JPS6156415A - Plasma treatment equipment - Google Patents

Plasma treatment equipment

Info

Publication number
JPS6156415A
JPS6156415A JP15341484A JP15341484A JPS6156415A JP S6156415 A JPS6156415 A JP S6156415A JP 15341484 A JP15341484 A JP 15341484A JP 15341484 A JP15341484 A JP 15341484A JP S6156415 A JPS6156415 A JP S6156415A
Authority
JP
Japan
Prior art keywords
aluminum
conductor
electrode
coated
conductive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15341484A
Other languages
Japanese (ja)
Other versions
JPH0669032B2 (en
Inventor
Kanetake Takasaki
高崎 金剛
Kenji Koyama
小山 堅二
Atsuhiro Tsukune
敦弘 筑根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15561968&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPS6156415(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59153414A priority Critical patent/JPH0669032B2/en
Publication of JPS6156415A publication Critical patent/JPS6156415A/en
Publication of JPH0669032B2 publication Critical patent/JPH0669032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To enable cleaning simply in a container by using a stainless material coated with aluminum as the conductor of a high frequency current holding a discharge electrode. CONSTITUTION:A top electrode 4 and a bottom electrode 5 made of aluminum for plasma discharge are provided in a reaction container 1 and a wafer 6 to be treated is placed on the bottom electrode 5 and is heated by a heater 7. The top electrode 4 and the bottom electrode 5 are connected to a high frequency power source 9 through a conductor 8. The conductor 8 which holds the electrodes 4, 5 requires mechanical strength and is made of stainless steel the surface of which is coated with thick aluminum for corrosion resistance. A screw for fixing the conductor 8 is also coated with aluminum. This enables dry etching for plasma CVD using CF4 gas and man-hours for cleaning process can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプラズマ化学気相成長装置を構成する導電部材
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a conductive member constituting a plasma chemical vapor deposition apparatus.

IC,LSIなどの半導体素子はガリウム砒素(C,a
 As )のような化合物半導体あるいはシリコン(S
i)のような単体半渾体からなる単結晶基板(以下略し
てウェハ)を用い、これに熱処理。
Semiconductor devices such as ICs and LSIs are made of gallium arsenide (C, a
Compound semiconductors such as As ) or silicon (S
A single-crystal substrate (hereinafter referred to as a wafer) made of a single semicircle as shown in i) is used and subjected to heat treatment.

不純物の拡散、イオン注入などを行って半導体領域を形
成すると共に薄膜形成技術と写真食刻技術を用いて半導
体素子が作られている。
BACKGROUND OF THE INVENTION Semiconductor regions are formed by diffusion of impurities, ion implantation, etc., and semiconductor elements are manufactured using thin film formation technology and photolithography.

すなわちSt半導体を例にとれば導体層としてはアルミ
ニウム(AI )、 タンゲス+7 (W)。
In other words, taking the St semiconductor as an example, the conductor layer is aluminum (AI) and Tanges+7 (W).

モリブデン(Mo)などの金属が使用され、スパッタ法
、真空蒸着法などの薄膜形成方法が使用されており、ま
た絶縁層の形成には窒化珪素(SiコN4)、二酸化珪
素(Si 02 ) 、燐珪酸ガラス(略称PSG)な
どが用いられ化学気相成長法(略称CVD)やこれを改
良したプラズマCVD法を使用して作られている。
Metals such as molybdenum (Mo) are used, and thin film formation methods such as sputtering and vacuum evaporation are used, and silicon nitride (SiCoN4), silicon dioxide (Si 02 ), It uses phosphosilicate glass (abbreviated as PSG) and is manufactured using chemical vapor deposition method (abbreviated as CVD) or plasma CVD method, which is an improved version of this method.

本発明は絶縁層の形成に使用するプラズマCVD装置の
改良に関するものである。
The present invention relates to an improvement of a plasma CVD apparatus used for forming an insulating layer.

