JPH0945595A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0945595A
JPH0945595A JP19012795A JP19012795A JPH0945595A JP H0945595 A JPH0945595 A JP H0945595A JP 19012795 A JP19012795 A JP 19012795A JP 19012795 A JP19012795 A JP 19012795A JP H0945595 A JPH0945595 A JP H0945595A
Authority
JP
Japan
Prior art keywords
wafer
vacuum chamber
nitrogen gas
cooling
wafer stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19012795A
Other languages
Japanese (ja)
Inventor
Kenichi Otsuka
健一 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19012795A priority Critical patent/JPH0945595A/en
Publication of JPH0945595A publication Critical patent/JPH0945595A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To promptly cool at the same time by removing moisture on a wafer by a method wherein, when a vacuum chamber is evacuated, nitrogen gas is flown within the vacuum chamber. SOLUTION: In a vacuum chamber having no load lock chambers, a wafer 1 is placed on a wafer stage 12 serving both as a liquid nitrogen container 13 and this is held by a wafer retainer 11. A temperature of the wafer 1 is measured by an optical fiber thermometer 9 from a rear face. There is provided a cooling nitrogen gas inlet 10 which flows nitrogen gas between the wafer stage 12 and the wafer 1. When the vacuum chamber is evacuated, the nitrogen gas is introduced under desired conditions from the cooling nitrogen gas inlet 10, while decompressed to cool the wafer 1 at -40 deg.C. Thus, a generation of frost in the wafer stage is prevented and also prompt cooling is possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体のウエハの低温
プロセス処理において、真空プロセス処理装置の真空チ
ャンバ内とウエハ上の水分を除去して、霜の発生を防止
し、且つ、迅速なウエハの冷却を行う方法である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention, in low-temperature process processing of semiconductor wafers, removes moisture in the vacuum chamber of the vacuum process processing apparatus and on the wafers to prevent frost formation and to provide rapid wafer processing. It is a method of cooling.

【0002】[0002]

【従来の技術】図5は従来例の説明図である。図におい
て、21はウエハ、22は真空チャンバ、23は冷却機構付き
ウエハステージ、24はウエハ搬送アーム、25はロードロ
ック室である。
2. Description of the Related Art FIG. 5 is an explanatory view of a conventional example. In the figure, 21 is a wafer, 22 is a vacuum chamber, 23 is a wafer stage with a cooling mechanism, 24 is a wafer transfer arm, and 25 is a load lock chamber.

【0003】図5に低温で半導体のウエハ21のプロセス
処理を行う、ロードロック室25の付いた真空処理装置の
典型的な例を示す。ウエハ21を導入したロードロック室
25で、真空引きを行う。そして、ウエハ21はウエハ搬送
アーム24により真空チャンバ22内の冷却機構付きウエハ
ステージ23上に載置される。その後、ウエハ表面のエッ
チング、或いは膜形成等のプロセス処理が行われる。
FIG. 5 shows a typical example of a vacuum processing apparatus having a load lock chamber 25 for processing a semiconductor wafer 21 at a low temperature. Load lock chamber with wafer 21
At 25, evacuate. Then, the wafer 21 is placed on the wafer stage 23 with a cooling mechanism in the vacuum chamber 22 by the wafer transfer arm 24. After that, process processing such as etching of the wafer surface or film formation is performed.

【0004】[0004]

【発明が解決しようとする課題】半導体製造プロセスに
おいて、真空チャンバ内とウエハ表面に付着した水分を
十分に除去せずにウエハを冷却すると、ウエハ表面上や
冷却機構付きウエハステージで水分が氷となり、プロセ
ス処理後にウエハ上に水滴となって付着する。
In the semiconductor manufacturing process, if the wafer is cooled without sufficiently removing the moisture adhering to the inside of the vacuum chamber and the wafer surface, the moisture becomes ice on the wafer surface or on the wafer stage with a cooling mechanism. , Water drops adhere to the wafer after the process.

