JPH0941071A - Wear resistant sintered oilless bearing low in mating attackability - Google Patents
Wear resistant sintered oilless bearing low in mating attackabilityInfo
- Publication number
- JPH0941071A JPH0941071A JP21804395A JP21804395A JPH0941071A JP H0941071 A JPH0941071 A JP H0941071A JP 21804395 A JP21804395 A JP 21804395A JP 21804395 A JP21804395 A JP 21804395A JP H0941071 A JPH0941071 A JP H0941071A
- Authority
- JP
- Japan
- Prior art keywords
- distributed
- ferrite phase
- alloy
- component
- sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Powder Metallurgy (AREA)
- Sliding-Contact Bearings (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、相手材である回
転軸に対するなじみ性にすぐれ、かつ自己潤滑性にもす
ぐれているので、苛酷な条件下での実用に際しても、き
わめて低い相手攻撃性で、すぐれた耐摩耗性を示す焼結
含油軸受に関するものである。BACKGROUND OF THE INVENTION The present invention has excellent compatibility with a rotating shaft, which is a mating material, and excellent self-lubricating property. Therefore, even when it is put to practical use under severe conditions, it has a very low mating attack. The present invention relates to a sintered oil-impregnated bearing showing excellent wear resistance.
【0002】[0002]
【従来の技術】従来、一般に各種駆動装置には、相手材
である回転軸の支持部材として焼結含油軸受が用いられ
ており、この焼結含油軸受が、重量%で(以下、組成に
関する%は重量%を示す)、Fe:40〜60%、S
n:0.1〜5%、C:0.1〜2%を含有し、残りが
Cuと不可避不純物からなる組成、並びに図3に組織拡
大模写図で示されるように、Cu−Sn系合金の素地に
パーライト相が分散分布した組織を有し、さらに10〜
30%の気孔率を有する多孔質Cu−Fe−Sn系焼結
合金の気孔に含油したものからなることも良く知られる
ところである。2. Description of the Related Art Conventionally, a sintered oil-impregnated bearing has been generally used as a supporting member for a rotating shaft, which is a mating member, in various drive devices. Indicates weight%), Fe: 40 to 60%, S
A composition containing n: 0.1 to 5%, C: 0.1 to 2%, and the balance of Cu and inevitable impurities, and a Cu-Sn alloy as shown in FIG. Has a structure in which the pearlite phase is dispersedly distributed in the base material of
It is well known that the porous Cu—Fe—Sn based sintered alloy having a porosity of 30% is made by impregnating the pores with oil.
【0003】[0003]
【発明が解決しようとする課題】一方、近年の駆動装置
の高性能化および小型化、さらに高出力化はめざまし
く、これに伴ない、駆動装置の構造部材である回転軸の
回転は高速化し、かつこれへの負荷は高荷重となる傾向
にあるが、上記の従来焼結含油軸受においては、これを
構成する多孔質Cu−Fe−Sn系焼結合金が、図3に
示される通り素地中に存在するパーライト相が原因で、
相手材である回転軸に対するなじみ性が低く、さらに自
己潤滑性も十分でなく、したがって高速回転および高荷
重条件では相手攻撃性が強く現われ、かつ摩耗進行も加
速されるようになるのが避けられないのが現状である。On the other hand, in recent years, the performance and size of the drive unit have been remarkably increased and the output thereof has been increased. As a result, the rotational speed of the rotary shaft, which is a structural member of the drive unit, has been increased. And the load on this tends to be high, but in the above-mentioned conventional sintered oil-impregnated bearing, the porous Cu-Fe-Sn-based sintered alloy constituting the same is used as shown in FIG. Due to the pearlite phase present in
It has low compatibility with the rotating shaft that is the mating material, and also has insufficient self-lubricating properties. Therefore, under high-speed rotation and high load conditions, it is possible to avoid strong mating aggression and accelerate the progress of wear. The current situation is that there are none.
