JP3094862B2 - Wear resistant sintered alloy bearing with low opponent aggression - Google Patents

Wear resistant sintered alloy bearing with low opponent aggression

Info

Publication number
JP3094862B2
JP3094862B2 JP07219803A JP21980395A JP3094862B2 JP 3094862 B2 JP3094862 B2 JP 3094862B2 JP 07219803 A JP07219803 A JP 07219803A JP 21980395 A JP21980395 A JP 21980395A JP 3094862 B2 JP3094862 B2 JP 3094862B2
Authority
JP
Japan
Prior art keywords
sintered alloy
phase
distributed
low
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07219803A
Other languages
Japanese (ja)
Other versions
JPH0949060A (en
Inventor
楊  積彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP07219803A priority Critical patent/JP3094862B2/en
Publication of JPH0949060A publication Critical patent/JPH0949060A/en
Application granted granted Critical
Publication of JP3094862B2 publication Critical patent/JP3094862B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、相手材である回
転軸に対するなじみ性にすぐれ、かつ自己潤滑性にもす
ぐれているので、苛酷な条件下での実用に際しても、き
わめて低い相手攻撃性で、すぐれた耐摩耗性を示す焼結
合金軸受に関するものである。
BACKGROUND OF THE INVENTION The present invention has excellent conformability to a rotating shaft as a mating material and excellent self-lubricating properties, so that it has extremely low mating aggressiveness even in practical use under severe conditions. And a sintered alloy bearing exhibiting excellent wear resistance.

【0002】[0002]

【従来の技術】従来、一般に各種駆動装置には、相手材
である回転軸の支持部材として焼結合金軸受が用いられ
ており、この焼結合金軸受が、重量%で(以下、組成に
関する%は重量%を示す)、Cu:10〜30%、C:
0.1〜5%を含有し、残りがFeと不可避不純物から
なる基本組成を有し、さらに図3に組織拡大模写図で示
されるように、個々のパーライト相がCu合金結合相を
介して分布した組織を有し、さらに9%以下の気孔率を
もった低気孔Fe−Cu−C系焼結合金で構成されてい
ることは良く知られるところである。
2. Description of the Related Art Conventionally, in various driving devices, a sintered alloy bearing is generally used as a support member of a rotating shaft as a mating member. Indicates weight%), Cu: 10 to 30%, C:
It has a basic composition of 0.1 to 5%, with the balance being Fe and unavoidable impurities. Further, as shown in the microstructure enlarged view in FIG. It is well known that it is composed of a low-porosity Fe-Cu-C-based sintered alloy having a distributed structure and further having a porosity of 9% or less.

【0003】[0003]