【0005】この水滴はウエハ表面の金属膜等のコロー
ジョン発生等の原因となり、安定したウエハ処理を行う
上で問題となる。そのため、低温プロセスを行うには、
ロードロック室の付いた比較的大規模な真空処理装置が
必要となる。また、ウエハステージとウエハの熱接触を
十分に取らないとウエハの冷却に時間がかかる。
The water droplets cause the generation of corrosion of the metal film or the like on the surface of the wafer, which is a problem in performing stable wafer processing. Therefore, to perform a low temperature process,
A relatively large vacuum processing device with a load lock chamber is required. Further, if the wafer stage and the wafer are not sufficiently in thermal contact, it takes time to cool the wafer.

【0006】[0006]

【課題を解決するための手段】図1は本発明の原理説明
図である。図において、1はウエハ、2は冷却機構付き
ウエハステージ、3は真空チャンバ、4は反応ガス導入
口、5は排気口、6はRF電源、7は電極、8はプラズ
マ、9は光ファイバ温度計、10は冷却用窒素ガス導入
口、11はウエハ押さえ、12はウエハステージ、13は液体
窒素容器である。
FIG. 1 is a diagram illustrating the principle of the present invention. In the figure, 1 is a wafer, 2 is a wafer stage with a cooling mechanism, 3 is a vacuum chamber, 4 is a reaction gas inlet, 5 is an exhaust port, 6 is an RF power source, 7 is an electrode, 8 is plasma, 9 is an optical fiber temperature. Reference numeral 10 is a cooling nitrogen gas inlet, 11 is a wafer holder, 12 is a wafer stage, and 13 is a liquid nitrogen container.

【0007】ロードロック室のない真空装置で低温プロ
セスを行うには、真空チャンバ3内とウエハ1上の水分
の除去が必要となる。上記の問題点を解決するために
は、先ず図1(a)に真空装置の模式断面図で示すよう
に、半導体のウエハ1を冷却する冷却機構付きウエハス
テージ2を有する真空チャンバ3を用いる際、真空チャ
ンバ3の排気時に、真空チャンバ3内に窒素ガスを流す
ことにより、ウエハ1上の水分の除去を行い、同時に迅
速な冷却を行う。
In order to carry out a low temperature process in a vacuum apparatus without a load lock chamber, it is necessary to remove water in the vacuum chamber 3 and on the wafer 1. In order to solve the above problems, first, as shown in the schematic cross-sectional view of the vacuum apparatus in FIG. 1A, when using a vacuum chamber 3 having a wafer stage 2 with a cooling mechanism for cooling a semiconductor wafer 1. When the vacuum chamber 3 is evacuated, a nitrogen gas is caused to flow into the vacuum chamber 3 to remove moisture on the wafer 1, and at the same time, perform rapid cooling.

【0008】[0008]

【作用】窒素ガスを導入しながら真空チャンバの排気を
行うと、真空チャンバ内の水分が除去されるのは、真空
チャンバ表面とウエハ上に吸着している水分が窒素で置
換されるためである。
When the vacuum chamber is evacuated while introducing nitrogen gas, the water in the vacuum chamber is removed because the water adsorbed on the surface of the vacuum chamber and the wafer is replaced with nitrogen. .

【0009】また、迅速な冷却は、窒素ガスがウエハス
テージとウエハの熱接触を改善するためである。
The rapid cooling is also because nitrogen gas improves the thermal contact between the wafer stage and the wafer.

【0010】[0010]

【実施例】図1は本発明の原理説明図兼一実施例に用い
た真空装置の説明図、図2は本発明の一実施例に用いた
試料の模式断面図、図3は本発明の一実施例のエッチン
グ条件、図4は本発明の一実施例の冷却時間とウエハ温
度の関係を示す図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view of the principle of the present invention and an explanatory view of a vacuum apparatus used in one embodiment, FIG. 2 is a schematic sectional view of a sample used in one embodiment of the present invention, and FIG. FIG. 4 is a diagram showing the relationship between the cooling time and the wafer temperature in one embodiment of the present invention.