【0004】[0004]
【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、特になじみ性および自己潤滑性
のすぐれた焼結含油軸受を開発すべく、特に上記の従来
焼結含油軸受に着目し研究を行なった結果、上記の従来
焼結含油軸受を構成する多孔質Cu−Fe−Sn系焼結
合金に、合金成分としてSとBを含有させると、前記S
成分が核となって遊離黒鉛が析出し、この遊離黒鉛の成
長をB成分が促進するように作用することから、前記多
孔質Cu−Fe−Sn系焼結合金は、図1に組織拡大模
写図で示される通り、Cu−Sn系合金の素地に、硬質
のパーライト相に代って主体がFeのフェライト相が分
散分布し、このフェライト相内の結晶粒界にそってS成
分が核となって成長した微細な遊離黒鉛が分散分布し、
かつフェライト相の表面および結晶粒界にそってB成分
が分布した組織をもつようになり、この結果の多孔質C
u−Fe−Sn系焼結合金は、軟質のフェライト相と遊
離黒鉛によってすぐれたなじみ性と自己潤滑性をもち、
さらに前記多孔質Cu−Fe−Sn系焼結合金に硫化モ
リブデン(以下、MoS2 で示す)を含有させると、同
じく図2の組織拡大模写図で示される通り、フェライト
相と素地の界面部に分布して自己潤滑性が一段と向上し
たものになることから、焼結含油軸受として高速回転お
よび高荷重条件での実用に際しても相手攻撃性が著しく
低く、かつすぐれた耐摩耗性を発揮するという研究結果
を得たのである。Means for Solving the Problems Accordingly, the present inventors have
From the above-mentioned viewpoints, as a result of conducting research to develop a sintered oil-impregnated bearing excellent in conformability and self-lubrication, focusing on the above-mentioned conventional sintered oil-impregnated bearing, as a result, the above-mentioned conventional sintered oil-impregnated bearing was obtained. When S and B are contained as alloy components in the porous Cu-Fe-Sn-based sintered alloy that constitutes
Since the component serves as a nucleus to precipitate free graphite, and the component B acts to promote the growth of the free graphite, the porous Cu—Fe—Sn based sintered alloy is shown in FIG. As shown in the figure, a ferrite phase of Fe as a main component is dispersedly distributed in place of the hard pearlite phase in the base material of the Cu-Sn alloy, and the S component forms nuclei along the crystal grain boundaries in the ferrite phase. The fine free graphite that has grown up is distributed and distributed,
In addition, it has a structure in which the B component is distributed along the surface of the ferrite phase and the crystal grain boundaries.
The u-Fe-Sn based sintered alloy has excellent compatibility and self-lubricity due to the soft ferrite phase and free graphite.
Further, when molybdenum sulfide (hereinafter referred to as MoS 2 ) is added to the porous Cu—Fe—Sn based sintered alloy, as shown in the enlarged structure diagram of FIG. Since it is distributed and the self-lubricating property is further improved, it is a research that it shows extremely low opponent attack and excellent wear resistance even when it is used as a sintered oil-impregnated bearing under high speed rotation and high load conditions. The result was obtained.
【0005】この発明は、上記の研究結果にもとづいて
なされたものであって、Fe:40〜60%、 S
n:0.1〜5%、C:0.1〜2%、 S:
0.05〜1%、B:0.01〜0.5%、を含有し、
さらに必要に応じて、MoS2 :0.5〜2%、を含有
し、残りがCuと不可避不純物からなる組成、Cu−S
n系合金の素地に、フェライト相が分散分布し、かつ前
記フェライト相内にはS成分を核として成長した遊離黒
鉛が分散分布し、さらに前記フェライト相の表面および
結晶粒界にそってB成分が分布し、必要に応じて前記素
地とフェライト相の界面部にMoS2 が分布した組織、
および10〜30%の気孔率、を有する多孔質Cu−F
e−Sn系焼結合金で構成してなる、相手攻撃性の低い
耐摩耗性焼結含油軸受に特徴を有するものである。The present invention was made based on the above research results, and Fe: 40 to 60%, S
n: 0.1 to 5%, C: 0.1 to 2%, S:
0.05 to 1%, B: 0.01 to 0.5%,
Further, if necessary, a composition containing MoS 2 : 0.5 to 2% and the balance Cu and inevitable impurities, Cu-S.
The ferrite phase is dispersed and distributed in the base material of the n-based alloy, and free graphite grown with the S component as a nucleus is distributed and distributed in the ferrite phase, and the B component is further distributed along the surface of the ferrite phase and the grain boundaries. And a structure in which MoS 2 is distributed at the interface between the green body and the ferrite phase, if necessary,
And porous Cu-F having a porosity of 10 to 30%
The present invention is characterized by a wear-resistant sintered oil-impregnated bearing that is made of an e-Sn-based sintered alloy and has low opponent attack.
【0006】つぎに、この発明の焼結含油軸受におい
て、これを構成する多孔質Cu−Fe−Sn系焼結合金
の成分組成および気孔率を上記の通りに限定した理由を
説明する。 (a) Fe Fe成分には、素地に分散分布するフェライト相を形成
してなじみ性を向上させる作用があるが、その割合が4
0%未満では相対的にフェライト相の割合が少なくなり
すぎて、所望の耐摩耗性を確保することができず、一方
その割合が60%を越えると、相対的に素地の割合が少
なくなりすぎて強度が低下するようになることから、そ
の割合を40〜60%、望ましくは45〜55%と定め
た。Next, in the sintered oil-impregnated bearing of the present invention, the reason why the component composition and porosity of the porous Cu-Fe-Sn sintered alloy constituting the same are limited as described above will be explained. (A) Fe The Fe component has a function of forming a ferrite phase dispersedly distributed in the matrix to improve the conformability, but the proportion thereof is 4
If it is less than 0%, the proportion of the ferrite phase becomes too small, and the desired wear resistance cannot be secured, while if it exceeds 60%, the proportion of the base material becomes too small. As a result, the strength is lowered, so the ratio is set to 40 to 60%, preferably 45 to 55%.
【0007】(b) Sn Sn成分には、Cuに固溶して素地のCu−Sn系合金
を形成し、強度を向上させる作用があるが、その割合が
0.1%未満では所望の強度を確保することができず、
一方その割合が5%を越えると素地に脆化傾向が現わ
れ、相手攻撃性が増すようになることから、その割合を
0.1〜5%、望ましくは1〜3%と定めた。(B) Sn The Sn component has the function of forming a solid solution with Cu to form a Cu-Sn alloy of the base material and improving the strength, but if the proportion is less than 0.1%, the desired strength is obtained. Could not be secured,
On the other hand, if the ratio exceeds 5%, the base material tends to become brittle and the attacking property of the opponent increases, so the ratio was set to 0.1 to 5%, preferably 1 to 3%.
【0008】(c) C C成分には、SとB成分の作用でフェライト相内の粒界
に微細な遊離黒鉛として析出し、かつ成長して自己潤滑
性を向上させる作用があるが、その割合が0.1%未満
では遊離黒鉛の分布割合が少なすぎて所望の自己潤滑性
を確保することができず、一方その割合が2%を越える
と完全な黒鉛化が困難になり、セメンタイトが析出する
ようになって相手攻撃性が高くなることから、その割合
を0.1〜2%、望ましくは0.5〜1.5%と定め
た。(C) CC The C component has the function of precipitating as fine free graphite at the grain boundaries in the ferrite phase by the action of the S and B components and growing to improve the self-lubricating property. If the ratio is less than 0.1%, the distribution ratio of free graphite is too small to secure the desired self-lubricating property. On the other hand, if the ratio exceeds 2%, complete graphitization becomes difficult and cementite becomes The ratio of attack is increased to 0.1 to 2%, preferably 0.5 to 1.5%, since the attacking property of the other party becomes high due to precipitation.
【0009】(d) S S成分は、上記の通り遊離黒鉛の析出には不可欠の成分
であり、したがってその割合が0.05%未満では黒鉛
化が不十分となって所望の自己潤滑性が得られず、その
分セメンタイトが析出して相手攻撃性を増すようにな
り、一方その割合が1%を越えると急激に脆化し、強度
が低下するようになることから、その割合を0.05〜
1%、望ましくは0.2〜0.7%と定めた。(D) The S S component is an essential component for the precipitation of free graphite as described above. Therefore, if the proportion thereof is less than 0.05%, graphitization becomes insufficient and the desired self-lubricating property is not obtained. When the ratio exceeds 0.05%, the cementite precipitates to increase the attacking property of the opponent, and when the ratio exceeds 1%, the strength is reduced. ~
It was set to 1%, preferably 0.2 to 0.7%.
【0010】(e) B B成分には、フェライト相の表面および結晶粒界にそっ
て分布して、フェライト相内の粒界にS成分を核として
析出した遊離黒鉛を成長させる、いいかえればパーライ
ト相のセメンタイトを黒鉛化して前記パーライト相をフ
ェライト相と遊離黒鉛にする作用があるが、その割合が
0.01%未満では黒鉛化が不十分で、残留パーライト
による相手攻撃性は避けられず、かつ所望の自己潤滑性
も得られず、一方その割合が0.5%を越えると焼結性
が低下し高強度を確保することができなくなることか
ら、その割合を0.01〜0.5%、望ましくは0.1
〜0.3%と定めた。(E) BB The B component is distributed along the surface of the ferrite phase and the crystal grain boundaries, and free graphite deposited with the S component as a nucleus is grown at the grain boundaries in the ferrite phase. In other words, pearlite. There is an action of graphitizing cementite in the phase to convert the pearlite phase into a ferrite phase and free graphite, but if the ratio is less than 0.01%, graphitization is insufficient, and the opponent attack by residual pearlite is unavoidable. Moreover, the desired self-lubricating property cannot be obtained, and on the other hand, when the ratio exceeds 0.5%, the sinterability is deteriorated and high strength cannot be secured, so the ratio is 0.01 to 0.5. %, Preferably 0.1
It was set at 0.3%.
【0011】(f) MoS2 MoS2 成分には、上記の通り素地とフェライト相の界
面部に分布して自己潤滑性を一段と向上させる作用があ
るので必要に応じて含有されるが、その割合が0.5%
未満では前記作用に所望の効果が得られず、一方その割
合が2%を越えると強度が急激に低下するようになるこ
とから、その割合を0.5〜2%、望ましくは0.5〜
1.5%と定めた。(F) MoS 2 The MoS 2 component is contained as necessary because it has a function of improving the self-lubricating property by being distributed in the interface between the matrix and the ferrite phase as described above. Is 0.5%
If the ratio is less than the above, the desired effect cannot be obtained, while if the ratio exceeds 2%, the strength rapidly decreases. Therefore, the ratio is 0.5 to 2%, preferably 0.5 to
It was set at 1.5%.
【0012】(g) 気孔率 気孔には浸油して軸受の摺動特性を高めるが、その気孔
率が10%未満では浸油による摺動特性向上効果を十分
に発揮させることができず、一方その気孔率が30%を
越えると、強度低下が著しいことから、その気孔率を1
0〜30%、望ましくは15〜25%と定めた。(G) Porosity Although the pores are immersed in oil to enhance the sliding characteristics of the bearing, if the porosity is less than 10%, the sliding characteristics improving effect due to oil immersion cannot be sufficiently exerted. On the other hand, when the porosity exceeds 30%, the strength is remarkably reduced, so the porosity is set to 1
It was set to 0 to 30%, preferably 15 to 25%.
【0013】[0013]
【発明の実施の形態】つぎに、この発明の焼結含油軸受
を実施例により具体的に説明する。原料粉末として、粒
度:−100メッシュのアトマイズFe−S合金(S:
0.3%含有)粉末、同−100メッシュのアトマイズ
Fe粉末、同−150メッシュの電解Cu粉末、同−1
00メッシュのSn粉末、同−100メッシュのCu−
Sn合金(Sn:9%含有)粉末、同−150メッシュ
のりん片状黒鉛粉末、同−100メッシュのFe−B合
金(B:5%含有)粉末、および同−100メッシュの
MoS2 粉末を用意し、これら原料粉末を表1,2に示
される配合組成に配合し、これに潤滑剤として0.4%
のステアリン酸亜鉛を添加してV型ミキサーにて30分
間混合した後、2〜3ton/cm2 の範囲内の所定の圧力で
圧粉体にプレス成形し、この圧粉体を、アンモニア分解
ガス雰囲気中、850〜950℃の範囲内の所定温度に
30分間保持の条件で焼結して、同じく表1,2に示さ
れる気孔率および配合組成と実質的に同一の成分組成を
もった多孔質Cu−Fe−Sn系焼結合金本体を形成
し、これに合成油を真空浸油することにより、いずれも
外径:16mmφ×内径:8mmφ×長さ:8mmの寸法を有
し、かつ前記多孔質Cu−Fe−Sn系焼結合金本体が
図1,2に示される組織をもった本発明焼結含油軸受1
〜15、並びに同じく図3に示される組織をもった従来
焼結含油軸受1〜7をそれぞれ製造した。BEST MODE FOR CARRYING OUT THE INVENTION Next, the sintered oil-impregnated bearing of the present invention will be specifically described with reference to Examples. As a raw material powder, atomized Fe-S alloy (S:
0.3% included) powder, atomized Fe powder of the same-100 mesh, electrolytic Cu powder of the same-150 mesh, same-1
00 mesh Sn powder, -100 mesh Cu-
Sn alloy (Sn: 9% content) powder, -150 mesh flaky graphite powder, -100 mesh Fe-B alloy (B: 5% content) powder, and -100 mesh MoS 2 powder. Prepare and mix these raw material powders with the composition shown in Tables 1 and 2, and add 0.4% of this as a lubricant.
Zinc stearate was added and mixed in a V-type mixer for 30 minutes, and then pressed into a green compact at a predetermined pressure within the range of 2 to 3 ton / cm 2 , and the green compact was decomposed with ammonia decomposition gas. Sintered under a condition of holding at a predetermined temperature within a range of 850 to 950 ° C. for 30 minutes in an atmosphere, and having a porosity and a composition substantially the same as the composition shown in Tables 1 and 2 By forming a high quality Cu-Fe-Sn-based sintered alloy body and vacuum-immersing synthetic oil in it, both have outer diameter: 16 mm φ × inner diameter: 8 mm φ × length: 8 mm, Moreover, the sintered oil-impregnated bearing 1 of the present invention in which the porous Cu—Fe—Sn based sintered alloy body has the structure shown in FIGS.
15 to 15 and the conventional sintered oil-impregnated bearings 1 to 7 having the structures shown in FIG.
【0014】ついで、この結果得られた各種の焼結含油
軸受のそれぞれを、図4に概略正面図で示されるラジア
ル式摩擦試験機の支持治具1に嵌め込み、これにS45
C(炭素鋼)製回転軸3を25μmのクリアランスで挿
通し、前記回転軸3に焼結含油軸受2、支持治具1、お
よびボールベアリング4を介して1.05kgf/cm2 の高
荷重Wをかけた状態で前記回転軸を4000rpm の回転
数で高速回転させ、100時間運転の摩耗試験を行な
い、試験後、焼結含油軸受および回転軸の最大摩耗深さ
を測定した。この測定結果を表1,2に示した。Then, each of the various sintered oil-impregnated bearings obtained as a result was fitted into the supporting jig 1 of the radial friction tester shown in the schematic front view of FIG.
A rotary shaft 3 made of C (carbon steel) is inserted with a clearance of 25 μm, and a high load W of 1.05 kgf / cm 2 is applied to the rotary shaft 3 through a sintered oil-impregnated bearing 2, a supporting jig 1, and a ball bearing 4. The rotating shaft was rotated at a high speed at 4000 rpm in a state of being subjected to a wear test, and a wear test was performed for 100 hours of operation. After the test, the maximum wear depth of the sintered oil-impregnated bearing and the rotating shaft was measured. The measurement results are shown in Tables 1 and 2.
【0015】[0015]
【表1】 [Table 1]
【0016】[0016]
【表2】 [Table 2]
【0017】[0017]
【発明の効果】表1,2に示される結果から、本発明焼
結含油軸受1〜15は、いずれも高速回転および高荷重
運転の苛酷な条件にもかかわらず、基本的に素地中に分
散分布するフェライト相とこれに分散分布する微細な遊
離黒鉛によってすぐれたなじみ性と自己潤滑性を具備す
ることから、相手材である回転軸の摩耗少なく、すなわ
ち低い相手攻撃性で、すぐれた耐摩耗性を示すのに対し
て、従来焼結含油軸受1〜7においては、素地中に分散
分布する硬質のパーライト相が原因で、上記の苛酷な条
件下では著しく高い相手攻撃性を示すばかりでなく、な
じみ性にも劣るので偏摩耗が発生し易いことが明らかで
ある。上述のように、この発明の焼結含油軸受は、相手
材である回転軸に対するなじみ性にすぐれ、かつ自己潤
滑性にもすぐれているので、苛酷な条件下でも、きわめ
て低い相手攻撃性で、すぐれた耐摩耗性を長期に亘って
発揮するのである。From the results shown in Tables 1 and 2, the sintered oil-impregnated bearings 1 to 15 of the present invention are basically dispersed in the base material despite the severe conditions of high speed rotation and high load operation. The distributed ferrite phase and the fine free graphite dispersed and distributed in it provide excellent conformability and self-lubricating properties, so the rotating shaft, which is the mating material, has less wear, that is, low mating attack and excellent wear resistance. On the other hand, in conventional sintered oil-impregnated bearings 1 to 7, not only is the remarkably high opponent attack property under the severe conditions described above due to the hard pearlite phase dispersed and distributed in the base material, It is clear that uneven wear is likely to occur because of poor conformability. As described above, the sintered oil-impregnated bearing of the present invention has excellent compatibility with the rotating shaft that is a mating material, and also has excellent self-lubricating property. It exhibits excellent wear resistance over a long period of time.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明焼結含油軸受を構成する多孔質Cu−F
e−Sn系焼結合金の組織拡大模写図である。FIG. 1 is a porous Cu-F constituting a sintered oil-impregnated bearing of the present invention.
It is a structure expansion copy figure of an e-Sn system sintered alloy.
【図2】本発明焼結含油軸受を構成する多孔質Cu−F
e−Sn系焼結合金の組織拡大模写図である。FIG. 2 is a porous Cu-F constituting a sintered oil-impregnated bearing of the present invention.
It is a structure expansion copy figure of an e-Sn system sintered alloy.
【図3】従来焼結含油軸受を構成する多孔質Cu−Fe
−Sn系焼結合金の組織拡大模写図である。FIG. 3 Porous Cu—Fe forming a conventional sintered oil-impregnated bearing
It is a structure expansion copy figure of-Sn system sintered alloy.
【図4】ラジアル式摩擦試験機を示す概略正面図であ
る。FIG. 4 is a schematic front view showing a radial friction tester.
1 支持治具 2 焼結含油軸受 3 回転軸 4 ボールベアリング 5 ロードセル 1 Support jig 2 Sintered oil-impregnated bearing 3 Rotating shaft 4 Ball bearing 5 Load cell
Claims (2)
避不純物からなる組成、 Cu−Sn系合金の素地に、フェライト相が分散分布
し、かつ前記フェライト相内にはS成分を核として成長
した遊離黒鉛が分散分布し、さらに前記フェライト相の
表面および結晶粒界にそってB成分が分布した組織、 および10〜30%の気孔率、を有する多孔質Cu−F
e−Sn系焼結合金で構成したことを特徴とする相手攻
撃性の低い耐摩耗性焼結含油軸受。1. By weight%, Fe: 40-60%, Sn: 0.1-5%, C: 0.1-2%, S: 0.05-1%, B: 0.01-0. 0.5% by weight, the balance consisting of Cu and unavoidable impurities, a ferrite phase dispersedly distributed on the base of a Cu-Sn alloy, and free graphite grown with the S component as a nucleus in the ferrite phase. Cu-F having a structure in which the B component is dispersed and distributed, and the B component is distributed along the surface of the ferrite phase and along the crystal grain boundaries, and the porosity is 10 to 30%.
A wear-resistant sintered oil-impregnated bearing having a low opponent attack characteristic, which is characterized by comprising an e-Sn sintered alloy.
と不可避不純物からなる組成、 Cu−Sn系合金の素地に、フェライト相が分散分布
し、かつ前記フェライト相内にはS成分を核として成長
した遊離黒鉛が分散分布し、さらに前記フェライト相の
表面および結晶粒界にそってB成分が分布すると共に、
前記素地とフェライト相の界面部に硫化モリブデンが分
布した組織、 および10〜30%の気孔率、を有する多孔質Cu−F
e−Sn系焼結合金で構成したことを特徴とする相手攻
撃性の低い耐摩耗性焼結含油軸受。2. By weight%, Fe: 40 to 60%, Sn: 0.1 to 5%, C: 0.1 to 2%, S: 0.05 to 1%, B: 0.01 to 0. 0.5%, molybdenum sulfide: 0.5 to 2%, the balance Cu
And a composition consisting of unavoidable impurities, a ferrite phase is dispersed and distributed in the base material of the Cu-Sn alloy, and free graphite grown with the S component as a nucleus is dispersed and distributed in the ferrite phase, and the surface of the ferrite phase is further distributed. And the B component is distributed along the grain boundaries,
Porous Cu-F having a structure in which molybdenum sulfide is distributed at the interface between the base and the ferrite phase, and a porosity of 10 to 30%
A wear-resistant sintered oil-impregnated bearing having a low opponent attack characteristic, which is characterized by comprising an e-Sn sintered alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21804395A JPH0941071A (en) | 1995-08-03 | 1995-08-03 | Wear resistant sintered oilless bearing low in mating attackability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21804395A JPH0941071A (en) | 1995-08-03 | 1995-08-03 | Wear resistant sintered oilless bearing low in mating attackability |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0941071A true JPH0941071A (en) | 1997-02-10 |
Family
ID=16713758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21804395A Withdrawn JPH0941071A (en) | 1995-08-03 | 1995-08-03 | Wear resistant sintered oilless bearing low in mating attackability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0941071A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000036169A1 (en) * | 1998-12-16 | 2000-06-22 | Victorian Rail Track | Low resistivity materials with improved wear performance for electrical current transfer and methods for preparing same |
JP2000230556A (en) * | 1999-02-09 | 2000-08-22 | Nippon Kagaku Yakin Co Ltd | Bearing |
US7832935B2 (en) * | 2007-01-24 | 2010-11-16 | Foxconn Technology Co., Ltd. | Rotatable member and method for manufacturing the same |
JP2011214129A (en) * | 2010-03-31 | 2011-10-27 | Fuji Dies Kk | Sintered sliding member of configuration fixed to base metal and method of manufacturing the same |
CN103299093A (en) * | 2011-01-07 | 2013-09-11 | 日立建机株式会社 | Sliding bearing and construction machine provided with same |
WO2014041976A1 (en) * | 2012-09-12 | 2014-03-20 | Ntn株式会社 | Machine component made of ferrous sintered metal |
-
1995
- 1995-08-03 JP JP21804395A patent/JPH0941071A/en not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000036169A1 (en) * | 1998-12-16 | 2000-06-22 | Victorian Rail Track | Low resistivity materials with improved wear performance for electrical current transfer and methods for preparing same |
JP2000230556A (en) * | 1999-02-09 | 2000-08-22 | Nippon Kagaku Yakin Co Ltd | Bearing |
US7832935B2 (en) * | 2007-01-24 | 2010-11-16 | Foxconn Technology Co., Ltd. | Rotatable member and method for manufacturing the same |
JP2011214129A (en) * | 2010-03-31 | 2011-10-27 | Fuji Dies Kk | Sintered sliding member of configuration fixed to base metal and method of manufacturing the same |
CN103299093A (en) * | 2011-01-07 | 2013-09-11 | 日立建机株式会社 | Sliding bearing and construction machine provided with same |
WO2014041976A1 (en) * | 2012-09-12 | 2014-03-20 | Ntn株式会社 | Machine component made of ferrous sintered metal |
CN104583443A (en) * | 2012-09-12 | 2015-04-29 | Ntn株式会社 | Machine component made of ferrous sintered metal |
US9970086B2 (en) | 2012-09-12 | 2018-05-15 | Ntn Corporation | Machine component made of ferrous sintered metal |
US11035027B2 (en) | 2012-09-12 | 2021-06-15 | Ntn Corporation | Machine component made of ferrous sintered metal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4886545B2 (en) | Sintered oil-impregnated bearing and manufacturing method thereof | |
JP5367502B2 (en) | Iron-based sintered sliding member and manufacturing method thereof | |
JP6424983B2 (en) | Iron-based sintered oil-impregnated bearing | |
JPH0941071A (en) | Wear resistant sintered oilless bearing low in mating attackability | |
JPH0941069A (en) | Wear resistant sintered oilless bearing low in mating attackability | |
JPH0949047A (en) | Wear resistant sintered alloy bearing low in counter part attackability | |
JP3094864B2 (en) | Wear resistant sintered alloy bearing with low opponent aggression | |
CN111664182A (en) | Powder metallurgy self-lubricating oil-retaining bearing and preparation method thereof | |
JPH0949064A (en) | Wear resistant iron base sintered alloy bearing low in counter part attackability | |
JPH0941070A (en) | Wear resistant sintered alloy bearing low in mating attackability | |
JPH0140907B2 (en) | ||
JP3094863B2 (en) | Wear-resistant sintered oil-impregnated bearing with low aggressiveness | |
JP3512314B2 (en) | Magnetic fluid impregnated sintered plain bearing and method of manufacturing the same | |
JP2019065323A (en) | Iron-based sintered shaft bearing, and iron-based sintered oil-containing shaft bearing | |
JPH09143638A (en) | Ferrous sintered oil retaining bearing and its production | |
JP2012162771A (en) | Iron-based sintered sliding member, and method for manufacturing the same | |
JP2001107162A (en) | Bronze series sintered alloy, bearing using the same and their producing method | |
JP2001003123A (en) | Sintered alloy for oilless bearing, and its manufacture | |
JPWO2018100660A1 (en) | Iron-based sintered oil-impregnated bearing | |
JP3094861B2 (en) | Wear-resistant sintered oil-impregnated bearing with low aggressiveness | |
JP3094862B2 (en) | Wear resistant sintered alloy bearing with low opponent aggression | |
JPH0949063A (en) | Wear resistant iron base sintered alloy bearing low in counter part attackability | |
EP3734096A1 (en) | Sintered bearing and manufacturing method therefor | |
JPH0499836A (en) | Sintered copper series sliding material | |
JPH04124248A (en) | Sintered alloy for oilless bearing and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20021105 |