【発明が解決しようとする課題】一方、近年の駆動装置
の高性能化および小型化、さらに高出力化はめざまし
く、これに伴ない、駆動装置の構造部材である回転軸の
回転は高速化し、かつこれへの負荷は高荷重となる傾向
にあるが、上記の従来焼結合金軸受においては、これを
構成する低気孔Fe−Cu−C系焼結合金が、図3に示
される通り、相対的に硬質のパーライト相が原因で、相
手材である回転軸に対するなじみ性が低く、さらに自己
潤滑性も十分でなく、したがって高速回転および高荷重
条件では相手攻撃性が強く現われ、かつ摩耗進行も加速
されるようになるのが避けられないのが現状である。
On the other hand, in recent years, it has been remarkable that a drive device has been improved in performance, reduced in size, and further increased in output power. As a result, the rotation of a rotating shaft, which is a structural member of the drive device, has been accelerated. In addition, the load on the bearing tends to be high, but in the above-described conventional sintered alloy bearing, the low-pore Fe—Cu—C-based sintered alloy constituting the bearing is, as shown in FIG. Due to the hard pearlite phase, the compatibility with the rotating shaft, which is the mating material, is low, and the self-lubricating property is not sufficient.Therefore, at high speed rotation and high load conditions, the mating aggressiveness appears strongly and the wear progresses. It is unavoidable that it will be accelerated.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、特になじみ性および自己潤滑性
のすぐれた焼結合金軸受を開発すべく、特に上記の従来
焼結合金軸受に着目し研究を行なった結果、上記の従来
焼結合金軸受を構成する低気孔Fe−Cu−C系焼結合
金に、合金成分としてSと窒化ほう素(以下、BNで示
す)、望ましくは六方晶窒化ほう素(以下、hBNで示
す)を含有させると、前記S成分が核となって遊離黒鉛
が析出し、この遊離黒鉛の成長をBN成分が促進するよ
うに作用することから、前記低気孔Fe−Cu−C系焼
結合金は、図1に組織拡大模写図で示される通り、硬質
のパーライト相に代って、主体がFeのフェライト相が
Cu合金結合相を介して分布し、このフェライト相内の
結晶粒界にそってS成分が核となって成長した微細な遊
離黒鉛が分散分布し、かつフェライト相とCu合金結合
相の界面部にBN成分が分布した組織をもつようにな
り、この結果の低気孔Fe−Cu−C系焼結合金は、軟
質のフェライト相と遊離黒鉛によってすぐれたなじみ性
と自己潤滑性をもち、さらに前記低気孔Fe−Cu−C
系焼結合金に硫化モリブデン(以下、MoS2 で示す)
を含有させると、同じく図2の組織拡大模写図で示され
る通り、フェライト相とCu合金結合相の界面部にBN
成分と共に分布して自己潤滑性が一段と向上したものに
なることから、焼結合金軸受として高速回転および高荷
重条件での実用に際しても相手攻撃性が著しく低く、か
つすぐれた耐摩耗性を発揮するという研究結果を得たの
である。
Means for Solving the Problems Accordingly, the present inventors have
In view of the above, in order to develop a sintered alloy bearing having particularly excellent conformability and self-lubricating properties, the present inventors have conducted a study focusing on the above-mentioned conventional sintered alloy bearing, and have found that the above-mentioned conventional sintered alloy bearing Is contained in the low-porosity Fe-Cu-C-based sintered alloy, which contains S and boron nitride (hereinafter, referred to as BN), preferably hexagonal boron nitride (hereinafter, referred to as hBN) as alloy components. Since the S component serves as a nucleus to precipitate free graphite, and the BN component acts to promote the growth of the free graphite, the low-pore Fe—Cu—C sintered alloy is shown in FIG. As shown in the enlarged microstructure diagram, instead of the hard pearlite phase, a ferrite phase mainly composed of Fe is distributed via a Cu alloy bonding phase, and the S component is nucleated along the grain boundaries in the ferrite phase. Free graphite that has grown and dispersed In addition, a structure in which the BN component is distributed at the interface between the ferrite phase and the Cu alloy bonding phase is obtained. It has conformability and self-lubricating properties, and further has the low porosity Fe-Cu-C
Molybdenum sulfide system sintered alloy (hereinafter, indicated by MoS 2)
When BN is contained, BN is present at the interface between the ferrite phase and the Cu alloy bonding phase, as also shown in the enlarged microscopic view of FIG.
The self-lubricating properties are further improved by being distributed together with the components, so that when used under high-speed rotation and high-load conditions as a sintered alloy bearing, the opposing aggressiveness is extremely low, and excellent wear resistance is exhibited. That's the research result.

【0005】この発明は、上記の研究結果にもとづいて
なされたものであって、Cu:10〜30%、
C:0.1〜5%、S:0.05〜1%、 BN:
0.1〜3%、を含有し、さらに必要に応じて、MoS
2 :0.5〜2%、を含有し、残りがFeと不可避不純
物からなる組成、個々のフェライト相がCu合金結合相
を介して分布し、かつ前記フェライト相内にはS成分を
核として成長した遊離黒鉛が分散分布し、さらにフェラ
イト相とCu合金結合相の界面部に、BN、またはBN
とMoS2 が分布した組織、および9%以下の気孔率、
を有する低気孔Fe−Cu−C系焼結合金で構成してな
る、相手攻撃性の低い耐摩耗性焼結合金軸受に特徴を有
するものである。
[0005] The present invention has been made based on the above-mentioned research results, and contains Cu: 10 to 30%,
C: 0.1-5%, S: 0.05-1%, BN:
0.1 to 3%, and if necessary, MoS
2 : 0.5 to 2%, with the balance being Fe and unavoidable impurities, individual ferrite phases distributed via a Cu alloy bonding phase, and an S component as a nucleus in the ferrite phase. The grown free graphite is dispersed and distributed, and BN or BN is formed at the interface between the ferrite phase and the Cu alloy bonding phase.
And MoS 2 distributed tissue and porosity of 9% or less,
The present invention is characterized by a wear-resistant sintered alloy bearing having a low aggressiveness formed by a low-pore Fe-Cu-C based sintered alloy having the following characteristics.

【0006】つぎに、この発明の焼結合金軸受におい
て、これを構成する低気孔Fe−Cu−C系焼結合金の
成分組成および気孔率を上記の通りに限定した理由を説
明する。 (a) Cu Cu成分には、液相焼結を可能ならしめ、焼結性向上に
寄与して強度を向上させる作用があるが、その割合が1
0%未満では前記作用に所望の効果が得られず、一方そ
の割合が30%を越えると耐摩耗性が低下するようにな
ることから、その割合を10〜30%、望ましくは15
〜25%と定めた。
Next, the reason why the component composition and the porosity of the low porosity Fe—Cu—C based sintered alloy constituting the sintered alloy bearing of the present invention are limited as described above will be described. (A) Cu The Cu component has the effect of enabling liquid phase sintering and contributing to the improvement of sinterability and improving the strength.
If the content is less than 0%, the desired effect cannot be obtained, while if the content exceeds 30%, the abrasion resistance is reduced, so that the content is 10 to 30%, preferably 15%.
2525%.

【0007】(b) C C成分には、SとBN成分の作用でフェライト相内の結
晶粒界に微細な遊離黒鉛として析出し、成長して自己潤
滑性を向上させる作用があるが、その割合が0.1%未
満では遊離黒鉛の分布割合が少なすぎて所望の自己潤滑
性を確保することができず、一方その割合が5%を越え
ると完全な黒鉛化が困難になり、セメンタイトが析出す
るようになって相手攻撃性が高くなることから、その割
合を0.1〜5%、望ましくは1〜3%と定めた。
(B) C The C component has a function of precipitating as fine free graphite at crystal grain boundaries in the ferrite phase by the action of the S and BN components and growing to improve self-lubricating properties. If the proportion is less than 0.1%, the distribution ratio of free graphite is too small to secure the desired self-lubricating property, while if the proportion exceeds 5%, complete graphitization becomes difficult, and cementite is reduced. The ratio is set to 0.1 to 5%, and preferably to 1 to 3%, because the aggressiveness of the opponent increases due to precipitation.

【0008】(d) S S成分は、上記の通り遊離黒鉛の析出には不可欠の成分
であり、したがってその割合が0.05%未満では黒鉛
化が不十分となって所望の自己潤滑性が得られず、その
分セメンタイトが析出して相手攻撃性を増すようにな
り、一方その割合が1%を越えると急激に脆化し、強度
が低下するようになることから、その割合を0.05〜
1%、望ましくは0.1〜0.7%と定めた。
(D) SS The S component is an indispensable component for the precipitation of free graphite as described above. Therefore, if its proportion is less than 0.05%, the graphitization becomes insufficient and the desired self-lubricating property is obtained. However, cementite precipitates to increase the aggressiveness of the opponent, and when the proportion exceeds 1%, the embrittlement is sharply reduced and the strength is reduced. ~
1%, preferably 0.1 to 0.7%.

