JPH0116296B2 - - Google Patents

Info

Publication number
JPH0116296B2
JPH0116296B2 JP14916082A JP14916082A JPH0116296B2 JP H0116296 B2 JPH0116296 B2 JP H0116296B2 JP 14916082 A JP14916082 A JP 14916082A JP 14916082 A JP14916082 A JP 14916082A JP H0116296 B2 JPH0116296 B2 JP H0116296B2
Authority
JP
Japan
Prior art keywords
content
calcium fluoride
alloy
based sintered
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14916082A
Other languages
Japanese (ja)
Other versions
JPS5941451A (en
Inventor
Masayuki Iijima
Shigeyuki Tachibana
Hachiro Matsunaga
Shunzo Iwahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP14916082A priority Critical patent/JPS5941451A/en
Publication of JPS5941451A publication Critical patent/JPS5941451A/en
Publication of JPH0116296B2 publication Critical patent/JPH0116296B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、すぐれた耐摩耗性と自己潤滑性を
有し、特に高面圧がかかり、かつ運転開始時に十
分な潤滑状態を形成することができないような使
用条件にさらされる摺動部材、例えば内燃機関に
おけるロツカアームの摺動面部片、カム、バルブ
シート、バルブガイド、およびスリーブなどの摺
動部材の製造に用いるのに適したFe基焼結合金
に関するものである。 近年、車輌の高速化、高効率化、および高出力
化に伴い、内燃機関の動弁機構部材、特に高面圧
のかかるロツカアームパツト面、カム、バルブシ
ート、バルブガイド、およびスリーブなどの摺動
部材においては、例えば安定した潤滑油皮膜が形
成されにくくなるなど使用条件が一段ときびしさ
を増す傾向にあり、したがつて、この苛酷な使用
条件に十分耐える材料の開発が強く望まれてい
る。 しかし、未だこれらの要求を十分満足する材料
は提案されていないのが現状である。 そこで、本発明者等は、上述のような観点か
ら、特に高面圧がかかり、かつ潤滑状態が不十分
な使用条件にさらされる摺動部材の製造に適した
材料を得べく研究を行なつた結果、前記摺動部材
を、重量%で、C:2〜8%、Si:0.1〜5%、
Cr:4〜30%、PおよびBのうちの1種または
2種(合量で):0.02〜5%、弗化カルシウム
(以下CaF2で示す):0.05〜5%を含有し、さら
に必要に応じて、MoおよびNbのうちの1種また
は2種(合量で):0.1〜10%と、Mn:0.1〜10%
のいずれか、または両方を含有し、残りがFeと
不可避不純物からなる組成を有するFe基焼結合
金で構成すると、このFe基焼結合金においては、
素地に均一に分散した遊離黒鉛およびCaF2によ
つてすぐれた自己潤滑性が確保され、かつ素地に
よつてすぐれた耐摩耗性が確保されることから、
この摺動部材は、高面圧がかかり、かつ潤滑状態
が不十分な使用条件下でも、相手部材を損傷する
ことなく、きわめて長期に亘つてすぐれた性能を
発揮するという知見を得たのである。 この発明は、上記知見にもとづいてなされたも
のであつて、以下に成分組成範囲を上記の通りに
限定した理由を説明する。 (a) C C成分には、素地に固溶して、これを強化し、
かつCrなどの炭化物形成成分と結合して合金の
耐摩耗性を向上させる作用があるほか、残りのC
は遊離黒鉛として素地中に析出して合金の自己潤
滑性を向上させる作用があるが、その含有量が2
%未満では前記作用に所望の向上効果が得られ
ず、一方8%を越えて含有させることは、合金製
造時に混合粉末の流動性が極端に悪くなつて圧粉
体の成形ができなくなることから望ましくなく、
かかる点から、その含有量を2〜8%と定めた。 (b) Si Si成分には、素地に固溶して、これを強化する
と共に、焼結時に液相を発生させて焼結を活性化
し、もつて焼結体を緻密化する作用があるほか、
黒鉛の析出を促進する作用があるが、その含有量
が0.1%未満では前記作用に所望の効果が得られ
ず、一方5%を越えて含有させると、合金の脆化
が著しくなることから、その含有量を0.1〜5%
と定めた。 (c) Cr Cr成分には、素地に固溶して、これを強化し、
かつ上記のように高硬度を有するCr炭化物を形
成して合金の耐摩耗性を向上させる作用がある
が、その含有量が4%未満では所望のすぐれた耐
摩耗性を確保することができず、一方30%を越え
て含有させると、合金が脆化するようになり、こ
れに伴つて相手攻撃性も増すようになることか
ら、その含有量を4〜30%と定めた。 (d) PおよびB これらの成分には、素地に固溶して、これを強
化すると共に、その硬さを高めて合金の耐摩耗性
を向上させる作用があるほか、焼結時に液相を発
生させて焼結を活性化し、もつて焼結体の緻密化
および炭化物生成の安定化に寄与する作用がある
が、その含有量が0.02%未満では前記作用に所望
の効果が得られず、一方5%を越えて含有させる
と合金の靭性が著しくそこなわれるようになるこ
とから、その含有量を0.02〜5%と定めた。 (e) CaF2 CaF2成分には、自らが素地に分散して自己潤
滑性を高める作用があるほか、析出遊離黒鉛の球
状化および安定化に寄与する作用があるが、その
含有量が0.05%未満では前記作用に所望の効果が
得られず、一方5%を越えて含有させると、合金
が脆化するようになることから、その含有量を
0.05〜5%と定めた。 (f) MoおよびNb これらの成分には、素地に固溶して、これを強
化すると共に、Cと結合して炭化物を形成し、も
つて合金の耐摩耗性を向上させる作用があるの
で、特に一段と高い耐摩耗性が要求される場合に
必要に応じて含有されるが、その含有量が0.1%
未満では所望の耐摩耗性向上効果が得られず、一
方10%を越えて含有させると、相手部材の損傷が
著しくなることから、その含有量を0.1〜10%と
定めた。 (g) Mn Mnの成分には、素地に固溶して合金強度を一
段と向上させる作用があるので、特に高強度が要
求される場合に必要に応じて含有されるが、その
含有量が0.1%未満では所望の強度向上効果が得
られず、一方10%を越えて含有させてもより一層
の向上効果は現われないことから、経済性を考慮
して、その含有量を0.1〜10%と定めた。 なお、この発明のFe基焼結合金は90%以上の
理論密度比をもつことが望ましく、これは、その
理論密度比が90%未満では、素地の強度が低く、
かつ大きな空孔が存在するようになり、しかもこ
の空孔のもつ切欠効果によつて素地が破壊されや
すくなつてピツチング摩耗が発生しやすくなると
いう理由によるものである。 つぎに、この発明のFe基焼結合金を実施例に
より具体的に説明する。 実施例 原料粉末として、粒度−200meshのリン片状黒
鉛粉末、同−100meshのアトマイズFe−Cr合金
粉末(Cr:12.5%含有)、同−100meshの高炭素
Fe−Cr合金粉末(Cr:60%含有)、同−200mesh
のFe−Si合金粉末(Si:17%含有)、同−
350meshのFe−P合金粉末(P:17%含有)、同
−250meshのFe−P合金粉末(P:25.7%含有)、
同−200meshのFe−B合金粉末(B:20%含
有)、同−200meshのCaF2粉末、同−350meshの
Mo粉末、同−200meshのFe−Nb合金粉末
(Nb:15%含有)、平均粒径:5μmのMn粉末、
および同−100meshのFe粉末を用意し、これら
原料粉末をそれぞれ第1表に示される配合組成に
配合し、これに潤滑剤としてステアリン酸亜鉛を
0.5%加え、V型ミキサーにて混合した後、
5ton/cm2の圧力で圧粉体に成形し、ついでこの圧
粉体を、真空中、1050〜1200℃の温度範囲内の所
定温度に60分間保持の条件にて焼結し、焼結後、
直ちに1000℃の温度で強制冷却焼入れを行なうこ
とによつて、配合組成と実質的に同一の成分組成
をもつた本発明Fe基焼結合金1〜28および比較
Fe基焼結合金1〜9をそれぞれ製造した。なお、
比較Fe基焼結合金1〜9は、いずれも構成成分
のうちのいずれかの成分含有量(第1表に※印を
付したもの)がこ