〔従来の技術〕[Conventional technology]

CVDは2種類以上のガス状物質を常圧あるいは減圧の
もとで高温で反応させて新しい固体とガス状物質を生成
する反応であり、一方プラズマCVDは2種類以上のガ
ス状物質をプラズマ中で反応させて新しい固体とガス状
物質を比較的低温で形成するものであり°、プラズマを
利用することにより反応の際の基板温度を下げることが
でき、また生成される薄膜の熱的損傷を少なく押さえる
ことができる。
CVD is a reaction in which two or more gaseous substances are reacted at high temperature under normal pressure or reduced pressure to produce a new solid and gaseous substance, while plasma CVD is a reaction in which two or more gaseous substances are reacted in a plasma. By using plasma, the substrate temperature during the reaction can be lowered and the resulting thin film can be prevented from being thermally damaged. You can hold down less.

この理由はガス状物質を構成する分子のエネルギは比較
的低いが、低温プラズマ中の電子との衝突によって励起
され、熱的高温状態に置かれたと等価となり、そのため
低温においても有効な化学反応が進行するためである。
The reason for this is that although the molecules that make up the gaseous substance have relatively low energy, they are excited by collisions with electrons in the low-temperature plasma, which is equivalent to being placed in a thermally high temperature state, and therefore effective chemical reactions occur even at low temperatures. This is to progress.

第1図はプラズマCVD装置の構成を示すもので、ステ
ンレスあるいはアルミニウム(以下略してアルミ)から
なる反応容器1には反応ガスの導入口2と排出口3があ
り、装置内にはプラズマ放電を行うアルミ製の上部電極
4と下部電極5が設けられており、下部電極5の上には
被処理ウェハ6がi!置され、下部電極5の下に備えら
れているヒータ7により加熱されるようになっている。
Figure 1 shows the configuration of a plasma CVD apparatus. A reaction vessel 1 made of stainless steel or aluminum (hereinafter abbreviated as aluminum) has a reaction gas inlet 2 and an outlet 3, and a plasma discharge is carried out inside the apparatus. An upper electrode 4 and a lower electrode 5 made of aluminum are provided for processing, and a wafer 6 to be processed is placed on the lower electrode 5. and is heated by a heater 7 provided under the lower electrode 5.

ここで上部電極4と下部電極5は導電部材8を通して高
周波電源9に回路接続されており、例えば13.56 
MHzの高周波電流が供給されるように1     な
っている。
Here, the upper electrode 4 and the lower electrode 5 are circuit-connected to a high frequency power source 9 through a conductive member 8, for example, 13.56
1 so that a high frequency current of MHz is supplied.

ここでSiからなるウェハ6の上に窒化珪素からなる絶
縁膜を形成する場合を説明すると次のようになる。
Here, the case where an insulating film made of silicon nitride is formed on the wafer 6 made of Si will be explained as follows.

反応容器1の導入口2.から反応ガスとしてモノシラン
(SiHa)とアンモニア(NH3)を窒素(N2)あ
るいはアルゴン(Ar )ガスをキャリヤとして導入し
、排出口3から排気して中の真空度をI TORHに保
つと共にヒータ7に通電してウェハ6の温度を300乃
至400℃に保っておく。
Inlet port 2 of reaction vessel 1. Monosilane (SiHa) and ammonia (NH3) are introduced as reaction gases from the reactor, and nitrogen (N2) or argon (Ar) gas is introduced as a carrier. Electricity is supplied to maintain the temperature of the wafer 6 at 300 to 400°C.

かかる状態でアルミ製の上部電極4と下部電極5の間で
RF放電を行うと、ウェハ6の表面には反応生成物であ
る窒化珪素(Si3Na、正確にはSt 、4N、)の
成長が進行し、処理時間を調節することによって所定の
厚さの絶縁層を作ることができる。
When RF discharge is performed between the upper electrode 4 and the lower electrode 5 made of aluminum in such a state, the growth of silicon nitride (Si3Na, to be precise, St, 4N,), which is a reaction product, progresses on the surface of the wafer 6. However, by adjusting the processing time, an insulating layer of a predetermined thickness can be formed.

また5i02やPSGなどの絶縁層を作る場合も同様で
あって前者は反応ガスとしてSi H4と亜酸化窒素(
N20)を、また後者の場合はSi1・とホスフィ7(
PH・)と0混合97を使用      1することに
より形成することができる。
The same is true when making insulating layers such as 5i02 and PSG; the former uses SiH4 and nitrous oxide (
N20), or in the latter case, Si1 and phosphine7 (
It can be formed by using a mixture of PH・) and 0.