【0009】(e) BN BN成分には、フェライト相とCu合金結合相の界面部
に分布して、フェライト相内の粒界にS成分を核として
析出した遊離黒鉛を成長させる、いいかえればパーライ
ト相のセメンタイトを黒鉛化して前記パーライト相をフ
ェライト相と遊離黒鉛にする作用があるが、その割合が
0.1%未満では黒鉛化が不十分で、残留パーライトに
よる相手攻撃性は避けられず、かつ所望の自己潤滑性も
得られず、一方その割合が3%を越えると焼結性が低下
し高強度を確保することができなくなることから、その
割合を0.1〜3%、望ましくは0.5〜2%と定め
た。
(E) BN In the BN component, free graphite which is distributed at the interface between the ferrite phase and the Cu alloy bonding phase and precipitates at the grain boundaries in the ferrite phase with the S component as a nucleus grows, in other words, pearlite. It has the effect of graphitizing the cementite of the phase to convert the pearlite phase into a ferrite phase and free graphite, but if the ratio is less than 0.1%, the graphitization is insufficient, and the counterpart aggression due to the residual pearlite is inevitable. In addition, the desired self-lubricating property cannot be obtained. On the other hand, if the proportion exceeds 3%, the sinterability deteriorates and high strength cannot be secured, so that the proportion is 0.1 to 3%, desirably 0.1 to 3%. It was determined to be 0.5 to 2%.

【0010】(f) MoS2 MoS2 成分には、BN成分と共にCu合金結合相とフ
ェライト相の界面部に分布して自己潤滑性を一段と向上
させる作用があるので必要に応じて含有されるが、その
割合が0.5%未満では前記作用に所望の効果が得られ
ず、一方その割合が2%を越えると強度が急激に低下す
るようになることから、その割合を0.5〜2%、望ま
しくは0.5〜1.5%と定めた。
(F) MoS 2 The MoS 2 component is distributed as needed together with the BN component at the interface between the Cu alloy bonding phase and the ferrite phase to further improve self-lubricating properties. If the ratio is less than 0.5%, the desired effect cannot be obtained, while if the ratio exceeds 2%, the strength rapidly decreases. %, Preferably 0.5 to 1.5%.

【0011】(g) 気孔率 気孔率が9%を越えると、軸受の強度が低下し、特に高
強度が要求される場合に対応することができなくなるこ
とから、気孔率を9%以下、望ましくは7%以下と定め
た。
(G) Porosity If the porosity exceeds 9%, the strength of the bearing is reduced, and it is not possible to cope with particularly when high strength is required. Therefore, the porosity is preferably 9% or less. Has been determined to be 7% or less.

【0012】[0012]

【発明の実施の形態】つぎに、この発明の焼結合金軸受
を実施例により具体的に説明する。原料粉末として、粒
度:−100メッシュのアトマイズFe−S合金(S:
0.3%含有)粉末、同−100メッシュのアトマイズ
Fe粉末、同−150メッシュの電解Cu粉末、同−1
00メッシュのりん片状黒鉛粉末、同−100メッシュ
のhBN粉末、および同−100メッシュのMoS2
末を用意し、これら原料粉末を表1,2に示される配合
組成に配合し、これに潤滑剤として0.4%のステアリ
ン酸亜鉛を添加してV型ミキサーにて30分間混合した
後、3.5〜5ton /cm2 の範囲内の所定の圧力で圧粉
体にプレス成形し、この圧粉体を、アンモニア分解ガス
雰囲気中、850〜950℃の範囲内の所定温度に30
分間保持の条件で焼結して、同じく表1,2に示される
気孔率および配合組成と実質的に同一の成分組成をもっ
た低気孔Fe−Cu−C系焼結合金で構成され、いずれ
も外径:16mmφ×内径:8mmφ×長さ:8mmの寸法を
有する本発明焼結合金軸受1〜13および従来焼結合金
軸受1〜5をそれぞれ製造した。なお、本発明焼結合金
軸受1〜13はいずれも図1または図2に示される組織
を有し、また従来焼結合金軸受1〜5はいずれも図3に
示される組織を有するものであった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the sintered alloy bearing of the present invention will be specifically described with reference to examples. As a raw material powder, an atomized Fe—S alloy (S:
0.3%) powder, atomized Fe powder of -100 mesh, electrolytic Cu powder of -150 mesh, -1
A flake graphite powder of 00 mesh, a hBN powder of -100 mesh and a MoS 2 powder of -100 mesh were prepared, and these raw powders were blended into the blending compositions shown in Tables 1 and 2 and lubricated. After adding 0.4% of zinc stearate as an agent and mixing with a V-type mixer for 30 minutes, the mixture was pressed into a green compact at a predetermined pressure in the range of 3.5 to 5 ton / cm 2. The green compact is heated to a predetermined temperature in the range of 850 to 950 ° C. in an ammonia decomposition gas atmosphere for 30 minutes.
Sintered under the condition of holding for one minute, and made of a low-porosity Fe-Cu-C-based sintered alloy having a composition substantially the same as the porosity and the composition shown in Tables 1 and 2. Also, sintered alloy bearings 1 to 13 of the present invention and conventional sintered alloy bearings 1 to 5 having dimensions of outer diameter: 16 mm φ × inner diameter: 8 mm φ × length: 8 mm were manufactured, respectively. The sintered alloy bearings 1 to 13 of the present invention all have the structure shown in FIG. 1 or FIG. 2, and the conventional sintered alloy bearings 1 to 5 all have the structure shown in FIG. Was.

【0013】ついで、この結果得られた各種の焼結合金
軸受のそれぞれを、合成油を真空浸油した状態で、図4
に概略正面図で示されるラジアル式摩擦試験機の支持治
具1に嵌め込み、これにS45C(炭素鋼)製回転軸3
を25μmのクリアランスで挿通し、前記回転軸3に焼
結合金軸受2、支持治具1、およびボールベアリング4
を介して20kgf /cm2 の高荷重Wをかけた状態で前記
回転軸を10,000rpm の回転数で高速回転させ、1
00時間運転の摩耗試験を行ない、試験後、焼結合金軸
受および回転軸の最大摩耗深さを測定した。この測定結
果を表1,2に示した。
Next, each of the various sintered alloy bearings obtained as a result is vacuum-immersed in synthetic oil, as shown in FIG.
Is fitted into a support jig 1 of a radial friction tester shown in a schematic front view, and a rotary shaft 3 made of S45C (carbon steel) is
With a clearance of 25 μm, and a sintered alloy bearing 2, a support jig 1, and a ball bearing 4
The rotating shaft is rotated at a high speed of 10,000 rpm while a high load W of 20 kgf / cm 2 is applied through
A wear test was performed for 00 hours of operation. After the test, the maximum wear depth of the sintered alloy bearing and the rotating shaft was measured. The measurement results are shown in Tables 1 and 2.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【発明の効果】表1,2に示される結果から、本発明焼
結合金軸受1〜13は、いずれも高速回転および高荷重
運転の苛酷な条件にもかかわらず、フェライト相と、こ
のフェライト相内に微細に分散分布する遊離黒鉛によっ
てすぐれたなじみ性と自己潤滑性を具備することから、
相手材である回転軸の摩耗少なく、すなわち低い相手攻
撃性で、すぐれた耐摩耗性を示すのに対して、従来焼結
合金軸受1〜5においては、硬質のパーライト相が原因
で、上記の苛酷な条件下では著しく高い相手攻撃性を示
すばかりでなく、なじみ性にも劣るので偏摩耗が発生し
易いことが明らかである。上述のように、この発明の焼
結合金軸受は、相手材である回転軸に対するなじみ性に
すぐれ、かつ自己潤滑性にもすぐれているので、苛酷な
条件下でも、きわめて低い相手攻撃性で、すぐれた耐摩
耗性を長期に亘って発揮するのである。
According to the results shown in Tables 1 and 2, the sintered alloy bearings 1 to 13 of the present invention have a ferrite phase and this ferrite phase despite the severe conditions of high-speed rotation and high-load operation. Because it has excellent conformability and self-lubricating properties due to free graphite finely distributed in the inside,
While the wear of the rotating shaft as the mating material is small, that is, it shows excellent wear resistance with low mating aggressiveness, the conventional sintered alloy bearings 1 to 5 have the above-mentioned hard pearlite phase due to the hard pearlite phase. It is clear that under severe conditions, not only the opponent's aggressiveness is extremely high, but also the conformability is poor, so that uneven wear easily occurs. As described above, the sintered alloy bearing of the present invention has excellent conformability to the rotating shaft as a mating material and also has excellent self-lubricating properties, so that even under severe conditions, with extremely low mating aggressiveness, It exhibits excellent wear resistance over a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明焼結合金軸受を構成する低気孔Fe−C
u−C系焼結合金の組織拡大模写図である。
FIG. 1 shows low-porosity Fe—C constituting a sintered alloy bearing of the present invention.
FIG. 3 is an enlarged schematic view of the structure of a u—C based sintered alloy.