【0011】図において、1はウエハ、2は冷却機構付
きウエハステージ、3は真空チャンバ、4は反応ガス導
入口、5は排気口、6はRF電源、7は電極、8はプラ
ズマ、9は光ファイバ温度計、10は冷却用窒素ガス導入
口、11はウエハ押さえ、12はウエハステージ、13は液体
窒素容器、14はSi基板、15はBPSG膜、16はTi
膜、17はTiN膜、18はAlCuTi合金膜、19はスパ
ッタSi膜、20はレジスト膜である。
In the figure, 1 is a wafer, 2 is a wafer stage with a cooling mechanism, 3 is a vacuum chamber, 4 is a reaction gas inlet, 5 is an exhaust port, 6 is an RF power source, 7 is an electrode, 8 is plasma, 9 is Optical fiber thermometer, 10 cooling nitrogen gas inlet, 11 wafer pressing, 12 wafer stage, 13 liquid nitrogen container, 14 Si substrate, 15 BPSG film, 16 Ti
A film, 17 is a TiN film, 18 is an AlCuTi alloy film, 19 is a sputtered Si film, and 20 is a resist film.

【0012】本発明の一実施例を図1〜図4を用いて説
明する。先ず、図1に本発明の一実施例に用いた真空装
置の構成図を模式断面図で示す。
An embodiment of the present invention will be described with reference to FIGS. First, FIG. 1 is a schematic cross-sectional view showing the configuration of a vacuum device used in an embodiment of the present invention.

【0013】図1(a)に全体構成図を示す。ロードロ
ック室のない真空チャンバ3はプロセス処理を行うウエ
ハ1を載置する冷却機構付きウエハステージ2を内部に
有し、エッチング或いは膜形成を行う反応ガスの導入口
4と排気口5を設けてある。また冷却機構付きウエハス
テージ2には外部からプラズマ処理のためのRF電源が
接続されている。
FIG. 1 (a) shows an overall configuration diagram. A vacuum chamber 3 without a load lock chamber has a wafer stage 2 with a cooling mechanism for mounting a wafer 1 to be processed therein, and is provided with a reaction gas inlet 4 and an exhaust port 5 for etching or film formation. is there. An RF power supply for plasma processing is externally connected to the wafer stage 2 with a cooling mechanism.

【0014】ウエハ1は冷却機構付きウエハステージ2
に収められる。図1(b)に冷却機構付きウエハステー
ジの詳細図を示す。液体窒素容器13を兼ねたウエハステ
ージ12にウエハ1を載せて、これをウエハ押さえ11で保
持する。
The wafer 1 is a wafer stage 2 with a cooling mechanism.
It is stored in. FIG. 1B shows a detailed view of the wafer stage with a cooling mechanism. The wafer 1 is placed on the wafer stage 12 which also serves as the liquid nitrogen container 13, and is held by the wafer retainer 11.

【0015】ウエハ1の温度は裏面からの光ファイバ温
度計9で測定する。ウエハステージ12とウエハ1との間
に窒素ガスを流す冷却用窒素ガス導入口10がある。本発
明の一実施例について説明する。
The temperature of the wafer 1 is measured by an optical fiber thermometer 9 from the back side. Between the wafer stage 12 and the wafer 1, there is a cooling nitrogen gas inlet 10 through which nitrogen gas flows. An embodiment of the present invention will be described.

【0016】本発明の冷却用窒素ガス供給口10を有する
プラズマエッチング装置で、窒素ガスの流量20scc
m、圧力50mTorrの条件で窒素ガスを導入しなが
ら減圧し、ウエハを−40℃に冷却した。その時の冷却
時間は2分であった。
In the plasma etching apparatus having the cooling nitrogen gas supply port 10 of the present invention, the nitrogen gas flow rate is 20 sccc.
The pressure was reduced while introducing nitrogen gas under the conditions of m and a pressure of 50 mTorr, and the wafer was cooled to −40 ° C. The cooling time at that time was 2 minutes.