このようにプラズマCVD法によりウェハ6の上に所定
の厚さの絶縁層を形成することができるが、ここで大切
なことは上部電極4と下部電極5の間隔とウェハ6の位
置決めであり、これは反応容器1の導入端子10に接続
して設けられている導電部材8により行われている。
As described above, an insulating layer of a predetermined thickness can be formed on the wafer 6 by the plasma CVD method, but what is important here is the distance between the upper electrode 4 and the lower electrode 5 and the positioning of the wafer 6. This is done by a conductive member 8 connected to the introduction terminal 10 of the reaction vessel 1.

そのため導電部材8は機械的強度と熱的強度を備えてい
ることが必要であり、従来はステンレス板材を用いて形
成されていた。
Therefore, the conductive member 8 needs to have mechanical strength and thermal strength, and has conventionally been formed using a stainless steel plate.

このようにしてプラズマCVDによる客色縁層の形成が
行われているが、気相成長により析出は加熱されたウェ
ハ6の上に優先的に起こるものの、上下の電極部4,5
および周辺部にも起こるために時々反応容器lの中をク
リーニングする必要があり、このクリーニングにもプラ
ズマ処理法が使用されている。
In this manner, the formation of the color edge layer is performed by plasma CVD, and although the deposition occurs preferentially on the heated wafer 6 due to vapor phase growth,
This also occurs in the surrounding areas, so it is necessary to clean the inside of the reaction vessel from time to time, and plasma treatment is also used for this cleaning.

すなわちフレオン(CF4)ガスを導入口2より反応容
器1より導入し、排出口3より先と同様な真空度に排気
しなからRF7ii電を行うとCF’、 *。
That is, when Freon (CF4) gas is introduced from the reaction vessel 1 through the inlet 2 and evacuated to the same degree of vacuum as before through the outlet 3, RF7ii electrolysis is performed, CF', *.

CF2 *、CF*、Flgなどのラジカルが発生し、
これにより析出していた絶縁物がドライエツチングされ
クリ−リングされる。
Radicals such as CF2*, CF*, and Flg are generated,
As a result, the precipitated insulator is dry etched and cleared.

然し、この際に導電部材8もエツチングされてしまい、
プラズマCVDを行う際に接触不良を生ずると云う問題
がある。
However, at this time, the conductive member 8 was also etched,
There is a problem that poor contact occurs when plasma CVD is performed.

第2図は上部電極4と導電部材8と導入端子lOとの関
係を示す斜視図であり、下部電極5の場合も同様である
FIG. 2 is a perspective view showing the relationship between the upper electrode 4, the conductive member 8, and the introduction terminal IO, and the same applies to the lower electrode 5.

ここで上部電極4は耐蝕性の見地からアルミ製であり、
一方導電部材8は耐蝕性と共に機械的強度が必要なこと
からステンレスからなる板材が使用されネジ止めなどの
方法で上部電極4と導入、、iti子10に固定されて
いる。
Here, the upper electrode 4 is made of aluminum from the viewpoint of corrosion resistance.
On the other hand, since the conductive member 8 requires corrosion resistance and mechanical strength, a plate made of stainless steel is used, and is fixed to the upper electrode 4 and the electrode 10 by screwing or the like.

このような構成をとるためにCF4によるドライエツチ
ングを行うとネジ止めなどの接合部11も同時に浸食さ
れ、これに原因して接触不良が発生してしまう。
When dry etching with CF4 is performed to obtain such a structure, the joints 11 such as screws are also eroded at the same time, resulting in poor contact.

そのため従来は定期的に反応容器1のなかの電極4,5
および導電部材8を分解して取り出し、熱硝酸(HNO
3)などの強酸を用いてエツチングを行っていた。
Therefore, conventionally, the electrodes 4 and 5 in the reaction vessel 1 were periodically
Then, the conductive member 8 is disassembled and taken out, and heated with hot nitric acid (HNO).
Etching was performed using strong acids such as 3).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上記したようにプラズマCVD法を用いて絶縁層の形
成を行う場合は、ウェハの表面に留まらず、周辺部にも
析出し、これをそのまま放置しておくとキャリアガスの
中に塵埃となって浮遊し、品質低下の原因となる。
As mentioned above, when an insulating layer is formed using the plasma CVD method, it does not remain on the surface of the wafer, but also deposits on the periphery, and if left as is, it becomes dust in the carrier gas. and float, causing quality deterioration.