This invention has excellent wear resistance and self-lubricating properties, and is particularly useful for sliding members that are subjected to high surface pressure and are exposed to usage conditions where it is not possible to form a sufficient lubrication state at the start of operation, such as The present invention relates to an Fe-based sintered alloy suitable for use in manufacturing sliding members such as rocker arm sliding parts, cams, valve seats, valve guides, and sleeves in internal combustion engines. In recent years, with the increase in speed, efficiency, and output of vehicles, the sliding of internal combustion engine valve mechanism members, especially rocker arm part surfaces, cams, valve seats, valve guides, and sleeves, which are subject to high surface pressure, has become increasingly important. For moving parts, the usage conditions tend to become more severe, for example, as it becomes difficult to form a stable lubricant film, and there is therefore a strong desire to develop materials that can withstand these harsh usage conditions. . However, at present, no material has yet been proposed that fully satisfies these requirements. Therefore, from the above-mentioned viewpoint, the present inventors conducted research in order to obtain a material suitable for manufacturing sliding members that are particularly subjected to high surface pressure and are exposed to usage conditions with insufficient lubrication. As a result, the sliding member contained, in weight%, C: 2 to 8%, Si: 0.1 to 5%,
Contains Cr: 4 to 30%, one or two of P and B (in total): 0.02 to 5%, calcium fluoride (hereinafter referred to as CaF2 ): 0.05 to 5%, and additionally necessary Depending on the amount, one or both of Mo and Nb (in total amount): 0.1-10% and Mn: 0.1-10%
When composed of an Fe-based sintered alloy containing either or both of the following, with the remainder consisting of Fe and unavoidable impurities, this Fe-based sintered alloy
Free graphite and CaF 2 uniformly dispersed in the base material ensure excellent self-lubricating properties, and the base material also ensures excellent wear resistance.
It was discovered that this sliding member exhibits excellent performance over an extremely long period of time without damaging the mating member, even under conditions of high surface pressure and insufficient lubrication. . This invention was made based on the above knowledge, and the reason why the component composition range was limited as described above will be explained below. (a) C For the C component, solid solution is added to the base material to strengthen it.
In addition to combining with carbide-forming components such as Cr to improve the wear resistance of the alloy, the remaining C
is precipitated in the matrix as free graphite and has the effect of improving the self-lubricating properties of the alloy, but if its content is 2.
If the content is less than 8%, the desired effect of improving the above action cannot be obtained, while if the content exceeds 8%, the fluidity of the mixed powder becomes extremely poor during alloy production, making it impossible to form a green compact. undesirable;
From this point of view, the content was determined to be 2 to 8%. (b) Si The Si component has the effect of forming a solid solution in the matrix, strengthening it, generating a liquid phase during sintering, activating sintering, and densifying the sintered body. ,
It has the effect of accelerating the precipitation of graphite, but if the content is less than 0.1%, the desired effect cannot be obtained, while if the content exceeds 5%, the embrittlement of the alloy becomes significant. Its content is 0.1~5%
It was determined that (c) Cr The Cr component has solid solution in the base material to strengthen it.
In addition, as mentioned above, Cr has the effect of forming Cr carbides with high hardness and improving the wear resistance of the alloy, but if the content is less than 4%, the desired excellent wear resistance cannot be achieved. On the other hand, if the content exceeds 30%, the alloy will become brittle, and as a result, its aggressiveness will increase, so the content was set at 4 to 30%. (d) P and B These components have the effect of forming a solid solution in the base material, strengthening it, increasing its hardness and improving the wear resistance of the alloy, and also suppressing the liquid phase during sintering. When the content is less than 0.02%, the desired effect cannot be obtained; On the other hand, if the content exceeds 5%, the toughness of the alloy will be significantly impaired, so the content was set at 0.02 to 5%. (e) CaF 2 The CaF 2 component has the effect of dispersing itself into the substrate and improving self-lubricating properties, and also has the effect of contributing to the spheroidization and stabilization of precipitated free graphite, but when the content is 0.05 If the content is less than 5%, the desired effect cannot be obtained, while if the content exceeds 5%, the alloy will become brittle.
It was set at 0.05-5%. (f) Mo and Nb These components have the effect of forming a solid solution in the base material, strengthening it, and combining with C to form carbides, thereby improving the wear resistance of the alloy. It is included as necessary especially when higher wear resistance is required, but the content is 0.1%.
If the content is less than 10%, the desired effect of improving wear resistance cannot be obtained, whereas if the content exceeds 10%, the damage to the mating member becomes significant. Therefore, the content was set at 0.1 to 10%. (g) Mn The Mn component has the effect of further improving the alloy strength by forming a solid solution in the base material, so it is included as necessary when particularly high strength is required, but the content is 0.1 If the content is less than 10%, the desired strength improvement effect cannot be obtained, and on the other hand, if the content exceeds 10%, no further improvement effect will be obtained. Established. The Fe-based sintered alloy of the present invention preferably has a theoretical density ratio of 90% or more, because if the theoretical density ratio is less than 90%, the strength of the base material will be low.
This is because large pores are present, and the notch effect of these pores makes the substrate more likely to be destroyed and pitting wear to occur. Next, the Fe-based sintered alloy of the present invention will be specifically explained with reference to Examples. Example Raw material powders include flaky graphite powder with a particle size of -200mesh, atomized Fe-Cr alloy powder (containing Cr: 12.5%) with a particle size of -100mesh, and high carbon powder with a particle size of -100mesh.
Fe-Cr alloy powder (Cr: 60% content), -200mesh
Fe-Si alloy powder (Si: 17% content),
350mesh Fe-P alloy powder (P: 17% content), -250mesh Fe-P alloy powder (P: 25.7% content),
-200mesh Fe-B alloy powder (B: 20% content), -200mesh CaF 2 powder, -350mesh
Mo powder, -200 mesh Fe-Nb alloy powder (Nb: 15% content), Mn powder with average particle size: 5 μm,
and -100mesh Fe powder were prepared, and these raw material powders were blended into the composition shown in Table 1, and zinc stearate was added as a lubricant.
After adding 0.5% and mixing with a V-type mixer,
Formed into a green compact under a pressure of 5ton/ cm2 , then sintered in a vacuum at a predetermined temperature within the temperature range of 1050 to 1200℃ for 60 minutes, and after sintering. ,
By immediately performing forced cooling quenching at a temperature of 1000°C, Fe-based sintered alloys 1 to 28 of the present invention having substantially the same composition as the blended composition and comparative
Fe-based sintered alloys 1 to 9 were produced, respectively. In addition,
Comparative Fe-based sintered alloys 1 to 9 all have the following content of one of the constituent components (those marked with * in Table 1).