【0017】本実施例で用いた試料は図2に示した層構
造に、線幅0.5μmのラインアンドスペースのパター
ニングを行ったものである。この層構造はコロージョン
が発生しやすいことが知られている。
The sample used in this example is obtained by patterning the layer structure shown in FIG. 2 with a line and space having a line width of 0.5 μm. It is known that this layer structure easily causes corrosion.

【0018】上記の温度の条件でアルミニウム(Al)
合金膜18のエッチングを行った。その時のエッチングの
条件を図3に示す。その後、アッシング処理を行った試
料を一週間、大気中に放置したが、コロージョンは発生
しなかった。また、この時、ウエハ1及び冷却機構付き
ウエハステージ2には霜が付かなかった。
Aluminum (Al) under the above temperature conditions
The alloy film 18 was etched. The etching conditions at that time are shown in FIG. Then, the ashed sample was left in the atmosphere for one week, but no corrosion occurred. Further, at this time, frost was not formed on the wafer 1 and the wafer stage 2 with the cooling mechanism.

【0019】それに対して第1の比較例として、実施例
と同じ装置で、窒素ガスを導入しないで実施例と同じ試
料を−40℃まで冷却した。その時、冷却に要した時間
は3分だった。この時、ウエハ1及び冷却機構付きウエ
ハステージ2の一部に霜が付着した。
On the other hand, as a first comparative example, the same apparatus as in the example was cooled to −40 ° C. in the same sample as the example without introducing nitrogen gas. At that time, the time required for cooling was 3 minutes. At this time, frost adhered to the wafer 1 and part of the wafer stage 2 with the cooling mechanism.

【0020】この試料を実施例と同じ条件でエッチング
した。さらにアッシング処理を行った後、試料を一週間
大気中に放置すると、コロージョンが発生した。また、
第2の比較例として、実施例と同じ装置を用い、冷却し
ないで減圧し、その後に液体窒素容器13に液体窒素を導
入しウエハを冷却する。
This sample was etched under the same conditions as in the example. After the ashing treatment was further performed, the sample was left in the atmosphere for one week to cause corrosion. Also,
As a second comparative example, the same apparatus as in the example is used, the pressure is reduced without cooling, and then liquid nitrogen is introduced into the liquid nitrogen container 13 to cool the wafer.

【0021】この時の冷却時間とウエハの温度の関係を
図4に示すと、ウエハ1及び冷却機構付きウエハステー
ジ2に霜は発生しなかったが、温度の低下が遅く、また
到達温度が実施例に比べて高かった。
The relationship between the cooling time and the temperature of the wafer at this time is shown in FIG. 4. Frost did not occur on the wafer 1 and the wafer stage 2 with the cooling mechanism, but the temperature drop was slow and the reached temperature was high. It was higher than the example.

【0022】[0022]

【発明の効果】以上説明したように、本発明では、真空
チャンバ内に窒素ガスを導入しながら排気することによ
って、ロードロック室のない真空装置において、真空チ
ャンバ内の冷却機構付きウェハステージでの霜の発生を
防ぎ、また迅速な冷却が可能となる。
As described above, according to the present invention, the nitrogen gas is introduced into the vacuum chamber and exhausted, so that in a vacuum device without a load lock chamber, the wafer stage with a cooling mechanism in the vacuum chamber can be used. Frost is prevented and quick cooling is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の原理説明図FIG. 1 is a diagram illustrating the principle of the present invention.

【図2】 本発明の一実施例に用いた試料FIG. 2 is a sample used in one example of the present invention.

【図3】 本発明の一実施例のエッチング条件FIG. 3 is an etching condition of one embodiment of the present invention.

【図4】 本発明の一実施例の冷却時間とウエハ温度の
関係
FIG. 4 shows the relationship between the cooling time and the wafer temperature according to the embodiment of the present invention.

【図5】 従来例の説明図FIG. 5 is an explanatory diagram of a conventional example.