【図2】本発明焼結合金軸受を構成する低気孔Fe−C
u−C系焼結合金の組織拡大模写図である。
FIG. 2 shows a low-porosity Fe—C constituting the sintered alloy bearing of the present invention.
FIG. 3 is an enlarged schematic view of the structure of a u—C based sintered alloy.

【図3】従来焼結合金軸受を構成する低気孔Fe−Cu
−C系焼結合金の組織拡大模写図である。
FIG. 3 shows a low-porosity Fe-Cu constituting a conventional sintered alloy bearing.
FIG. 3 is an enlarged schematic view of a structure of a C-based sintered alloy.

【図4】ラジアル式摩擦試験機を示す概略正面図であ
る。
FIG. 4 is a schematic front view showing a radial type friction tester.

【符号の説明】[Explanation of symbols]

1 支持治具 2 焼結合金軸受 3 回転軸 4 ボールベアリング 5 ロードセル DESCRIPTION OF SYMBOLS 1 Supporting jig 2 Sintered alloy bearing 3 Rotating shaft 4 Ball bearing 5 Load cell

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−49047(JP,A) 特開 平9−49048(JP,A) 特開 平9−49061(JP,A) 特開 平9−49062(JP,A) 特開 平9−49063(JP,A) 特開 平9−49064(JP,A) 特開 平9−41069(JP,A) 特開 平9−41070(JP,A) 特開 平9−41071(JP,A) 特開 昭56−169750(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 33/02 C22C 38/00 - 38/60 B22F 5/00 F16C 33/10 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-9-49047 (JP, A) JP-A-9-49048 (JP, A) JP-A-9-49061 (JP, A) JP-A-9-490 49062 (JP, A) JP-A-9-49063 (JP, A) JP-A-9-49064 (JP, A) JP-A-9-41069 (JP, A) JP-A-9-41070 (JP, A) JP-A-9-41071 (JP, A) JP-A-56-169750 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 33/02 C22C 38/00-38/60 B22F 5/00 F16C 33/10

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 Cu:10〜30%、 C:0.1〜5%、 S:0.05〜1%、 窒化ほう素:0.1〜3
%、を含有し、残りがFeと不可避不純物からなる組
成、 個々のフェライト相がCu合金結合相を介して分布し、
かつ前記フェライト相内にはS成分を核として成長した
遊離黒鉛が分散分布し、さらに前記フェライト相とCu
合金結合相の界面部に窒化ほう素が分布した組織、 および9%以下の気孔率、を有する低気孔Fe−Cu−
C系焼結合金で構成したことを特徴とする相手攻撃性の
低い耐摩耗性焼結合金軸受。
1. Weight%, Cu: 10 to 30%, C: 0.1 to 5%, S: 0.05 to 1%, Boron nitride: 0.1 to 3
%, The balance being Fe and unavoidable impurities, the individual ferrite phases being distributed via the Cu alloy bonding phase,
Free graphite grown with the S component as a nucleus is dispersed and distributed in the ferrite phase.
Low pore Fe-Cu- having a structure in which boron nitride is distributed at the interface of the alloy bonding phase and a porosity of 9% or less.
A wear-resistant sintered alloy bearing having a low aggressiveness against a mating member, which is made of a C-based sintered alloy.
【請求項2】 重量%で、 Cu:10〜30%、 C:0.1〜5%、 S:0.05〜1%、 窒化ほう素:0.1〜3
%、を含有し、さらに、 硫化モリブデン:0.5〜2%、を含有し、残りがFe
と不可避不純物からなる組成、 個々のフェライト相がCu合金結合相を介して分布し、
かつ前記フェライト相内にはS成分を核として成長した
遊離黒鉛が分散分布し、さらにフェライト相とCu合金
結合相の界面部に窒化ほう素と硫化モリブデンが分布し
た組織、 および9%以下の気孔率、を有する低気孔Fe−Cu−
C系焼結合金で構成したことを特徴とする相手攻撃性の
低い耐摩耗性焼結合金軸受。
2. In weight%, Cu: 10 to 30%, C: 0.1 to 5%, S: 0.05 to 1%, Boron nitride: 0.1 to 3
% Of molybdenum sulfide: 0.5 to 2%, with the balance being Fe
And the composition of unavoidable impurities, the individual ferrite phases are distributed via the Cu alloy bonding phase,
And a structure in which free graphite grown with the S component as a nucleus is dispersed and distributed in the ferrite phase, and a structure in which boron nitride and molybdenum sulfide are distributed at an interface between the ferrite phase and the Cu alloy bonding phase; Porosity Fe-Cu-
A wear-resistant sintered alloy bearing having a low aggressiveness against a mating member, which is made of a C-based sintered alloy.
JP07219803A 1995-08-04 1995-08-04 Wear resistant sintered alloy bearing with low opponent aggression Expired - Fee Related JP3094862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07219803A JP3094862B2 (en) 1995-08-04 1995-08-04 Wear resistant sintered alloy bearing with low opponent aggression

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07219803A JP3094862B2 (en) 1995-08-04 1995-08-04 Wear resistant sintered alloy bearing with low opponent aggression

Publications (2)

Publication Number Publication Date
JPH0949060A JPH0949060A (en) 1997-02-18
JP3094862B2 true JP3094862B2 (en) 2000-10-03

Family

ID=16741291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07219803A Expired - Fee Related JP3094862B2 (en) 1995-08-04 1995-08-04 Wear resistant sintered alloy bearing with low opponent aggression

Country Status (1)

Country Link
JP (1) JP3094862B2 (en)

Also Published As

Publication number Publication date
JPH0949060A (en) 1997-02-18

Similar Documents

Publication Publication Date Title
US20020197149A1 (en) Copper-based sintered alloy bearing and motor fuel pump
JPS5822359A (en) Iron base sintered alloy for structural member of fuel supply apparatus
JP3094864B2 (en) Wear resistant sintered alloy bearing with low opponent aggression
JPH11117044A (en) Bearing made of free-graphite-precipitation-type ferrous sintered material, excellent in initial conformability
JP3094862B2 (en) Wear resistant sintered alloy bearing with low opponent aggression
JP3094863B2 (en) Wear-resistant sintered oil-impregnated bearing with low aggressiveness
JPH0941069A (en) Wear resistant sintered oilless bearing low in mating attackability
JP3094861B2 (en) Wear-resistant sintered oil-impregnated bearing with low aggressiveness
JPH0941071A (en) Wear resistant sintered oilless bearing low in mating attackability
JPH0941070A (en) Wear resistant sintered alloy bearing low in mating attackability
JPH0949047A (en) Wear resistant sintered alloy bearing low in counter part attackability
JPS5938350A (en) Sintered al alloy for friction member and sliding member
JPH0949063A (en) Wear resistant iron base sintered alloy bearing low in counter part attackability
JP3381626B2 (en) Bearings made of free graphite-precipitated iron-based sintered material exhibiting excellent wear resistance under high surface pressure
JPH09143638A (en) Ferrous sintered oil retaining bearing and its production
JP2004018941A (en) Copper-based sintered sliding member
JP2001303217A (en) Fe BASED SINTERED ALLOY BEARING EXCELLENT IN SEIZURE RESISTANCE AND CRACKING RESISTANCE
JPH01212737A (en) Wear-resistant ferrous sintered alloy
JPH0116296B2 (en)
WO2020013227A1 (en) Sintered alloy and method for producing same
JPH0499836A (en) Sintered copper series sliding material
JP2853575B2 (en) Free graphite precipitated iron-based sintered material with excellent strength and wear resistance
JP3250131B2 (en) Free graphite precipitated iron-based sintered body with high strength and high toughness
JPH0364426A (en) Sintered copper alloy for heavy-load sliding
JPH10259461A (en) Sliding member made of free graphite-precipitated ferrous sintering material excellent in seizuring resistance and wear resistance

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000704

LAPS Cancellation because of no payment of annual fees