JPH0669032B2 - Plasma processing device - Google Patents

Plasma processing device

Info

Publication number
JPH0669032B2
JPH0669032B2 JP59153414A JP15341484A JPH0669032B2 JP H0669032 B2 JPH0669032 B2 JP H0669032B2 JP 59153414 A JP59153414 A JP 59153414A JP 15341484 A JP15341484 A JP 15341484A JP H0669032 B2 JPH0669032 B2 JP H0669032B2
Authority
JP
Japan
Prior art keywords
aluminum
conductive member
lower electrode
plasma processing
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59153414A
Other languages
Japanese (ja)
Other versions
JPS6156415A (en
Inventor
金剛 高崎
堅二 小山
敦弘 筑根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15561968&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0669032(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59153414A priority Critical patent/JPH0669032B2/en
Publication of JPS6156415A publication Critical patent/JPS6156415A/en
Publication of JPH0669032B2 publication Critical patent/JPH0669032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプラズマ化学気相成長装置を構成する導電部材
の改良に関する。
TECHNICAL FIELD The present invention relates to an improvement of a conductive member constituting a plasma enhanced chemical vapor deposition apparatus.

IC,LSIなどの半導体素子はガリウム砒素(GaA
s)のような化合物半導体あるいはシリコン(Si)の
ような単体半導体からなる単結晶基板(以下略してウエ
ハ)を用い、これに熱処理,不純物の拡散,イオン注入
などを行って半導体領域を形成すると共に薄膜形成技術
と写真食刻技術を用いて半導体素子が作られている。
Semiconductor elements such as IC and LSI are gallium arsenide (GaA).
A single crystal substrate (wafer) made of a compound semiconductor such as s) or a single semiconductor such as silicon (Si) is used, and a semiconductor region is formed by performing heat treatment, diffusion of impurities, ion implantation, or the like. At the same time, semiconductor elements are manufactured by using thin film forming technology and photolithography technology.

すなわちSi半導体を例にとれば導体層としてはアルミ
ニウム(Al),タングステン(W),モリブデン(M
o)などの金属が使用され、スパッタ法,真空蒸着法な
どの薄膜形成方法が使用されており、また絶縁層の形成
には窒化珪素(Si),二酸化珪素(Si
),燐珪酸ガラス(略称PSG)などが用いられ化
学気相成長法(略称CVD)やこれを改良したプラズマ
CVD法を使用して作られている。
That is, taking a Si semiconductor as an example, the conductor layers include aluminum (Al), tungsten (W), molybdenum (M
o) and other metals are used, thin film forming methods such as sputtering and vacuum deposition are used, and silicon nitride (Si 3 N 4 ) and silicon dioxide (Si) are used to form the insulating layer.
O 2 ), phosphosilicate glass (abbreviated as PSG), etc. are used, and are made by using a chemical vapor deposition method (abbreviated as CVD) or a plasma CVD method improved from this.

本発明は絶縁層の形成に使用するプラズマCVD装置の
改良に関するものである。
The present invention relates to improvement of a plasma CVD apparatus used for forming an insulating layer.

〔従来の技術〕[Conventional technology]

CVDは2種類以上のガス状物質を常圧あるいは減圧の
もとで高温で反応させて新しい固体とガス状物質を生成
する反応であり、一方プラズマCVDは2種類以上のガ
ス状物質をプラズマ中で反応させて新しい固体とガス状
物質を比較的低温で形成するものであり、プラズマを利
用することにより反応の際の基板温度を下げることがで
き、また生成される薄膜の熱的損傷を少なく押さえるこ
とができる。
CVD is a reaction in which two or more types of gaseous substances are reacted at high temperature under atmospheric pressure or reduced pressure to generate new solids and gaseous substances, while plasma CVD is the reaction of two or more types of gaseous substances in plasma. Is used to form new solids and gaseous substances at a relatively low temperature by using a plasma, and the plasma can be used to lower the substrate temperature during the reaction, and the thermal damage to the thin film produced is reduced. You can hold it down.

この理由はガス状物質を構成する分子のエネルギは比較
的低いが、低温プラズマ中の電子との衝突によって励起
され、熱的高温状態に置かれたと等価となり、そのため
低温においても有効な化学反応が進行するためである。
The reason for this is that the energy of the molecules that make up the gaseous substance is relatively low, but it is equivalent to being excited by collisions with electrons in the low-temperature plasma and being placed in a thermally high temperature state, so that an effective chemical reaction even at low temperatures occurs. This is to proceed.