【符号の説明】[Explanation of symbols]

図において 1 ウエハ 2 冷却機構付きウエハステージ 3 真空チャンバ 4 反応ガス導入口 5 排気口 6 RF電源 7 電極 8 プラズマ 9 光ファイバ温度計 10 冷却用窒素ガス導入口 11 ウエハ押さえ 12 ウエハステージ 13 液体窒素容器 14 Si基板 15 BPSG膜 16 Ti膜 17 TiN膜 18 AlCuTi合金膜 19 スパッタSi膜 20 レジスト膜 In the figure, 1 wafer 2 wafer stage with cooling mechanism 3 vacuum chamber 4 reaction gas introduction port 5 exhaust port 6 RF power source 7 electrode 8 plasma 9 optical fiber thermometer 10 cooling nitrogen gas introduction port 11 wafer holder 12 wafer stage 13 liquid nitrogen container 14 Si substrate 15 BPSG film 16 Ti film 17 TiN film 18 AlCuTi alloy film 19 Sputtered Si film 20 Resist film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体のウエハを冷却する冷却機構付き
ウエハステージを有する真空チャンバを用いる際、該真
空チャンバの排気時に該真空チャンバ内に窒素ガスを流
すことを特徴とする半導体装置の製造方法。
1. A method of manufacturing a semiconductor device, wherein when a vacuum chamber having a wafer stage with a cooling mechanism for cooling a semiconductor wafer is used, nitrogen gas is flown into the vacuum chamber when the vacuum chamber is evacuated.
JP19012795A 1995-07-26 1995-07-26 Manufacture of semiconductor device Withdrawn JPH0945595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19012795A JPH0945595A (en) 1995-07-26 1995-07-26 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19012795A JPH0945595A (en) 1995-07-26 1995-07-26 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0945595A true JPH0945595A (en) 1997-02-14

Family

ID=16252850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19012795A Withdrawn JPH0945595A (en) 1995-07-26 1995-07-26 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0945595A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100337108B1 (en) * 1999-11-09 2002-05-16 정기로 Apparatus for cooling a semiconductor wafer
JP2018181969A (en) * 2017-04-07 2018-11-15 株式会社 天谷製作所 Processing device
JP2021129054A (en) * 2020-02-14 2021-09-02 キオクシア株式会社 Plasma processing apparatus and plasma processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100337108B1 (en) * 1999-11-09 2002-05-16 정기로 Apparatus for cooling a semiconductor wafer
JP2018181969A (en) * 2017-04-07 2018-11-15 株式会社 天谷製作所 Processing device
JP2021129054A (en) * 2020-02-14 2021-09-02 キオクシア株式会社 Plasma processing apparatus and plasma processing method

Similar Documents

Publication Publication Date Title
KR0139793B1 (en) Method of forming conductive layer including removal of native oxide
US7025855B2 (en) Insulation-film etching system
EP0408216A2 (en) Method for processing wafers and producing semiconductor devices and apparatus for producing the same
JP2014090167A (en) Delamination drying apparatus and method
JPH10310870A (en) Plasma cvd device
US6793735B2 (en) Integrated cobalt silicide process for semiconductor devices
US4121241A (en) Multilayer interconnected structure for semiconductor integrated circuit
JPH0945595A (en) Manufacture of semiconductor device
JPH0722393A (en) Dry etching equipment and method
RU98115928A (en) METHOD FOR PRODUCING A SEMICONDUCTOR DEVICE
JP3263132B2 (en) Method for manufacturing semiconductor device
JP3066673B2 (en) Dry etching method
US7517802B2 (en) Method for reducing foreign material concentrations in etch chambers
JPH10116822A (en) Method and device for dry-etching
JPH11354514A (en) Cluster tool device and film formation method
US11859153B2 (en) Method for cleaning substrate and system for cleaning substrate
JPH05267207A (en) Manufacture of semiconductor device
JPS63173331A (en) Manufacture of semiconductor device
JP2917327B2 (en) Cleaning method of the object
JPH07188915A (en) Sputtering device
JPH0669032B2 (en) Plasma processing device
JPS59110119A (en) Surface processing for semiconductor layer
JPH11283963A (en) Semiconductor manufacturing device and semiconductor device manufacturing method using the same
KR20010002684A (en) Method for forming contact of semiconductor device
JPH06140411A (en) Silicon substrate for semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021001