そのため容器内のクリ−リングが必要であり、CF4を
用いてドライエツチングを行えばM単に済むことは判っ
ているが、導電部材の腐食と導入端子での接触不良が発
生するため実施できないことが問題となっていた。
Therefore, it is necessary to clean the inside of the container, and although it is known that dry etching using CF4 can be done with just M, this is not possible due to corrosion of the conductive member and poor contact at the lead-in terminal. It was a problem.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題は半扉体素子の絶縁層形成に使用するプラズ
マ化学気相成長装置において、該装置内に設けられ、放
電電極を保持し且つ高周波電流路を構成する導電部材と
してステンレス基材にアルミニウムのコーティングを施
したものを使用することにより解決することができる。
The above problem occurs in a plasma chemical vapor deposition apparatus used to form an insulating layer of a half-gate element. This can be solved by using a product coated with

町 〔作用〕 本発明はCF4ガスをエッチャントとしてドライエツチ
ングを行う際にアルミからなる放電電極部はエツチング
されず、一方ステンレスからなる導入部材がエツチング
されることから、ステンレス基材にアルミ被覆を施して
導入部材として使用することによって強度と耐蝕性を具
備させるものである。
[Function] In the present invention, when performing dry etching using CF4 gas as an etchant, the discharge electrode part made of aluminum is not etched, but the introduction member made of stainless steel is etched, so the stainless steel base material is coated with aluminum. By using it as an introduction member, it provides strength and corrosion resistance.

〔実施例〕〔Example〕

本発明は上部電極4および下部電極5を保持すると共に
位置決めの役をする導電部材8は機械的強度が必要なこ
とから従来のようにステンレス鋼をもって形成し、この
表面に厚くアルミを被覆することによって耐蝕性を付与
するもので、この方法としてはアルミ゛の溶融メッキ・
やプラズマ溶射などの方法が適している。
In the present invention, the conductive member 8 that holds the upper electrode 4 and the lower electrode 5 and serves for positioning is required to have mechanical strength, so it is formed of stainless steel as in the past, and its surface is thickly coated with aluminum. This method provides corrosion resistance by hot-dip aluminum plating.
Methods such as or plasma spraying are suitable.

例えば実施例として従来のステンレスよりなる導電部材
に脱脂や不動体膜除去などの表面処理を行ったのち、約
1000℃の温度で溶融しているアルミ浴の中に2分間
浸漬することにより約200μmi)の厚さのアルミ被
覆を行うことができる。
For example, as an example, a conductive member made of conventional stainless steel is subjected to surface treatment such as degreasing and removal of a passive film, and then immersed in an aluminum bath molten at a temperature of about 1000°C for 2 minutes to form a conductive member of about 200 μm. ) can be coated with aluminum.

このように導電部材8としてアルミをコーティングして
使用すると共に、これをネジ化するネジもアルミ被覆を
施したものを使用することによって充分な耐蝕性を付与
することができる。
In this way, sufficient corrosion resistance can be imparted by using a coated aluminum as the conductive member 8 and also using a screw for threading the conductive member 8 coated with aluminum.

〔発明の効果〕〔Effect of the invention〕

以上記したように本発明の実施によりCF、ガスを用い
てプラズマCVDを行うドライエツチングが可能となり
、従来と較べてクリーニング工程の工数削減が可能とな
った。
As described above, by carrying out the present invention, dry etching using plasma CVD using CF and gas becomes possible, and the number of steps in the cleaning process can be reduced compared to the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はプラズマCVD装置の側断面図。 第2図は上部電極と導電部材との関係を示す斜視図であ
る。 図において 1は反応容器、     4は上部電極、5は下部電極
、      6はウェハ、8は導電部材、     
10は導入端子、11は接合部 である。 第1IM
FIG. 1 is a side sectional view of the plasma CVD apparatus. FIG. 2 is a perspective view showing the relationship between the upper electrode and the conductive member. In the figure, 1 is a reaction vessel, 4 is an upper electrode, 5 is a lower electrode, 6 is a wafer, 8 is a conductive member,
10 is an introduction terminal, and 11 is a joint portion. 1st IM

Claims (1)

