuum of 1 × 10 −9 Pa or less, it can be seen that the desired ultimate degree of vacuum cannot be achieved due to the gas generated from the magnet body as it is for the magnet material or for the magnet body provided with the Ni plating film.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【発明の効果】この発明は、Fe−B−R系永久磁石体
表面をイオンスパッター法等により清浄化した後、前記
磁石体表面にイオンプレーティング法等の薄膜形成法に
よりTi被膜を形成後、このTi被膜上にイオンプレー
ティング等の薄膜形成法によりAl被膜を形成し、さら
にAl被膜上にN2含有ガス中にてイオン反応プレーテ
ィング等の薄膜形成法を行って、Ti1-xAlxN被膜を
形成したことを特徴とし、被膜は緻密で、密着性に優
れ、磁石体からのガスの発生を防止する働きがあり、超
高真空雰囲気のアンジュレーター等に使用可能な高磁気
特性を有した超高真空用Fe−B−R系永久磁石が得ら
れる。
According to the present invention, after a surface of an Fe-BR based permanent magnet is cleaned by an ion sputtering method or the like, a Ti film is formed on the surface of the magnet by a thin film forming method such as an ion plating method. Then, an Al film is formed on the Ti film by a thin film forming method such as ion plating, and a thin film forming method such as an ion reaction plating is performed on the Al film in a N 2 -containing gas to obtain Ti 1-x Characterized by forming an Al x N coating, the coating is dense, has excellent adhesion, has the function of preventing gas generation from the magnet body, and has high magnetic properties that can be used for undulators, etc. in ultra-high vacuum atmosphere. An Fe-BR-based permanent magnet for ultra-high vacuum having characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】到達真空度の測定に用いた超高真空装置の構成
説明図である。
FIG. 1 is an explanatory diagram of a configuration of an ultra-high vacuum device used for measuring a degree of ultimate vacuum.

【図2】到達真空度と時間の関係を示すグラフである。FIG. 2 is a graph showing the relationship between ultimate vacuum and time.

【符号の説明】[Explanation of symbols]

1 超高真空装置 2 本体 3 試料室 4 Tiゲッターポンプ 5 イオンポンプ 6 BAゲージ 7 エクストラクターゲージ 8 磁石試料 DESCRIPTION OF SYMBOLS 1 Ultra-high vacuum apparatus 2 Main body 3 Sample chamber 4 Ti getter pump 5 Ion pump 6 BA gauge 7 Extractor gauge 8 Magnet sample

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 主相が正方晶相からなるFe−B−R系
永久磁石体表面に形成された膜厚0.1μm〜3.0μ
mのTi被膜上に、膜厚0.1μm〜5μmのAl被膜
を介して膜厚0.5μm〜10μmのTi1-xAlx
(但し、0.03<x<0.70)被膜層を有する超高
真空用永久磁石。
1. A film thickness of 0.1 .mu.m to 3.0 .mu.m formed on the surface of an Fe--BR--based permanent magnet body whose main phase is a tetragonal phase.
A Ti 1-x Al x N film having a thickness of 0.5 μm to 10 μm is formed on a Ti film having a thickness of 0.1 μm to 5 μm through an Al film having a thickness of 0.1 μm to 5 μm.
(However, 0.03 <x <0.70) An ultra-high vacuum permanent magnet having a coating layer.
【請求項2】 主相が正方晶相からなるFe−B−R系
永久磁石体の清浄化された表面に、薄膜形成法により、
膜厚0.1μm〜3.0μmのTi被膜を形成後、前記
Ti被膜上に膜厚0.1μm〜5μmのAl被膜を形成
し、前記Al被膜上に膜厚0.5μm〜10μmのTi
1-xAlxN(但し、0.03<x<0.70)被膜層を
形成する超高真空用永久磁石の製造方法。
2. A method for forming a thin film on a cleaned surface of an Fe—BR—based permanent magnet body having a tetragonal phase as a main phase.
After forming a Ti film having a thickness of 0.1 μm to 3.0 μm, an Al film having a thickness of 0.1 μm to 5 μm is formed on the Ti film, and a Ti film having a thickness of 0.5 μm to 10 μm is formed on the Al film.
A method for producing an ultra-high vacuum permanent magnet which forms a 1-x Al x N (0.03 <x <0.70) coating layer.
JP28154296A 1995-12-25 1996-10-01 Ultra-high vacuum permanent magnet and method of manufacturing the same Expired - Lifetime JP3595082B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP28154296A JP3595082B2 (en) 1996-10-01 1996-10-01 Ultra-high vacuum permanent magnet and method of manufacturing the same
US08/875,768 US6080498A (en) 1995-12-25 1996-12-20 Permanent magnet for ultra-high vacuum and production process thereof
DE69630283T DE69630283T2 (en) 1995-12-25 1996-12-20 PERMANENT MAGNET FOR ULTRA-HIGH-VACUUM APPLICATION AND PRODUCTION OF THE SAME
KR1019970705834A KR100302929B1 (en) 1995-12-25 1996-12-20 Permanent magnet for ultra-high vacuum and production process thereof
CN96192129A CN1091537C (en) 1995-12-25 1996-12-20 Permanent magnet for ultrahigh vacuum application and method for mfg. same
PCT/JP1996/003717 WO1997023884A1 (en) 1995-12-25 1996-12-20 Permanent magnet for ultrahigh vacuum application and method for manufacturing the same
EP96942585A EP0811994B1 (en) 1995-12-25 1996-12-20 Permanent magnet for ultrahigh vacuum application and method for manufacturing the same
KR1020007013320A KR100305974B1 (en) 1995-12-25 2000-11-27 Method of using a permanent magnet usable for ultra-high vacuum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28154296A JP3595082B2 (en) 1996-10-01 1996-10-01 Ultra-high vacuum permanent magnet and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10106815A true JPH10106815A (en) 1998-04-24
JP3595082B2 JP3595082B2 (en) 2004-12-02

Family

ID=17640638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28154296A Expired - Lifetime JP3595082B2 (en) 1995-12-25 1996-10-01 Ultra-high vacuum permanent magnet and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3595082B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113451038A (en) * 2021-06-07 2021-09-28 杭州永磁集团有限公司 Preparation method of samarium-cobalt permanent magnet suitable for high-temperature high-pressure pure hydrogen environment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113451038A (en) * 2021-06-07 2021-09-28 杭州永磁集团有限公司 Preparation method of samarium-cobalt permanent magnet suitable for high-temperature high-pressure pure hydrogen environment

Also Published As

Publication number Publication date
JP3595082B2 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JPS6274048A (en) Permanent magnet material and its production
US6275130B1 (en) Corrosion-resisting permanent magnet and method for producing the same
US6080498A (en) Permanent magnet for ultra-high vacuum and production process thereof
JPH0742553B2 (en) Permanent magnet material and manufacturing method thereof
JPH0616445B2 (en) Permanent magnet material and manufacturing method thereof
JPH0569282B2 (en)
JP3595082B2 (en) Ultra-high vacuum permanent magnet and method of manufacturing the same
JP3737830B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH07249509A (en) Corrosion-resistant permanent magnet and its manufacture
JPH0945567A (en) Rare earth-iron-boron permanent magnet manufacturing method
JP3595078B2 (en) Ultra-high vacuum permanent magnet and method of manufacturing the same
JPH07283017A (en) Corrosion resistant permanent magnet and production thereof
JPH1074607A (en) Corrosion-resisting permanent magnet and its manufacture
JPH10106819A (en) Permanent magnet for ultra high vacuum and method for manufacturing the same
JPS61281850A (en) Permanent magnet material
JPH10106818A (en) Permanent magnet for ultra high vacuum and method for manufacturing the same
WO1998009300A1 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH10106817A (en) Permanent magnet for ultra high vacuum and method for manufacturing the same
JPH09180921A (en) Permanent magnet for ultra high vacuum and manufacture thereof
JP3652816B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH10340823A (en) Manufacture of r-iron-boron permanent magnet having excellent salt water resistance
JP2724391B2 (en) Corrosion resistant permanent magnet
JP3676513B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JP3652818B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH1083905A (en) Corrosion-resistant permanent magnet and its manufacture

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040902

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

EXPY Cancellation because of completion of term