第1図はプラズマCVD装置の構成を示すもので、ステ
ンレスあるいはアルミニウム(以下略してアルミ)から
なる反応容器1には反応ガスの導入口2と排出口3があ
り、装置内にはプラズマ放電を行うアルミ製の上部電極
4と下部電極5が設けられており、下部電極5の上には
被処理ウエハ6が載置され、下部電極5の下に備えられ
ているヒータ7により加熱されるようになっている。
FIG. 1 shows the structure of a plasma CVD apparatus. A reaction container 1 made of stainless steel or aluminum (hereinafter abbreviated as aluminum) has an inlet 2 and an outlet 3 for a reaction gas. An upper electrode 4 and a lower electrode 5 made of aluminum are provided. A wafer 6 to be processed is placed on the lower electrode 5 and heated by a heater 7 provided below the lower electrode 5. It has become.

ここで上部電極4と下部電極5は導電部材8を通して高
周波電源9に回路接続されており、例えば13.56MHzの高
周波電流が供給されるようになっている。
Here, the upper electrode 4 and the lower electrode 5 are circuit-connected to a high frequency power source 9 through a conductive member 8 so that, for example, a high frequency current of 13.56 MHz is supplied.

ここでSiからなるウエハ6の上に窒化珪素からなる絶
縁膜を形成する場合を説明すると次のようになる。
The case of forming an insulating film made of silicon nitride on the wafer 6 made of Si will be described below.

反応容器1の導入口2から反応ガスとしてモノシラン
(SiH)とアンモニア(NH)を窒素(N)あ
るいはアルゴン(Ar)ガスをキャリヤとして導入し、
排出口3から排気して中の真空度を1TORRに保つと共に
ヒータ7に通電してウエハ6の温度を300乃至400℃に保
っておく。
Monosilane (SiH 4 ) and ammonia (NH 3 ) are introduced from the inlet 2 of the reaction vessel 1 as a reaction gas by using nitrogen (N 2 ) or argon (Ar) gas as a carrier,
The temperature of the wafer 6 is maintained at 300 to 400 ° C. by evacuating from the exhaust port 3 to maintain the vacuum degree at 1 TORR and energizing the heater 7.

かかる状態でアルミ製の上部電極4と下部電極5の間で
RF放電を行うと、ウエハ6の表面には反応生成物である
窒化珪素(Si,正確にはSi)の成長が
進行し、処理時間を調節することによって所定の厚さの
絶縁層を作ることができる。
In this state, between the aluminum upper electrode 4 and the lower electrode 5,
When RF discharge is performed, the growth of silicon nitride (Si 3 N 4 , to be precise, Si x N y ) which is a reaction product on the surface of the wafer 6 proceeds, and the processing time is adjusted to a predetermined thickness. You can make an insulating layer.

またSiOやPSGなどの絶縁層を作る場合も同様で
あって前者は反応ガスとしてSiHと亜酸化窒素(N
O)を、また後者の場合はSiHとホスフィン(P
)との混合ガスを使用することにより形成すること
ができる。
The same applies to the case of forming an insulating layer such as SiO 2 or PSG. The former case uses SiH 4 and nitrous oxide (N) as reaction gases.
2 O), and in the latter case SiH 4 and phosphine (P
It can be formed by using a mixed gas with H 3 ).

このようにプラズマCVD法によりウエハ6の上に所定
の厚さの絶縁層を形成することができるが、ここで大切
なことは上部電極4と下部電極5の間隔とウエハ6の位
置決めであり、これは反応容器1の導入端子10に接続し
て設けられている導電部材8により行われている。
As described above, the insulating layer having a predetermined thickness can be formed on the wafer 6 by the plasma CVD method. What is important here is the distance between the upper electrode 4 and the lower electrode 5 and the positioning of the wafer 6. This is performed by the conductive member 8 provided so as to be connected to the introduction terminal 10 of the reaction container 1.

そのため導電部材8は機械的強度と熱的強度を備えてい
ることが必要であり、従来はステンレス板材を用いて形
成されていた。
Therefore, the conductive member 8 needs to have mechanical strength and thermal strength, and is conventionally formed of a stainless plate material.

このようにしてプラズマCVDによる絶縁層の形成が行
われているが、気相成長により析出は加熱されたウエハ
6の上に優先的に起こるものの、上下の電極部4,5お
よび周辺部にも起こるために時々反応容器1の中をクリ
ーニングする必要があり、このクリーニングにもプラズ
マ処理法が使用されている。
Although the insulating layer is formed by plasma CVD in this way, although deposition preferentially occurs on the heated wafer 6 due to vapor phase growth, the upper and lower electrode parts 4, 5 and the peripheral part are also formed. In order to occur, it is necessary to clean the inside of the reaction vessel 1 from time to time, and the plasma treatment method is also used for this cleaning.

