JP3094864B2 - Wear resistant sintered alloy bearing with low opponent aggression - Google Patents

Wear resistant sintered alloy bearing with low opponent aggression

Info

Publication number
JP3094864B2
JP3094864B2 JP07221037A JP22103795A JP3094864B2 JP 3094864 B2 JP3094864 B2 JP 3094864B2 JP 07221037 A JP07221037 A JP 07221037A JP 22103795 A JP22103795 A JP 22103795A JP 3094864 B2 JP3094864 B2 JP 3094864B2
Authority
JP
Japan
Prior art keywords
sintered alloy
low
distributed
phase
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07221037A
Other languages
Japanese (ja)
Other versions
JPH0949062A (en
Inventor
楊  積彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP07221037A priority Critical patent/JP3094864B2/en
Publication of JPH0949062A publication Critical patent/JPH0949062A/en
Application granted granted Critical
Publication of JP3094864B2 publication Critical patent/JP3094864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、相手材である回
転軸に対するなじみ性にすぐれ、かつ自己潤滑性にもす
ぐれているので、苛酷な条件下での実用に際しても、き
わめて低い相手攻撃性で、すぐれた耐摩耗性を示す焼結
合金軸受に関するものである。
BACKGROUND OF THE INVENTION The present invention has excellent conformability to a rotating shaft as a mating material and excellent self-lubricating properties, so that it has extremely low mating aggressiveness even in practical use under severe conditions. And a sintered alloy bearing exhibiting excellent wear resistance.

【0002】[0002]

【従来の技術】従来、一般に各種駆動装置には、相手材
である回転軸の支持部材として焼結合金軸受が用いられ
ており、この焼結合金軸受が、重量%で(以下、組成に
関する%は重量%を示す)、Cu:10〜30%、C:
0.1〜5%を含有し、残りがFeと不可避不純物から
なる基本組成を有し、さらに図3に組織拡大模写図で示
されるように、個々のパーライト相がCu合金結合相を
介して分布した組織を有し、さらに9%以下の気孔率を
もった低気孔Fe−Cu−C系焼結合金で構成されてい
ることは良く知られるところである。
2. Description of the Related Art Conventionally, in various driving devices, a sintered alloy bearing is generally used as a support member of a rotating shaft as a mating member. Indicates weight%), Cu: 10 to 30%, C:
It has a basic composition of 0.1 to 5%, with the balance being Fe and unavoidable impurities. Further, as shown in the microstructure enlarged view in FIG. It is well known that it is composed of a low-porosity Fe-Cu-C-based sintered alloy having a distributed structure and further having a porosity of 9% or less.

【0003】[0003]

【発明が解決しようとする課題】一方、近年の駆動装置
の高性能化および小型化、さらに高出力化はめざまし
く、これに伴ない、駆動装置の構造部材である回転軸の
回転は高速化し、かつこれへの負荷は高荷重となる傾向
にあるが、上記の従来焼結合金軸受においては、これを
構成する低気孔Fe−Cu−C系焼結合金が、図3に示
される通り、相対的に硬質のパーライト相が原因で、相
手材である回転軸に対するなじみ性が低く、さらに自己
潤滑性も十分でなく、したがって高速回転および高荷重
条件では相手攻撃性が強く現われ、かつ摩耗進行も加速
されるようになるのが避けられないのが現状である。
On the other hand, in recent years, it has been remarkable that a drive device has been improved in performance, reduced in size, and further increased in output power. As a result, the rotation of a rotating shaft, which is a structural member of the drive device, has been accelerated. In addition, the load on the bearing tends to be high, but in the above-described conventional sintered alloy bearing, the low-pore Fe—Cu—C-based sintered alloy constituting the bearing is, as shown in FIG. Due to the hard pearlite phase, the compatibility with the rotating shaft, which is the mating material, is low, and the self-lubricating property is not sufficient.Therefore, at high speed rotation and high load conditions, the mating aggressiveness appears strongly and the wear progresses. It is unavoidable that it will be accelerated.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、特になじみ性および自己潤滑性
のすぐれた焼結合金軸受を開発すべく、特に上記の従来
焼結合金軸受に着目し研究を行なった結果、上記の従来
焼結合金軸受を構成する低気孔Fe−Cu−C系焼結合
金に、合金成分としてSとBを含有させると、前記S成
分が核となって遊離黒鉛が析出し、この遊離黒鉛の成長
をB成分が促進するように作用することから、前記低気
孔Fe−Cu−C系焼結合金は、図1に組織拡大模写図
で示される通り、硬質のパーライト相に代って、主体が
Feのフェライト相がCu合金結合相を介して分布し、
このフェライト相内の結晶粒界にそってS成分が核とな
って成長した微細な遊離黒鉛が分散分布し、かつフェラ
イト相の表面および結晶粒界にそってB成分が分布した
組織をもつようになり、この結果の低気孔Fe−Cu−
C系焼結合金は、軟質のフェライト相と遊離黒鉛によっ
てすぐれたなじみ性と自己潤滑性をもち、さらに前記低
気孔Fe−Cu−C系焼結合金に硫化モリブデン(以
下、MoS2 で示す)を含有させると、同じく図2の組
織拡大模写図で示される通り、フェライト相とCu合金
結合相の界面部に分布して自己潤滑性が一段と向上した
ものになることから、焼結合金軸受として高速回転およ
び高荷重条件での実用に際しても相手攻撃性が著しく低
く、かつすぐれた耐摩耗性を発揮するという研究結果を
得たのである。
Means for Solving the Problems Accordingly, the present inventors have
In view of the above, in order to develop a sintered alloy bearing having particularly excellent conformability and self-lubricating properties, the present inventors have conducted a study focusing on the above-mentioned conventional sintered alloy bearing, and have found that the above-mentioned conventional sintered alloy bearing When S and B are contained as alloy components in the low-porosity Fe-Cu-C-based sintered alloy constituting the above, free graphite is precipitated with the S component serving as a nucleus, and the growth of the free graphite is caused by the B component. The low-porosity Fe-Cu-C-based sintered alloy has a ferrite phase mainly composed of Fe instead of a hard pearlite phase, as shown in FIG. Are distributed through the Cu alloy binder phase,
The fine free graphite grown with the S component as a nucleus along the crystal grain boundaries in the ferrite phase is dispersed and distributed, and the B component is distributed along the surface of the ferrite phase and the crystal grain boundaries. And the resulting low porosity Fe-Cu-
The C-based sintered alloy has excellent conformability and self-lubricating property due to a soft ferrite phase and free graphite. Further, the low-porous Fe-Cu-C-based sintered alloy has molybdenum sulfide (hereinafter, referred to as MoS 2 ). In addition, as shown in the microstructure enlarged view of FIG. 2, the self-lubricating property is further improved by being distributed at the interface between the ferrite phase and the Cu alloy bonding phase, so that as a sintered alloy bearing The research results show that the aggressiveness against the opponent is extremely low and the abrasion resistance is excellent even in practical use under high-speed rotation and high load conditions.

【0005】この発明は、上記の研究結果にもとづいて
なされたものであって、Cu:10〜30%、
C:0.1〜5%、S:0.05〜1%、 B:
0.05〜1%、を含有し、さらに必要に応じて、Mo
2 :0.5〜2%、を含有し、残りがFeと不可避不
純物からなる組成、個々のフェライト相がCu合金結合
相を介して分布し、かつ前記フェライト相内にはS成分
を核として成長した遊離黒鉛が分散分布し、さらに前記
フェライト相の表面および結晶粒界にそってB成分が分
布し、必要に応じてフェライト相とCu合金結合相の界
面部にMoS2 が分布した組織、および9%以下の気孔
率、を有する低気孔Fe−Cu−C系焼結合金で構成し
てなる、相手攻撃性の低い耐摩耗性焼結合金軸受に特徴
を有するものである。
[0005] The present invention has been made based on the above-mentioned research results, and contains Cu: 10 to 30%,
C: 0.1-5%, S: 0.05-1%, B:
0.05 to 1%, and if necessary, Mo.
S 2 : 0.5 to 2%, the balance being Fe and unavoidable impurities, individual ferrite phases are distributed via a Cu alloy bonding phase, and the S component is nucleated in the ferrite phase. The structure in which free graphite grown as a dispersion is distributed, the B component is further distributed along the surface and crystal grain boundaries of the ferrite phase, and MoS 2 is distributed at the interface between the ferrite phase and the Cu alloy bonding phase as necessary. And a wear-resistant sintered alloy bearing having a low aggressiveness, which is made of a low-porosity Fe-Cu-C-based sintered alloy having a porosity of 9% or less.

【0006】つぎに、この発明の焼結合金軸受におい
て、これを構成する低気孔Fe−Cu−C系焼結合金の
成分組成および気孔率を上記の通りに限定した理由を説
明する。 (a) Cu Cu成分には、液相焼結を可能ならしめ、焼結性向上に
寄与して強度を向上させる作用があるが、その割合が1
0%未満では前記作用に所望の効果が得られず、一方そ
の割合が30%を越えると耐摩耗性が低下するようにな
ることから、その割合を10〜30%、望ましくは15
〜25%と定めた。
Next, the reason why the component composition and the porosity of the low porosity Fe—Cu—C based sintered alloy constituting the sintered alloy bearing of the present invention are limited as described above will be described. (A) Cu The Cu component has the effect of enabling liquid phase sintering and contributing to the improvement of sinterability and improving the strength.
If the content is less than 0%, the desired effect cannot be obtained, while if the content exceeds 30%, the abrasion resistance is reduced, so that the content is 10 to 30%, preferably 15%.
2525%.

【0007】(b) C C成分には、SとB成分の作用でフェライト相内の結晶
粒界に微細な遊離黒鉛として析出し、成長して自己潤滑
性を向上させる作用があるが、その割合が0.1%未満
では遊離黒鉛の分布割合が少なすぎて所望の自己潤滑性
を確保することができず、一方その割合が5%を越える
と完全な黒鉛化が困難になり、セメンタイトが析出する
ようになって相手攻撃性が高くなることから、その割合
を0.1〜5%、望ましくは1〜3%と定めた。
(B) C The C component has a function of precipitating as fine free graphite at crystal grain boundaries in the ferrite phase by the action of the S and B components and growing to improve self-lubricating properties. If the proportion is less than 0.1%, the distribution ratio of free graphite is too small to secure the desired self-lubricating property, while if the proportion exceeds 5%, complete graphitization becomes difficult, and cementite is reduced. The ratio is set to 0.1 to 5%, and preferably to 1 to 3%, because the aggressiveness of the opponent increases due to precipitation.

【0008】(d) S S成分は、上記の通り遊離黒鉛の析出には不可欠の成分
であり、したがってその割合が0.05%未満では黒鉛
化が不十分となって所望の自己潤滑性が得られず、その
分セメンタイトが析出して相手攻撃性を増すようにな
り、一方その割合が1%を越えると急激に脆化し、強度
が低下するようになることから、その割合を0.05〜
1%、望ましくは0.1〜0.7%と定めた。
(D) SS The S component is an indispensable component for the precipitation of free graphite as described above. Therefore, if its proportion is less than 0.05%, the graphitization becomes insufficient and the desired self-lubricating property is obtained. However, cementite precipitates to increase the aggressiveness of the opponent, and when the proportion exceeds 1%, the embrittlement is sharply reduced and the strength is reduced. ~
1%, preferably 0.1 to 0.7%.

【0009】(e) B B成分には、フェライト相の表面および結晶粒界にそっ
て分布して、フェライト相内の粒界にS成分を核として
析出した遊離黒鉛を成長させる、いいかえればパーライ
ト相のセメンタイトを黒鉛化して前記パーライト相をフ
ェライト相と遊離黒鉛にする作用があるが、その割合が
0.05%未満では黒鉛化が不十分で、残留パーライト
による相手攻撃性は避けられず、かつ所望の自己潤滑性
も得られず、一方その割合が1%を越えると焼結性が低
下し高強度を確保することができなくなることから、そ
の割合を0.05〜1%、望ましくは0.2〜0.7%
と定めた。
(E) BB In the B component, free graphite is distributed along the surface of the ferrite phase and the crystal grain boundaries, and precipitates at the grain boundaries in the ferrite phase with the S component as a nucleus, in other words, pearlite. It has the effect of graphitizing the cementite of the phase to convert the pearlite phase into a ferrite phase and free graphite, but if the ratio is less than 0.05%, the graphitization is insufficient, and the partner aggression due to the residual pearlite is inevitable. In addition, the desired self-lubricating property cannot be obtained. On the other hand, if the proportion exceeds 1%, the sinterability is reduced and high strength cannot be secured, so that the proportion is 0.05 to 1%, desirably. 0.2-0.7%
It was decided.

【0010】(f) MoS2 MoS2 成分には、Cu合金結合相とフェライト相の界
面部に分布して自己潤滑性を一段と向上させる作用があ
るので必要に応じて含有されるが、その割合が0.5%
未満では前記作用に所望の効果が得られず、一方その割
合が2%を越えると強度が急激に低下するようになるこ
とから、その割合を0.5〜2%、望ましくは0.5〜
1.5%と定めた。
(F) MoS 2 The MoS 2 component is distributed as needed at the interface between the Cu alloy bonding phase and the ferrite phase to further improve the self-lubricating property. Is 0.5%
If it is less than the desired effect, the desired effect cannot be obtained. On the other hand, if the ratio exceeds 2%, the strength rapidly decreases, so that the ratio is 0.5 to 2%, preferably 0.5 to 2%.
It was determined to be 1.5%.

【0011】(g) 気孔率 気孔率が9%を越えると、軸受の強度が低下し、特に高
強度が要求される場合に対応することができなくなるこ
とから、気孔率を9%以下、望ましくは7%以下と定め
た。
(G) Porosity If the porosity exceeds 9%, the strength of the bearing is reduced, and it is not possible to cope with particularly when high strength is required. Therefore, the porosity is preferably 9% or less. Has been determined to be 7% or less.

【0012】[0012]

【発明の実施の形態】つぎに、この発明の焼結合金軸受
を実施例により具体的に説明する。原料粉末として、粒
度:−100メッシュのアトマイズFe−S合金(S:
0.3%含有)粉末、同−100メッシュのアトマイズ
Fe粉末、同−150メッシュの電解Cu粉末、同−1
00メッシュのりん片状黒鉛粉末、同−100メッシュ
のFe−B合金(B:5%含有)粉末、および同−10
0メッシュのMoS2 粉末を用意し、これら原料粉末を
表1,2に示される配合組成に配合し、これに潤滑剤と
して0.4%のステアリン酸亜鉛を添加してV型ミキサ
ーにて30分間混合した後、3.5〜5ton /cm2 の範
囲内の所定の圧力で圧粉体にプレス成形し、この圧粉体
を、アンモニア分解ガス雰囲気中、850〜950℃の
範囲内の所定温度に30分間保持の条件で焼結して、同
じく表1,2に示される気孔率および配合組成と実質的
に同一の成分組成をもった低気孔Fe−Cu−C系焼結
合金で構成され、いずれも外径:16mmφ×内径:8mm
φ×長さ:8mmの寸法を有する本発明焼結合金軸受1〜
13および従来焼結合金軸受1〜5をそれぞれ製造し
た。なお、本発明焼結合金軸受1〜13はいずれも図1
または図2に示される組織を有し、また従来焼結合金軸
受1〜5はいずれも図3に示される組織を有するもので
あった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the sintered alloy bearing of the present invention will be specifically described with reference to examples. As a raw material powder, an atomized Fe—S alloy (S:
0.3%) powder, atomized Fe powder of -100 mesh, electrolytic Cu powder of -150 mesh, -1
00 mesh flaky graphite powder, -100 mesh Fe-B alloy (B: 5% content) powder, and -10 mesh
A 0-mesh MoS 2 powder was prepared, and these raw material powders were blended into the blending compositions shown in Tables 1 and 2, 0.4% zinc stearate was added as a lubricant, and the mixture was mixed with a V-type mixer. After mixing for about 1 minute, a green compact is press-molded at a predetermined pressure in the range of 3.5 to 5 ton / cm 2 , and the green compact is pressed in an ammonia decomposition gas atmosphere at a temperature of 850 to 950 ° C. Sintered under the condition of holding at a temperature for 30 minutes, and composed of a low-porosity Fe-Cu-C-based sintered alloy having substantially the same composition as the porosity and the composition shown in Tables 1 and 2. Outer diameter: 16mm φ × inner diameter: 8mm
φ × length: the sintered alloy bearing of the present invention 1 having a dimension of 8 mm
13 and conventional sintered alloy bearings 1 to 5 were manufactured, respectively. The sintered alloy bearings 1 to 13 of the present invention are all shown in FIG.
Alternatively, the sintered alloy bearings 1 to 5 have the structure shown in FIG. 2 and the sintered alloy bearings 1 to 5 have the structure shown in FIG.

【0013】ついで、この結果得られた各種の焼結合金
軸受のそれぞれを、合成油を真空浸油した状態で、図4
に概略正面図で示されるラジアル式摩擦試験機の支持治
具1に嵌め込み、これにS45C(炭素鋼)製回転軸3
を25μmのクリアランスで挿通し、前記回転軸3に焼
結合金軸受2、支持治具1、およびボールベアリング4
を介して20kgf /cm2 の高荷重Wをかけた状態で前記
回転軸を10,000rpm の回転数で高速回転させ、1
00時間運転の摩耗試験を行ない、試験後、焼結合金軸
受および回転軸の最大摩耗深さを測定した。この測定結
果を表1,2に示した。
Next, each of the various sintered alloy bearings obtained as a result is vacuum-immersed in synthetic oil, as shown in FIG.
Is fitted into a support jig 1 of a radial friction tester shown in a schematic front view, and a rotary shaft 3 made of S45C (carbon steel) is
With a clearance of 25 μm, and a sintered alloy bearing 2, a support jig 1, and a ball bearing 4
The rotating shaft is rotated at a high speed of 10,000 rpm while a high load W of 20 kgf / cm 2 is applied through
A wear test was performed for 00 hours of operation. After the test, the maximum wear depth of the sintered alloy bearing and the rotating shaft was measured. The measurement results are shown in Tables 1 and 2.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【発明の効果】表1,2に示される結果から、本発明焼
結合金軸受1〜13は、いずれも高速回転および高荷重
運転の苛酷な条件にもかかわらず、フェライト相と、こ
のフェライト相内に微細に分散分布する遊離黒鉛によっ
てすぐれたなじみ性と自己潤滑性を具備することから、
相手材である回転軸の摩耗少なく、すなわち低い相手攻
撃性で、すぐれた耐摩耗性を示すのに対して、従来焼結
合金軸受1〜5においては、硬質のパーライト相が原因
で、上記の苛酷な条件下では著しく高い相手攻撃性を示
すばかりでなく、なじみ性にも劣るので偏摩耗が発生し
易いことが明らかである。上述のように、この発明の焼
結合金軸受は、相手材である回転軸に対するなじみ性に
すぐれ、かつ自己潤滑性にもすぐれているので、苛酷な
条件下でも、きわめて低い相手攻撃性で、すぐれた耐摩
耗性を長期に亘って発揮するのである。
According to the results shown in Tables 1 and 2, the sintered alloy bearings 1 to 13 of the present invention have a ferrite phase and this ferrite phase despite the severe conditions of high-speed rotation and high-load operation. Because it has excellent conformability and self-lubricating properties due to free graphite finely distributed in the inside,
While the wear of the rotating shaft as the mating material is small, that is, it shows excellent wear resistance with low mating aggressiveness, the conventional sintered alloy bearings 1 to 5 have the above-mentioned hard pearlite phase due to the hard pearlite phase. It is clear that under severe conditions, not only the opponent's aggressiveness is extremely high, but also the conformability is poor, so that uneven wear easily occurs. As described above, the sintered alloy bearing of the present invention has excellent conformability to the rotating shaft as a mating material and also has excellent self-lubricating properties, so that even under severe conditions, with extremely low mating aggressiveness, It exhibits excellent wear resistance over a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明焼結合金軸受を構成する低気孔Fe−C
u−C系焼結合金の組織拡大模写図である。
FIG. 1 shows low-porosity Fe—C constituting a sintered alloy bearing of the present invention.
FIG. 3 is an enlarged schematic view of the structure of a u—C based sintered alloy.

【図2】本発明焼結合金軸受を構成する低気孔Fe−C
u−C系焼結合金の組織拡大模写図である。
FIG. 2 shows a low-porosity Fe—C constituting the sintered alloy bearing of the present invention.
FIG. 3 is an enlarged schematic view of the structure of a u—C based sintered alloy.

【図3】従来焼結合金軸受を構成する低気孔Fe−Cu
−C系焼結合金の組織拡大模写図である。
FIG. 3 shows a low-porosity Fe-Cu constituting a conventional sintered alloy bearing.
FIG. 3 is an enlarged schematic view of a structure of a C-based sintered alloy.

【図4】ラジアル式摩擦試験機を示す概略正面図であ
る。
FIG. 4 is a schematic front view showing a radial type friction tester.

【符号の説明】[Explanation of symbols]

1 支持治具 2 焼結合金軸受 3 回転軸 4 ボールベアリング 5 ロードセル DESCRIPTION OF SYMBOLS 1 Supporting jig 2 Sintered alloy bearing 3 Rotating shaft 4 Ball bearing 5 Load cell

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−49047(JP,A) 特開 平9−49048(JP,A) 特開 平9−49060(JP,A) 特開 平9−49061(JP,A) 特開 平9−49063(JP,A) 特開 平9−49064(JP,A) 特開 平9−41069(JP,A) 特開 平9−41070(JP,A) 特開 平9−41071(JP,A) 特開 昭56−169750(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 33/02 C22C 38/00 - 38/60 B22F 5/00 F16C 33/10 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-9-49047 (JP, A) JP-A-9-49048 (JP, A) JP-A-9-49060 (JP, A) JP-A-9-490 49061 (JP, A) JP-A-9-49063 (JP, A) JP-A-9-49064 (JP, A) JP-A-9-41069 (JP, A) JP-A-9-41070 (JP, A) JP-A-9-41071 (JP, A) JP-A-56-169750 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 33/02 C22C 38/00-38/60 B22F 5/00 F16C 33/10

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 Cu:10〜30%、 C:0.1〜5%、 S:0.05〜1%、 B:0.05〜1%、を含
有し、残りがFeと不可避不純物からなる組成、 個々のフェライト相がCu合金結合相を介して分布し、
かつ前記フェライト相内にはS成分を核として成長した
遊離黒鉛が分散分布し、さらに前記フェライト相の表面
および結晶粒界にそってB成分が分布した組織、 および9%以下の気孔率、を有する低気孔Fe−Cu−
C系焼結合金で構成したことを特徴とする相手攻撃性の
低い耐摩耗性焼結合金軸受。
1. The composition contains Cu: 10 to 30%, C: 0.1 to 5%, S: 0.05 to 1%, and B: 0.05 to 1% by weight, with the balance being Fe. And the composition of unavoidable impurities, the individual ferrite phases are distributed via the Cu alloy bonding phase,
In the ferrite phase, free graphite grown with the S component as a nucleus is dispersed and distributed, and further, the B component is distributed along the surface and the crystal grain boundaries of the ferrite phase, and the porosity is 9% or less. Fe-Cu- with low porosity
A wear-resistant sintered alloy bearing having a low aggressiveness against a mating member, which is made of a C-based sintered alloy.
【請求項2】 重量%で、 Cu:10〜30%、 C:0.1〜5%、 S:0.05〜1%、 B:0.05〜1%、を含
有し、さらに、 硫化モリブデン:0.5〜2%、を含有し、残りがFe
と不可避不純物からなる組成、 個々のフェライト相がCu合金結合相を介して分布し、
かつ前記フェライト相内にはS成分を核として成長した
遊離黒鉛が分散分布し、さらにフェライト相の表面およ
び結晶粒界にそってB成分が分布すると共に、フェライ
ト相とCu合金結合相の界面部に硫化モリブデンが分布
した組織、 および9%以下の気孔率、を有する低気孔Fe−Cu−
C系焼結合金で構成したことを特徴とする相手攻撃性の
低い耐摩耗性焼結合金軸受。
2. The composition contains Cu: 10 to 30%, C: 0.1 to 5%, S: 0.05 to 1%, and B: 0.05 to 1% by weight. Molybdenum: 0.5 to 2%, with the balance being Fe
And the composition of unavoidable impurities, the individual ferrite phases are distributed via the Cu alloy bonding phase,
In the ferrite phase, free graphite grown with the S component as a nucleus is dispersed and distributed, and further, the B component is distributed along the surface of the ferrite phase and crystal grain boundaries, and at the interface between the ferrite phase and the Cu alloy bonding phase. Low-pore Fe-Cu- having a structure in which molybdenum sulfide is distributed and a porosity of 9% or less.
A wear-resistant sintered alloy bearing having a low aggressiveness against a mating member, which is made of a C-based sintered alloy.
JP07221037A 1995-08-07 1995-08-07 Wear resistant sintered alloy bearing with low opponent aggression Expired - Fee Related JP3094864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07221037A JP3094864B2 (en) 1995-08-07 1995-08-07 Wear resistant sintered alloy bearing with low opponent aggression

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07221037A JP3094864B2 (en) 1995-08-07 1995-08-07 Wear resistant sintered alloy bearing with low opponent aggression

Publications (2)

Publication Number Publication Date
JPH0949062A JPH0949062A (en) 1997-02-18
JP3094864B2 true JP3094864B2 (en) 2000-10-03

Family

ID=16760503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07221037A Expired - Fee Related JP3094864B2 (en) 1995-08-07 1995-08-07 Wear resistant sintered alloy bearing with low opponent aggression

Country Status (1)

Country Link
JP (1) JP3094864B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1097770B1 (en) 1999-04-16 2006-08-16 Hitachi, Ltd. Powder metallurgy process
CN108431436B (en) * 2015-12-25 2019-11-08 三菱综合材料株式会社 Sintered metal bearing and its manufacturing method
US10697495B2 (en) 2016-07-29 2020-06-30 Diamet Corporation Iron-copper-based oil-impregnated sintered bearing and method for manufacturing same
JP6817094B2 (en) 2016-07-29 2021-01-20 株式会社ダイヤメット Iron-copper-based sintered oil-impregnated bearing and its manufacturing method
WO2018021501A1 (en) * 2016-07-29 2018-02-01 株式会社ダイヤメット Iron-copper-based oil-impregnated sintered bearing and method for manufacturing same

Also Published As

Publication number Publication date
JPH0949062A (en) 1997-02-18

Similar Documents

Publication Publication Date Title
KR100961459B1 (en) Sintered oil-containing bearing and its manufacturing method
US6663344B2 (en) Copper-based sintered alloy bearing and motor fuel pump
AU696267B2 (en) Wear-resistant sintered ferrous alloy for valve seat
JP3094864B2 (en) Wear resistant sintered alloy bearing with low opponent aggression
JPS5822359A (en) Iron base sintered alloy for structural member of fuel supply apparatus
JPH11117044A (en) Bearing made of free-graphite-precipitation-type ferrous sintered material, excellent in initial conformability
JP3094863B2 (en) Wear-resistant sintered oil-impregnated bearing with low aggressiveness
JPH0941069A (en) Wear resistant sintered oilless bearing low in mating attackability
JP3094862B2 (en) Wear resistant sintered alloy bearing with low opponent aggression
JPH0949064A (en) Wear resistant iron base sintered alloy bearing low in counter part attackability
JP3094861B2 (en) Wear-resistant sintered oil-impregnated bearing with low aggressiveness
JPH0941071A (en) Wear resistant sintered oilless bearing low in mating attackability
JPH0941070A (en) Wear resistant sintered alloy bearing low in mating attackability
JP3410595B2 (en) Iron-based sintered oil-impregnated bearing and its manufacturing method
JPH0949047A (en) Wear resistant sintered alloy bearing low in counter part attackability
JPS5938350A (en) Sintered al alloy for friction member and sliding member
JPH0949063A (en) Wear resistant iron base sintered alloy bearing low in counter part attackability
JP2001303217A (en) Fe BASED SINTERED ALLOY BEARING EXCELLENT IN SEIZURE RESISTANCE AND CRACKING RESISTANCE
JP3381626B2 (en) Bearings made of free graphite-precipitated iron-based sintered material exhibiting excellent wear resistance under high surface pressure
JPH0116296B2 (en)
JPH01212737A (en) Wear-resistant ferrous sintered alloy
JPH0499836A (en) Sintered copper series sliding material
JPS60159154A (en) Wear resistant sintered sliding material
JPS6140027B2 (en)
JP2853575B2 (en) Free graphite precipitated iron-based sintered material with excellent strength and wear resistance

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000704

LAPS Cancellation because of no payment of annual fees