【表】【table】

【表】 の発明の範囲から外れた組成をもつものである。 ついで、この結果得られた本発明Fe基焼結合
金1〜28および比較Fe基焼結合金1〜9につい
て、理論密度比、素地の最高硬さ(ビツカース硬
さ)、および抗折力を測定すると共に、自動車エ
ンジンのロツカアームのパツト面に適合したチツ
プ部片を切出し、これをロツカアーム鋳造時に鋳
包み、この結果のロツカアームを4気筒OHCエ
ンジンに組込み、使用オイル:ダイヤモンド20W
(商標名)、回転数:850r.p.m、運転時間:200時
間の条件で耐摩耗性試験を行ない、ロツカアーム
のパツト面および相手部材であるカムの摩耗深さ
を測定した。これらの測定結果を第1表に合せて
示した。 第1表に示される結果から、本発明Fe基焼結
合金1〜28は、いずれもすぐれた耐摩耗性および
自己潤滑性をもつことから、ロツカアームのパツ
ト面および相手カムの摩耗量がきわめて少なく、
かつその摩耗面もきわめて平滑なものであつた。
これに対して、比較Fe基焼結合金1〜9に見ら
れるように、構成成分のうちのいずれかの成分含
有量がこの発明の範囲から外れると、所望の耐摩
耗性と自己潤滑性を具備することができなくなる
ことから、前記両部材の少なくともいずれかの摩
耗量が多くなつており、しかもその摩耗面にはス
カツフイングやピツチングが見られるものであつ
た。 上述のように、この発明のFe基焼結合金は、
すぐれた耐摩耗性および自己潤滑性を兼ね備えて
いるので、特に高面圧がかかり、かつ運転開始時
潤滑状態の良くない内燃機関の動弁機構部材の製
造に用いた場合、相手部材をほとんど損傷させる
ことなく、すぐれた性能を著しく長期に亘つて安
定的に発揮するなど工業上有用な特性を有するの
である。
It has a composition outside the scope of the invention shown in [Table]. Next, the theoretical density ratio, maximum hardness of the substrate (Vickers hardness), and transverse rupture strength were measured for the resulting Fe-based sintered alloys 1 to 28 of the present invention and comparative Fe-based sintered alloys 1 to 9. At the same time, we cut out a chip piece that fits the part surface of the car engine's rocker arm, and cast it in when casting the rocker arm.The resulting rocker arm was assembled into a 4-cylinder OHC engine, using oil: Diamond 20W.
(trade name), a wear resistance test was conducted under the conditions of rotation speed: 850 rpm, and operating time: 200 hours, and the wear depth of the rocker arm pad surface and the mating member cam was measured. These measurement results are also shown in Table 1. From the results shown in Table 1, Fe-based sintered alloys 1 to 28 of the present invention all have excellent wear resistance and self-lubricating properties, so the amount of wear on the rocker arm part surface and mating cam is extremely small. ,
The worn surface was also extremely smooth.
On the other hand, as seen in Comparative Fe-based sintered alloys 1 to 9, when the content of any one of the constituent components falls outside the range of the present invention, the desired wear resistance and self-lubricating properties are lost. As a result, the amount of wear on at least one of the two members has increased, and scuffing and pitting have been observed on the worn surface. As mentioned above, the Fe-based sintered alloy of this invention is
It has excellent wear resistance and self-lubricating properties, so when used in the manufacture of valve train parts for internal combustion engines that are subject to high surface pressure and are not well lubricated at the start of operation, they hardly damage the mating parts. It has industrially useful properties such as being able to stably exhibit excellent performance over a long period of time without causing any damage.

Claims (1)

【特許請求の範囲】 1 C:2〜8%、 Si:0.1〜5%、 Cr:4〜30%、 PおよびBのうちの1種または2種(合量
で):0.02〜5%、 弗化カルシウム:0.05〜5%、 を含有し、残りがFeと不可避不純物からなる組
成(以上重量%)を有し、 かつ素地中に遊離黒鉛と弗化カルシウムが均一に
分散した組織を有することを特徴とする自己潤滑
性を有する耐摩耗性Fe基焼結合金。 2 C:2〜8%、 Si:0.1〜5%、 Cr:4〜30%、 PおよびBのうちの1種または2種(合量
で):0.02〜5%、 弗化カルシウム:0.05〜5%、 を含有し、さらに、 MoおよびNbのうちの1種または2種(合量
で):0.1〜10%、 を含有し、残りがFeと不可避不純物からなる組
成(以上重量%)を有し、 かつ素地中に遊離黒鉛と弗化カルシウムが均一に
分散した組織を有することを特徴とする自己潤滑
性を有する耐摩耗性Fe基焼結合金。 3 C:2〜8%、 Si:0.1〜5%、 Cr:4〜30%、 PおよびBのうちの1種または2種(合量
で):0.02〜5%、 弗化カルシウム:0.05〜5%、 を含有し、さらに、 Mn:0.1〜10%、 を含有し、残りがFeと不可避不純物からなる組
成(以上重量%)を有し、 かつ素地中に遊離黒鉛と弗化カルシウムが均一に
分散した組織を有することを特徴とする自己潤滑
性を有する耐摩耗性Fe基焼結合金。 4 C:2〜8%、 Si:0.1〜5%、 Cr:4〜30%、 PおよびBのうちの1種または2種(合量
で):0.02〜5%、 弗化カルシウム:0.05〜5%、 を含有し、さらに、 MoおよびNbのうちの1種または2種(合量
で):0.1〜10%、 Mn:0.1〜10%、 を含有し、残りがFeと不可避不純物からなる組
成(以上重量%)を有し、 かつ素地中に遊離黒鉛と弗化カルシウムが均一に
分散した組織を有することを特徴とする自己潤滑
性を有する耐摩耗性Fe基焼結合金。
[Claims] 1 C: 2 to 8%, Si: 0.1 to 5%, Cr: 4 to 30%, one or two of P and B (total amount): 0.02 to 5%, Contains calcium fluoride: 0.05 to 5%, with the remainder consisting of Fe and unavoidable impurities (weight percent), and has a structure in which free graphite and calcium fluoride are uniformly dispersed in the matrix. A wear-resistant Fe-based sintered alloy with self-lubricating properties. 2 C: 2-8%, Si: 0.1-5%, Cr: 4-30%, One or two of P and B (total amount): 0.02-5%, Calcium fluoride: 0.05- 5%, and further contains one or two of Mo and Nb (total amount): 0.1 to 10%, and the remainder is Fe and unavoidable impurities (in weight %). A wear-resistant Fe-based sintered alloy having self-lubricating properties and having a structure in which free graphite and calcium fluoride are uniformly dispersed in the matrix. 3 C: 2-8%, Si: 0.1-5%, Cr: 4-30%, One or two of P and B (total amount): 0.02-5%, Calcium fluoride: 0.05- 5%, further contains Mn: 0.1 to 10%, and the remainder is Fe and unavoidable impurities (weight%), and free graphite and calcium fluoride are uniform in the matrix. A wear-resistant Fe-based sintered alloy with self-lubricating properties characterized by having a dispersed structure. 4 C: 2-8%, Si: 0.1-5%, Cr: 4-30%, One or two of P and B (total amount): 0.02-5%, Calcium fluoride: 0.05- 5%, and further contains one or two of Mo and Nb (total amount): 0.1 to 10%, Mn: 0.1 to 10%, and the remainder consists of Fe and inevitable impurities. A wear-resistant Fe-based sintered alloy with self-lubricating properties, which has a composition (weight% or more) and has a structure in which free graphite and calcium fluoride are uniformly dispersed in the matrix.
JP14916082A 1982-08-30 1982-08-30 Anti-wear fe base sintered alloy having self-lubricity Granted JPS5941451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14916082A JPS5941451A (en) 1982-08-30 1982-08-30 Anti-wear fe base sintered alloy having self-lubricity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14916082A JPS5941451A (en) 1982-08-30 1982-08-30 Anti-wear fe base sintered alloy having self-lubricity

Publications (2)

Publication Number Publication Date
JPS5941451A JPS5941451A (en) 1984-03-07
JPH0116296B2 true JPH0116296B2 (en) 1989-03-23

Family

ID=15469097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14916082A Granted JPS5941451A (en) 1982-08-30 1982-08-30 Anti-wear fe base sintered alloy having self-lubricity

Country Status (1)

Country Link
JP (1) JPS5941451A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248596A (en) * 1987-03-31 1988-10-14 Ofic Co Build-up welding material for heat and wear resistant machine part
JP2539817B2 (en) * 1987-03-31 1996-10-02 豊田工機株式会社 Rotary type servo valve
JP2516645B2 (en) * 1987-09-28 1996-07-24 三菱重工業株式会社 Composite wire for hardfacing welding
JP3221192B2 (en) * 1993-10-18 2001-10-22 三菱マテリアル株式会社 Valve seat for intake
JP3257212B2 (en) * 1993-12-27 2002-02-18 三菱マテリアル株式会社 Valve seat made of iron-based sintered alloy for internal combustion engine intake
CN103639405A (en) * 2013-12-03 2014-03-19 江苏大学 Metal matrix high temperature self-lubricating composite material and manufacturing method thereof

Also Published As

Publication number Publication date
JPS5941451A (en) 1984-03-07

Similar Documents

Publication Publication Date Title
JPH03247732A (en) Sliding material
KR0127658B1 (en) VALVE GUIDE MEMBER FORMED OF Fe-BASED SINTERED ALLOY HAVING EXCELLENT WEAR AND ABRASION
JPH0360897B2 (en)
JPS5822359A (en) Iron base sintered alloy for structural member of fuel supply apparatus
JPS6033344A (en) Wear resistance sintered alloy
JPH0116296B2 (en)
JPH0116297B2 (en)
JPS6144152A (en) Manufacture of wear resistant sintered alloy
JPH0379428B2 (en)
JP3942136B2 (en) Iron-based sintered alloy
JPH0215624B2 (en)
JP2001234305A (en) Sintered member
JPH0555592B2 (en)
JPS60159154A (en) Wear resistant sintered sliding material
JPS62133043A (en) Fe sintered material impregnated with cu
JPS60255958A (en) Wear resistant sintered alloy
JPH06158217A (en) Valve guide member made of fe-based sintered alloy excellent in wear resistance
JPH0333891B2 (en)
JP2661045B2 (en) Fe-based sintered alloy with excellent sliding properties
JPS62133044A (en) Fe sintered material impregnated with cu
JP3763605B2 (en) Sintered alloy material for valve seats
JP3346270B2 (en) Piston ring wear ring made of free graphite precipitated iron-based sintered material with excellent high temperature wear resistance
JPS60165357A (en) Abrasion resistant slidable material
JPS63105946A (en) Manufacture of carbide dispersion-type fe-base sintered alloy excellent in wear resistance
KR900002562B1 (en) Making method for fe-sintered alloy having a high density and high hardness