すなわちフレオン(CF)ガスを導入口2より反応容
器1より導入し、排出口3より先と同様な真空度に排気
しながらRF放電を行うとCF*,CF*,CF*,
F*などのラジカルが発生し、これにより析出していた
絶縁物がドライエッチングされクリーニングされる。
That is, when Freon (CF 4 ) gas is introduced from the reaction vessel 1 through the inlet port 2 and RF discharge is performed while exhausting to the same degree of vacuum as before the outlet port 3, CF 3 *, CF 2 *, CF *,
Radicals such as F * are generated, and the deposited insulator is dry-etched and cleaned.

然し、この際に導電部材8もエッチングされてしまい、
プラズマCVDを行う際に接触不良を生ずると云う問題
がある。
However, at this time, the conductive member 8 is also etched,
There is a problem that poor contact occurs when performing plasma CVD.

第2図は上部電極4と導電部材8と導入端子10との関係
を示す斜視図であり、下部電極5の場合も同様である。
FIG. 2 is a perspective view showing the relationship among the upper electrode 4, the conductive member 8 and the introduction terminal 10, and the same applies to the lower electrode 5.

ここで上部電極4は耐蝕性の見地からアルミ製であり、
一方導電部材8は耐蝕性と共に機械的強度が必要なこと
からステンレスからなる板材が使用されネジ止めなどの
方法で上部電極4と導入端子10に固定されている。
Here, the upper electrode 4 is made of aluminum from the viewpoint of corrosion resistance,
On the other hand, since the conductive member 8 is required to have corrosion resistance and mechanical strength, a plate material made of stainless steel is used and is fixed to the upper electrode 4 and the introduction terminal 10 by a method such as screwing.

このような構成をとるためにCFによるドライエッチ
ングを行うとネジ止めなどの接合部11も同時に浸食さ
れ、これに原因して接触不良が発生してしまう。
When dry etching with CF 4 is performed to take such a configuration, the joint portion 11 such as a screw stop is also eroded at the same time, and this causes contact failure.

そのため従来は定期的に反応容器1のなかの電極4,5
および導電部材8を分解して取り出し、熱硝酸(HNO
)などの強酸を用いてエッチングを行っていた。
Therefore, conventionally, the electrodes 4, 5 in the reaction vessel 1 are regularly
The conductive member 8 is disassembled and taken out, and hot nitric acid (HNO
3 ) Etching was performed using a strong acid such as.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

以上記したようにプラズマCVD法を用いて絶縁層の形
成を行う場合は、ウエハの表面に留まらず、周辺部にも
析出し、これをそのまま放置しておくとキヤリアガスの
中に塵埃となって浮遊し、品質低下の原因となる。
As described above, when the insulating layer is formed by using the plasma CVD method, not only the surface of the wafer but also the peripheral portion is deposited, and if it is left as it is, it becomes dust in the carrier gas. It floats and causes quality deterioration.

そのため容器内のクリーリングが必要であり、CF
用いてドライエッチングを行えば簡単に済むことは判っ
ているが、導電部材の腐食と導入端子での接触不良が発
生するため実施できないことが問題となっていた。
Therefore, it is known that the inside of the container needs to be cleaned, and dry etching using CF 4 can be simply performed, but this cannot be performed because corrosion of the conductive member and poor contact at the introduction terminal occur. It was a problem.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題は半導体素子の絶縁層形成に使用するプラズ
マ化学気相成長装置において、その成長容器内では、放
電電極を保持し且つ高周波電流路を構成する導電部材の
みを、ステンレス基材にアルミニウムのコーティングを
施したものを使用することにより解決することができ
る。
In the plasma chemical vapor deposition apparatus used for forming the insulating layer of the semiconductor element, the above-mentioned problem is that in the growth container, only the conductive member that holds the discharge electrode and constitutes the high-frequency current path is formed on the stainless steel base material of aluminum. It can be solved by using a coated product.