【特許請求の範囲】[Claims] 半導体素子の絶縁層形成に使用するプラズマ化学気相成
長装置において、該装置内に設けられ、放電電極を保持
し且つ高周波電流路を構成する導電部材がステンレス基
材にアルミニウムをコーティングしてなることを特徴と
するプラズマ処理装置。
In a plasma chemical vapor deposition apparatus used for forming an insulating layer of a semiconductor element, a conductive member installed in the apparatus, which holds a discharge electrode and constitutes a high-frequency current path, is made of a stainless steel base material coated with aluminum. A plasma processing device featuring:
JP59153414A 1984-07-24 1984-07-24 Plasma processing device Expired - Fee Related JPH0669032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59153414A JPH0669032B2 (en) 1984-07-24 1984-07-24 Plasma processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59153414A JPH0669032B2 (en) 1984-07-24 1984-07-24 Plasma processing device

Publications (2)

Publication Number Publication Date
JPS6156415A true JPS6156415A (en) 1986-03-22
JPH0669032B2 JPH0669032B2 (en) 1994-08-31

Family

ID=15561968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59153414A Expired - Fee Related JPH0669032B2 (en) 1984-07-24 1984-07-24 Plasma processing device

Country Status (1)

Country Link
JP (1) JPH0669032B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63283024A (en) * 1986-12-19 1988-11-18 アプライド マテリアルズ インコーポレーテッド Magnetic field accelerated plasma etching reactor
WO2005055325A1 (en) * 2003-12-03 2005-06-16 Sharp Kabushiki Kaisha Transistor and cvd apparatus used for forming gate insulating film thereof
JP2019143188A (en) * 2018-02-20 2019-08-29 株式会社アルバック Anticorrosive film, and vacuum article

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59139628A (en) * 1983-01-31 1984-08-10 Hitachi Ltd Dry etching device
JPS59184527A (en) * 1983-04-05 1984-10-19 Canon Inc Device for gas-phase method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59139628A (en) * 1983-01-31 1984-08-10 Hitachi Ltd Dry etching device
JPS59184527A (en) * 1983-04-05 1984-10-19 Canon Inc Device for gas-phase method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63283024A (en) * 1986-12-19 1988-11-18 アプライド マテリアルズ インコーポレーテッド Magnetic field accelerated plasma etching reactor
WO2005055325A1 (en) * 2003-12-03 2005-06-16 Sharp Kabushiki Kaisha Transistor and cvd apparatus used for forming gate insulating film thereof
JP2005167019A (en) * 2003-12-03 2005-06-23 Sharp Corp Transistor and cvd device for forming its gate insulating film
US7557416B2 (en) 2003-12-03 2009-07-07 Sharp Kabushiki Kaisha Transistor and CVD apparatus used to deposit gate insulating film thereof
JP2019143188A (en) * 2018-02-20 2019-08-29 株式会社アルバック Anticorrosive film, and vacuum article

Also Published As

Publication number Publication date
JPH0669032B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
US5581874A (en) Method of forming a bonding portion
US5015330A (en) Film forming method and film forming device
KR100355914B1 (en) Direct Circuit Manufacturing Method Using Low Temperature Plasma
CN110473802A (en) Utilize the equipment and its application method of hydroperoxyl radical
US5626678A (en) Non-conductive alignment member for uniform plasma processing of substrates
JPH07118855A (en) Method of depositing composite coating film
KR20060115926A (en) Substrate processing apparatus with a surface-treated showerhead and method of cleaning a processing chamber
JPH0277578A (en) Thin film forming device
KR100727205B1 (en) Plasma deposition method and system
JPH02159027A (en) Plasma treatment device
US20040099634A1 (en) Plasma processing method and apparatus
JPS6156415A (en) Plasma treatment equipment
JPH0570957A (en) Plasma vapor phase growth device
JPH11330047A (en) Etching apparatus and method thereof
JPS6114726A (en) Treatment of semiconductor substrate
JPS6140770Y2 (en)
JP2021048390A (en) Etching method, plasma processing apparatus, and substrate processing system
JPH01188678A (en) Plasma vapor growth apparatus
JPS62218577A (en) Electrode for vapor phase reactor
JPH1167740A (en) Heater and semiconductor manufacturing device using heater
JP7254437B2 (en) Methods for conditioning silicon parts
JPH03224222A (en) Film formation
JPH0214523A (en) Treatment by plasma
JP2001102345A (en) Method and device for treating surface
JP2689985B2 (en) Semiconductor device manufacturing method and manufacturing apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees