JPS63105946A - Manufacture of carbide dispersion-type fe-base sintered alloy excellent in wear resistance - Google Patents
Manufacture of carbide dispersion-type fe-base sintered alloy excellent in wear resistanceInfo
- Publication number
- JPS63105946A JPS63105946A JP25001886A JP25001886A JPS63105946A JP S63105946 A JPS63105946 A JP S63105946A JP 25001886 A JP25001886 A JP 25001886A JP 25001886 A JP25001886 A JP 25001886A JP S63105946 A JPS63105946 A JP S63105946A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- powder
- carbide
- wear resistance
- sintered alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 38
- 239000000956 alloy Substances 0.000 title claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 239000000843 powder Substances 0.000 claims abstract description 44
- 239000002994 raw material Substances 0.000 claims abstract description 12
- 229910003286 Ni-Mn Inorganic materials 0.000 claims abstract description 8
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 8
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 7
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 5
- 239000011159 matrix material Substances 0.000 claims abstract description 5
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 5
- 239000002245 particle Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 6
- 239000000203 mixture Substances 0.000 abstract description 6
- 238000005245 sintering Methods 0.000 abstract description 6
- 229910052802 copper Inorganic materials 0.000 abstract description 4
- 229910052758 niobium Inorganic materials 0.000 abstract description 3
- 229910052720 vanadium Inorganic materials 0.000 abstract description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052715 tantalum Inorganic materials 0.000 abstract description 2
- 229910052721 tungsten Inorganic materials 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract 1
- 229910052751 metal Inorganic materials 0.000 abstract 1
- 229910052750 molybdenum Inorganic materials 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 16
- 150000001247 metal acetylides Chemical class 0.000 description 13
- 229910001096 P alloy Inorganic materials 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 4
- 229910000914 Mn alloy Inorganic materials 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910001339 C alloy Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 229910019582 Cr V Inorganic materials 0.000 description 1
- 229910017060 Fe Cr Inorganic materials 0.000 description 1
- 229910002544 Fe-Cr Inorganic materials 0.000 description 1
- 229910002551 Fe-Mn Inorganic materials 0.000 description 1
- 229910017112 Fe—C Inorganic materials 0.000 description 1
- 229910003289 NiMn Inorganic materials 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、すぐれた耐摩耗性をもたらす微細な炭化物
を有し、特にロッカーアームチップ、タペット、および
カムピースなどの内燃機関用耐摩耗摺動部材や、ロータ
リーコンプレッサおよびベーンポンプ用ベーンなどの摺
動部材などの製造に用いるのに適した炭化物分散型Fe
基焼結合金の製造法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention has fine carbides that provide excellent wear resistance, and is particularly useful for wear-resistant slides for internal combustion engines such as rocker arm tips, tappets, and cam pieces. Carbide-dispersed Fe suitable for manufacturing parts and sliding parts such as vanes for rotary compressors and vane pumps.
This invention relates to a method for producing a base sintered alloy.
従来、上記の摺動部材などとして用いられている炭化物
分散型Fe基焼結合金としては、重量%で(以下%は重
量%を示す)、
Cr:5〜30%、C:0.5〜4%。Conventionally, carbide-dispersed Fe-based sintered alloys used as the above-mentioned sliding members, etc., have the following formulas in weight% (hereinafter % indicates weight%): Cr: 5-30%, C: 0.5-30%. 4%.
Ni : 1〜40%、 Mn : 0.7〜5
%。Ni: 1-40%, Mn: 0.7-5
%.
P:0.1〜0.8%。P: 0.1-0.8%.
を含有し、必要に応じて、
Mo +W+ V、 Nb *およびTaのうちの1種
または2種以上二0.1〜10%。and, if necessary, one or more of Mo+W+V, Nb* and Ta20.1 to 10%.
を含有し、さらに必要に応じて、
coおよびCuのうちの1種または2i:0.1〜lO
%。and, if necessary, one of co and Cu or 2i: 0.1 to 1O
%.
を含有し、残1〕がFeと不可避不純物からなる組成を
有するものが知られ、その製造に際して、液相焼結を行
なう目的で、原料粉末としてFe−P合金粉末を用いる
こともよく知られている。It is also well known that Fe-P alloy powder is used as a raw material powder for the purpose of liquid phase sintering in the production of these products. ing.
しかし、上記のFe−P合金粉末による液相焼結法で製
造された炭化物分散型Fe基焼結合金においては、焼結
時に炭化物が成長して棒状に粗大化し、この状態で実用
に供すると、炭化物が破壊されて脱落したり、スカッフ
摩耗が生じたりするなどの問題が発生し、満足する耐摩
耗性を示さないのが現状である。However, in the carbide-dispersed Fe-based sintered alloy manufactured by the liquid phase sintering method using the Fe-P alloy powder described above, the carbides grow during sintering and become coarse in rod shape, and if it is not put into practical use in this state. At present, problems such as carbide destruction and falling off, scuff wear, etc. occur, and the wear resistance is not satisfactory.
そこで、本発明者等は、上述のような観点から、炭化物
の微細化した炭化物分散型Fe基焼結合金を製造すべく
研究を行なった結果、上記の従来炭化物分散型Fe基焼
結合金を製造するに際して、原料粉末として用いられて
いるFe−P合金粉末に代って、Mn:40〜80%を
含有するNi−Mn合金粉末を用いると、炭化物の成長
が抑制され、むしろこれが微細化するようになり、この
結果の炭化物分散型Fe基焼結合金はすぐれた耐摩耗性
をもつようになるという知見を得たのである。Therefore, from the above-mentioned viewpoint, the present inventors conducted research to produce a carbide-dispersed Fe-based sintered alloy with finer carbides. During production, if Ni-Mn alloy powder containing 40 to 80% Mn is used instead of Fe-P alloy powder used as raw material powder, the growth of carbides is suppressed, and in fact, this is caused to become finer. This led to the discovery that the resulting carbide-dispersed Fe-based sintered alloy has excellent wear resistance.
したがって、この発明は、上記知見にもとづいてなされ
たものであって、
Cr:5〜30%、 C:0.5〜4%、Ni
: 1 〜10 % 、 Mn 二
0.7〜5 % 。Therefore, this invention was made based on the above findings, and includes Cr: 5-30%, C: 0.5-4%, Ni
: 1-10%, Mn2 0.7-5%.
を含有し、必要に応じて、
Mo + W 、 V + Nb rおよびTaのうち
の1種または2種以上二0.1〜10%と、
CoおよびCuのうちの1種または2種=0.1〜10
%、のいずれか、または両方を含有し、残りがl”eと
不可避不純物からなる組成を有する炭化物分散型Fe基
焼結合金を製造するに際して、原料粉末としてMn :
40〜80%を含有するNi−Mn合金粉末を用いて
、素地中に分散する炭化物を微細化し、もって耐摩耗性
の向上をはかった点に特徴を有するものである。and, if necessary, one or more of Mo + W, V + Nbr, and Ta (20.1 to 10%) and one or two of Co and Cu = 0 .1 to 10
%, or both, with the remainder consisting of l''e and unavoidable impurities, Mn as a raw material powder:
It is characterized in that it uses Ni--Mn alloy powder containing 40 to 80% to refine the carbides dispersed in the matrix, thereby improving wear resistance.
つぎに、この発明の方法において、合金の成分組成、並
びに原料粉末としてのNi Mn合金粉末中のMn含
有黴を上記の通りに限定した理由を説明する。Next, in the method of the present invention, the composition of the alloy and the reason why the Mn-containing mold in the NiMn alloy powder as the raw material powder is limited as described above will be explained.
(al Cr
Cr成分には、一部は素地に固溶して、これを強化する
ほか、残りがC43Feと結合して炭化物を形成し、も
って合金の耐摩耗性を向上させる作用があるが、その含
有量が5%未満では、炭化物の形成が不十分で所望の耐
摩耗性向上効果が得られず、一方その含有量が30%を
越えると、炭化物が多くなりすぎて、合金が脆化するよ
うになることから、その含有量を5〜30%と定めた。(al Cr Cr components have the effect of forming a solid solution in the base material and strengthening it, and the rest combining with C43Fe to form carbides, thereby improving the wear resistance of the alloy. If the content is less than 5%, the formation of carbides is insufficient and the desired effect of improving wear resistance cannot be obtained, while if the content exceeds 30%, there are too many carbides and the alloy becomes brittle. Therefore, its content was set at 5 to 30%.
(b) C
C成分には、Crと同様に素地に固溶して、これを強化
すると共に、Cr’PFeと結合して炭化物を形成し、
合金の耐摩耗性を向上させる作用があるが、その含有量
が0.5%未満では前記作用に所望の効果が得られず、
一方その含有量が4%を越えると、炭化物が多くなりす
ぎて合金が脆化するようになることから、その含有量を
0.5〜4%と定めた。(b) C In the C component, like Cr, it forms a solid solution in the base material to strengthen it, and also combines with Cr'PFe to form a carbide,
It has the effect of improving the wear resistance of the alloy, but if its content is less than 0.5%, the desired effect cannot be obtained,
On the other hand, if the content exceeds 4%, there will be too many carbides and the alloy will become brittle, so the content was set at 0.5 to 4%.
Icl NiおよびMn
これらの成分には、いずれも共存した状態で素地に固溶
して、素地を構成するオーステナイトを安定化し、かつ
高負荷条件下での実用に際しては、加工誘起マルテンサ
イト変態を生起し、もって素地を強化する作用があるが
、その含有lがNi : 1%未満およびMn : 0
.7%未満では前記作用に所望の効果が得られず、一方
その含有量がNiにあっては10%、Mnにあっては5
%を越えても前記作用が飽和し、より一層の向上効果は
得られないことから、その含有量を、それぞれNi :
1〜10%、Mn : 0.7〜5%と定めた。Icl Ni and Mn Both of these components coexist as a solid solution in the base material, stabilize the austenite that makes up the base material, and cause deformation-induced martensitic transformation in practical use under high load conditions. However, the content is less than 1% for Ni and 0 for Mn.
.. If the content is less than 7%, the desired effect cannot be obtained; on the other hand, the content is 10% for Ni and 5% for Mn.
%, the above effect is saturated and no further improvement effect can be obtained.
1 to 10%, Mn: 0.7 to 5%.
fd) Mo r W r V + Nb +および
Taこれらの成分には、C+ Cr rおよびFeと反
応して、補助的な複炭化物を形成し、もって合金の耐摩
耗性を一段と向上させる作用があるので、必要に応じて
含有されるが、その含有量が0.1%未満では所望の耐
摩耗性向上効果が得られず、一方その含有量が10%を
越えると相手攻撃性が高まるようになることから、その
含有はを0.1〜10%としなければならない。fd) Mor W r V + Nb + and Ta These components have the effect of reacting with C + Cr r and Fe to form auxiliary double carbides, thereby further improving the wear resistance of the alloy. Therefore, it is included as necessary, but if the content is less than 0.1%, the desired effect of improving wear resistance cannot be obtained, while if the content exceeds 10%, the aggressiveness of the opponent increases. Therefore, its content must be 0.1 to 10%.
(e) CoおよびCu
これらの成分には、素地に固溶して、これを一段と強化
する作用があるので、必要に応じて含有されるが、その
含有量が0.1%未満では前記作用に所望の効果が得ら
れず、一方その含有量が10%を越えてもより一層の向
上効果は得られないことから、経済性を考慮して、その
含有量を0.1〜゛10%と定めた。(e) Co and Cu These components have the effect of forming a solid solution in the base material and further strengthening it, so they are included as necessary, but if their content is less than 0.1%, the above effects will be impaired. However, even if the content exceeds 10%, no further improvement effect can be obtained. It was determined that
ff) Ni−Mn合金粉末のMn含有量N1−Mn
合金粉末には、上記のように焼結時に炭化物の成長を抑
制し、むしろこれを微細化する作用があるが、そのMn
含有量が40%未満でも、また80%を越えても炭化物
微細化作用は激減し、所望の微細化作用を確保すること
ができないことから、そのMn含有量を40〜80%と
定めた。ff) Mn content N1-Mn of Ni-Mn alloy powder
As mentioned above, the alloy powder has the effect of suppressing the growth of carbides during sintering, or rather refining them, but the Mn
Even if the Mn content is less than 40% or exceeds 80%, the carbide refining effect is drastically reduced and the desired refining effect cannot be ensured. Therefore, the Mn content was set at 40 to 80%.
つぎに、この発明の方法を実施例により具体的に説明す
る。Next, the method of the present invention will be specifically explained using examples.
原料粉末として、いずれも−100メツシユの水アトマ
イズFe −Cr−C合金(Cr:16%、C:1%含
有)粉末、 Fe−Cr合金(Cr:60%含有)粉末
、およびFe粉末、−200メツシユの黒鉛粉末、いず
れも−200メツンユのNi−Mn合金(Mn : 4
0%含有)粉末、Mn : 60%含有のNi−Mn合
金粉末、およびIvIn : 80%含有のN1−Mn
合金粉末、いずれも−350メツシユのMo粉末、W粉
末、CO粉末、およびCu粉末、いずれも−100メツ
シユの水アトマイズFe −Cr−V合金(Cr:14
%、■=3%含有)粉末および水アトマイズFe −C
r −Nb −Ta −C合金(Cr:12%、Nb
: 1%、Ta : 0.5%、C:0.5%含有)粉
末を用意し、これら原料粉末を、それぞれ第1表に示さ
れる配合組成に配合し、通常の条件で混合した後、5
ton / cAの子方で圧粉体にプレス成形し、真空
中、1070〜1150℃の範囲内の所定itで焼結す
ることによって本発明法1〜10を実旌し、本発明焼結
合金を製造した。As raw material powders, -100 mesh water atomized Fe-Cr-C alloy (contains 16% Cr, 1% C) powder, Fe-Cr alloy (contains 60% Cr) powder, and Fe powder, - 200 mesh graphite powder, -200 mesh Ni-Mn alloy (Mn: 4
0% content) powder, Mn: 60% content Ni-Mn alloy powder, and IvIn: 80% content N1-Mn powder.
Alloy powders, Mo powder, W powder, CO powder, and Cu powder, all with -350 mesh, water atomized Fe-Cr-V alloy (Cr:14), all with -100 mesh.
%, ■ = 3% content) powder and water atomized Fe-C
r -Nb -Ta -C alloy (Cr: 12%, Nb
: 1%, Ta: 0.5%, C: 0.5%) powder was prepared, and these raw material powders were blended into the composition shown in Table 1, and mixed under normal conditions, 5
The methods 1 to 10 of the present invention were put into practice by press-forming the compact into a green compact at a temperature of 1,000 ton/cA, and sintering it in a vacuum at a predetermined temperature within the range of 1,070 to 1,150°C. was manufactured.
また、比較の目的で、上記の各種の原料粉末のうち、N
i−Mn合金粉末は使用せず、これに代って−200メ
ツシユのNi粉宋およびFe−Mn合金(Mn:80%
含有)粉末を使用し、さらに−100メツシユのFe−
P合金(P:26%含有)粉末を使用して、同じく第1
表に示される配合組成に配合する以外は同一の条件で従
来法1〜4を行ない、従来焼結合金を製造した。Also, for the purpose of comparison, among the various raw material powders mentioned above, N
The i-Mn alloy powder was not used, and instead -200 mesh Ni powder and Fe-Mn alloy (Mn: 80%
Fe-
Using P alloy (P: 26% content) powder, the first
Conventional methods 1 to 4 were carried out under the same conditions except that the compositions shown in the table were used to produce conventional sintered alloys.
ついで、この結果得られた各種の焼結合金について、素
地中に分散する炭化物の平均粒径を測定すると共に、こ
れよりチップを切り出し、これをガソリンエンジン用σ
ツカーアームのカムとの摺動面に組込み。Next, for the various sintered alloys obtained as a result, the average particle size of the carbide dispersed in the matrix was measured, and chips were cut out from this and used as σ for gasoline engines.
Incorporated into the sliding surface of the Tsuka arm cam.
エンジン:4気筒ガソリンエンジン、
回転数: 850 r、p、m、 時間:200時
間、潤滑油: 5AE20W、 油温:80℃、の条件
でファイアリングによるエンジン試験を行ない、テップ
とカムの最大摩耗深さを測定し、さらにテップ摩耗面状
態を観察した。これらの結果を第1表に示した。Engine: 4-cylinder gasoline engine, rotation speed: 850 r, p, m, time: 200 hours, lubricant: 5AE20W, oil temperature: 80°C, engine test was conducted by firing under the following conditions, and the maximum wear of the tip and cam was determined. The depth was measured and the condition of the tip wear surface was also observed. These results are shown in Table 1.
第1表に示される結果から、原料粉末としてNi−Mn
合金粉末を使用する本発明法1〜1oによって製造され
た本発明焼結合金においては、いずれも原料粉末として
Fe−P合金粉末を用いる従来法1〜4によって製造さ
れた従来焼結合金に比して、炭化物が著しく微細になっ
ており、エンジン試験でもすぐれた耐摩耗性および著し
く低い相手攻撃性を示し、かつスカッフや条痕のない良
好な摩耗面を有することが明らかである。From the results shown in Table 1, Ni-Mn was used as the raw material powder.
The sintered alloys of the present invention manufactured by methods 1 to 1o of the present invention using alloy powder are all compared to conventional sintered alloys manufactured by conventional methods 1 to 4 using Fe-P alloy powder as raw material powder. It is clear that the carbides are extremely fine, that they exhibit excellent wear resistance and extremely low aggressiveness in engine tests, and that they have a good wear surface without scuffs or striations.
上述のように、この発明の方法によれば、原料粉末とし
てNt−Mn合金粉末を使用することにより素地中に分
散する炭化物が微細なFe基焼結合金を製造することが
でき、しかもこれを例えば各種の摺動部材として用いた
場合には、すぐれた耐摩耗性および著しく低い相手攻撃
性を示し、長期(二亘ってすぐれた性能を発揮するので
ある。As described above, according to the method of the present invention, an Fe-based sintered alloy with fine carbides dispersed in the matrix can be produced by using Nt-Mn alloy powder as the raw material powder, and For example, when used as various sliding members, it exhibits excellent wear resistance and extremely low attack resistance, and exhibits excellent performance over a long period of time.
Claims (1)
:1〜10%、Mn:0.7〜5%、 を含有する炭化物分散型Fe基焼結合金を製造するに際
して、原料粉末として、Mn:40〜80%を含有する
Ni−Mn合金粉末を用い、素地中に分散する炭化物の
微細化をはかることを特徴とする耐摩耗性のすぐれた炭
化物分散型Fe基焼結合金の製造法。[Claims] In weight%, Cr: 5 to 30%, C: 0.5 to 4%, Ni
: 1 to 10%, Mn: 0.7 to 5%, When producing a carbide-dispersed Fe-based sintered alloy containing: Ni-Mn alloy powder containing Mn: 40 to 80% as a raw material powder. 1. A method for producing a carbide-dispersed Fe-based sintered alloy with excellent wear resistance, which is characterized in that the carbide particles dispersed in the matrix are made finer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25001886A JPH0717984B2 (en) | 1986-10-21 | 1986-10-21 | Method for producing carbide-dispersed Fe-based sintered alloy with excellent wear resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25001886A JPH0717984B2 (en) | 1986-10-21 | 1986-10-21 | Method for producing carbide-dispersed Fe-based sintered alloy with excellent wear resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63105946A true JPS63105946A (en) | 1988-05-11 |
JPH0717984B2 JPH0717984B2 (en) | 1995-03-01 |
Family
ID=17201621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25001886A Expired - Lifetime JPH0717984B2 (en) | 1986-10-21 | 1986-10-21 | Method for producing carbide-dispersed Fe-based sintered alloy with excellent wear resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0717984B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4409278A1 (en) * | 1994-03-18 | 1995-09-21 | Klein Schanzlin & Becker Ag | Corrosion and wear resistant chilled cast iron |
CN113751707A (en) * | 2021-09-14 | 2021-12-07 | 郑州磨料磨具磨削研究所有限公司 | Method for preparing nano carbide particle dispersion strengthening alloy powder |
CN116043100A (en) * | 2022-12-17 | 2023-05-02 | 江苏华久辐条制造有限公司 | Heat treatment alloy spoke under EBSD analysis |
-
1986
- 1986-10-21 JP JP25001886A patent/JPH0717984B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4409278A1 (en) * | 1994-03-18 | 1995-09-21 | Klein Schanzlin & Becker Ag | Corrosion and wear resistant chilled cast iron |
CN113751707A (en) * | 2021-09-14 | 2021-12-07 | 郑州磨料磨具磨削研究所有限公司 | Method for preparing nano carbide particle dispersion strengthening alloy powder |
CN113751707B (en) * | 2021-09-14 | 2023-08-22 | 郑州磨料磨具磨削研究所有限公司 | Method for preparing nano carbide particle dispersion strengthening alloy powder |
CN116043100A (en) * | 2022-12-17 | 2023-05-02 | 江苏华久辐条制造有限公司 | Heat treatment alloy spoke under EBSD analysis |
Also Published As
Publication number | Publication date |
---|---|
JPH0717984B2 (en) | 1995-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0127658B1 (en) | VALVE GUIDE MEMBER FORMED OF Fe-BASED SINTERED ALLOY HAVING EXCELLENT WEAR AND ABRASION | |
JPS6033344A (en) | Wear resistance sintered alloy | |
JPS63105946A (en) | Manufacture of carbide dispersion-type fe-base sintered alloy excellent in wear resistance | |
JPS5985847A (en) | Fe-base sintered material for sliding member of internal-combustion engine | |
JPS5940217B2 (en) | Fe-based sintered alloy with wear resistance | |
JPH0116296B2 (en) | ||
JP3942136B2 (en) | Iron-based sintered alloy | |
JPH0931612A (en) | Iron-base sintered alloy excellent in strength and wear resistance | |
JPH0215624B2 (en) | ||
JPH01212737A (en) | Wear-resistant ferrous sintered alloy | |
JPH0543913A (en) | Fe base sintered alloy valve seat with extremely low attackability against object | |
JPS5828342B2 (en) | Valve seat for internal combustion engines with excellent heat and wear resistance and machinability | |
JPS6250441A (en) | Carbide dispersion type ferrous sintered alloy having excellent wear resistance | |
JP2531625B2 (en) | Fe-based sintered alloy with excellent wear resistance | |
JPH06158217A (en) | Valve guide member made of fe-based sintered alloy excellent in wear resistance | |
JPS60159154A (en) | Wear resistant sintered sliding material | |
JPS60165357A (en) | Abrasion resistant slidable material | |
JPS62133044A (en) | Fe sintered material impregnated with cu | |
JPH06158218A (en) | Valve guide member made of fe-based sintered alloy excellent in wear resistance | |
JPH0559163B2 (en) | ||
JPS62133043A (en) | Fe sintered material impregnated with cu | |
JPH0543998A (en) | Valve seat made of metal-filled fe-base sintered alloy extremely reduced in attack on mating material | |
JP2629941B2 (en) | Co-reduced composite Mo alloy powder and Fe-based sintered alloy sliding member manufactured using the same | |
JPH06306554A (en) | Valve guide member made of fe-base sintered alloy excellent in wear resistance | |
JPS6250447A (en) | Sintered iron alloy containing dispersed carbide and having superior wear resistance |