〔作用〕 本発明はCFガスをエッチャントとしてドライエッチ
ングを行う際にアルミからなる放電電極部はエッチング
されず、一方ステンレスがらなる導入部材がエッチング
されることから、ステンレス基材にアルミ被覆を施して
導入部材として使用することによって強度と耐蝕性を具
備させるものである。この際アルミ被覆を導電部材に対
して行なうにはステンレスよりなる反応容器の内壁に対
してもアルミの被覆を行なうと、反応容器を真空引きす
る際にアルミ被覆より脱ガスが生じ、真空引きに長時間
を要してしまうからである。
[Operation] In the present invention, when dry etching is performed using CF 4 gas as an etchant, the discharge electrode portion made of aluminum is not etched, while the introduction member made of stainless steel is etched. By using it as a lead-in member, it has strength and corrosion resistance. At this time, in order to coat the conductive member with aluminum, if the inner wall of the reaction vessel made of stainless steel is also coated with aluminum, degassing occurs from the aluminum coating when the reaction vessel is evacuated, and the reaction is evacuated. This is because it takes a long time.

従って、アルミ被覆を行なっていないステンレス反応容
器内壁においては多少腐食が進行する。
Therefore, corrosion progresses to some extent on the inner wall of the stainless steel reaction vessel not coated with aluminum.

然し、この腐食生成物は弗化炭素ガスのプラズマにより
反応容器内壁に付着している堆積物を除去する際に同時
に除去されるため影響はない。
However, this corrosion product is removed at the same time when the deposits adhering to the inner wall of the reaction vessel are removed by the plasma of the fluorocarbon gas, so there is no effect.

〔実施例〕〔Example〕

本発明は上部電極4および下部電極5を保持すると共に
位置決めの役をする導電部材8は機械的強度が必要なこ
とから従来のようにステンレス鋼をもって形成し、この
表面に厚くアルミを被覆することによって耐蝕性を付与
するもので、この方法としてはアルミの溶融メッキやプ
ラズマ溶射などの方法が適している。
According to the present invention, the conductive member 8 that holds the upper electrode 4 and the lower electrode 5 and also serves as a positioning member needs to have mechanical strength. Therefore, the conductive member 8 is formed of stainless steel as in the prior art, and this surface is thickly coated with aluminum. Corrosion resistance is imparted by the method, and as this method, methods such as aluminum hot-dip plating and plasma spraying are suitable.

例えば実施例として従来のステンレスよりなる導電部材
に脱脂や不動体膜除去などの表面処理を行ったのち、約
1000℃の温度で溶融しているアルミ浴の中に2分間浸漬
することにより約200μmの厚さのアルミ被覆を行うこ
とができる。
For example, as an example, after performing a surface treatment such as degreasing or removing a non-moving body film on a conventional conductive member made of stainless steel,
An aluminum coating with a thickness of about 200 μm can be performed by immersing it in a molten aluminum bath at a temperature of 1000 ° C. for 2 minutes.

このように導電部材8としてアルミをコーティングして
使用すると共に、これをネジ止するネジもアルミ被覆を
施したものを使用することによって充分な耐蝕性を付与
することができる。
As described above, the conductive member 8 is coated with aluminum, and the screw for fixing the conductive member 8 is also coated with aluminum, whereby sufficient corrosion resistance can be imparted.

〔発明の効果〕〔The invention's effect〕

以上記したように本発明の実施によりCFガスを用い
てプラズマCVDを行うドライエッチングが可能とな
り、従来と較べてクリーニング工程の工数削減が可能と
なった。
As described above, by carrying out the present invention, it is possible to perform dry etching in which plasma CVD is performed using CF 4 gas, and it is possible to reduce the number of steps in the cleaning process as compared with the conventional case.

【図面の簡単な説明】[Brief description of drawings]

第1図はプラズマCVD装置の側断面図。 第2図は上部電極と導電部材との関係を示す斜視図であ
る。 図において 1は反応容器、4は上部電極、 5は下部電極、6はウエハ、 8は導電部材、10は導入端子、 11は接合部 である。
FIG. 1 is a side sectional view of a plasma CVD apparatus. FIG. 2 is a perspective view showing the relationship between the upper electrode and the conductive member. In the figure, 1 is a reaction vessel, 4 is an upper electrode, 5 is a lower electrode, 6 is a wafer, 8 is a conductive member, 10 is an introduction terminal, and 11 is a joint.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 筑根 敦弘 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (56)参考文献 特開 昭59−184527(JP,A) 特開 昭59−139628(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Atsuhiro Tsukune 1015 Kamiodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Fujitsu Limited (56) References JP-A-59-184527 (JP, A) JP-A-59- 139628 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】反応ガスの導入口(2)と排気系に繋がる
排出口(3)を備える反応容器(1)の内部に、上部電
極(4)と下部にヒータ(7)を備える下部電極(5)
とが対向して設けられており、該下部電極(5)上に半
導体ウエハ(6)を載置すると共に、前記上部電極
(4)と下部電極(5)とをそれぞれ導電部材(8)を
介して前記反応容器(1)外の高周波電源(9)と回路
接続してなるプラズマ処理装置において、 ステンレスよりなる反応容器(1)内に設けられ、アル
ミニウムよりなる上部電極(4)および下部電極(5)
をそれぞれ保持し、高周波電流路を構成する導電部材
(8)がステンレス基材にアルミニウムをコーティング
してなることを特徴とするプラズマ処理装置。
1. A lower electrode having an upper electrode (4) and a lower heater (7) inside a reaction vessel (1) having a reaction gas inlet (2) and an outlet (3) connected to an exhaust system. (5)
And the semiconductor wafer (6) are placed on the lower electrode (5), and the upper electrode (4) and the lower electrode (5) are respectively provided with conductive members (8). In a plasma processing apparatus, which is circuit-connected to a high-frequency power source (9) outside the reaction vessel (1) via an upper electrode (4) and a lower electrode made of aluminum, which are provided in the reaction vessel (1) made of stainless steel. (5)
The plasma processing apparatus is characterized in that the conductive member (8) for holding each of the above, and forming a high frequency current path is formed by coating a stainless steel base material with aluminum.
【請求項2】前記導電部材(8)を固定するネジが、前
記アルミニウムによりコーティングされてなることを特
徴とする特許請求の範囲第1項記載のプラズマ処理装
置。
2. The plasma processing apparatus according to claim 1, wherein a screw for fixing the conductive member (8) is coated with the aluminum.
JP59153414A 1984-07-24 1984-07-24 Plasma processing device Expired - Fee Related JPH0669032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59153414A JPH0669032B2 (en) 1984-07-24 1984-07-24 Plasma processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59153414A JPH0669032B2 (en) 1984-07-24 1984-07-24 Plasma processing device

Publications (2)

Publication Number Publication Date
JPS6156415A JPS6156415A (en) 1986-03-22
JPH0669032B2 true JPH0669032B2 (en) 1994-08-31

Family

ID=15561968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59153414A Expired - Fee Related JPH0669032B2 (en) 1984-07-24 1984-07-24 Plasma processing device

Country Status (1)

Country Link
JP (1) JPH0669032B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE151199T1 (en) * 1986-12-19 1997-04-15 Applied Materials Inc PLASMA ETCHING DEVICE WITH MAGNETIC FIELD ENHANCEMENT
JP2005167019A (en) 2003-12-03 2005-06-23 Sharp Corp Transistor and cvd device for forming its gate insulating film
JP7044581B2 (en) * 2018-02-20 2022-03-30 株式会社アルバック Corrosion resistant membranes and vacuum parts

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59139628A (en) * 1983-01-31 1984-08-10 Hitachi Ltd Dry etching device
JPS59184527A (en) * 1983-04-05 1984-10-19 Canon Inc Device for gas-phase method

Also Published As

Publication number Publication date
JPS6156415A (en) 1986-03-22

Similar Documents

Publication Publication Date Title
JP3801730B2 (en) Plasma CVD apparatus and thin film forming method using the same
US4563367A (en) Apparatus and method for high rate deposition and etching
US10002745B2 (en) Plasma treatment process for in-situ chamber cleaning efficiency enhancement in plasma processing chamber
JP4514336B2 (en) Substrate processing apparatus and cleaning method thereof
US4526644A (en) Treatment device utilizing plasma
JPH04191379A (en) Plasma treating device
US7481230B2 (en) Plasma processing method and apparatus
JPH0570957A (en) Plasma vapor phase growth device
JPH0669032B2 (en) Plasma processing device
JPH0639709B2 (en) Plasma CVD equipment
JPH1088372A (en) Surface treating device and surface treating method
JPH01188678A (en) Plasma vapor growth apparatus
JP2002064067A (en) Conditioned chamber for improving chemical vapor deposition
JPS6140770Y2 (en)
JPH09326384A (en) Plasma processing system
JP2002060950A (en) Method for improving chemical vapor deposition processing
JPH10223620A (en) Semiconductor manufacturing device
JPH0625859A (en) Cvd film forming device and plasma cleaning method
JP4570186B2 (en) Plasma cleaning method
JP3808339B2 (en) Thin film formation method
JPH0917766A (en) Cleaning method of substrate
JP2891991B1 (en) Plasma CVD equipment
JP2689985B2 (en) Semiconductor device manufacturing method and manufacturing apparatus
JP3261795B2 (en) Plasma processing equipment
JPH06151412A (en) Plasma cvd device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees