JPH0936406A - Photoelectric converter and production thereof - Google Patents

Photoelectric converter and production thereof

Info

Publication number
JPH0936406A
JPH0936406A JP7185315A JP18531595A JPH0936406A JP H0936406 A JPH0936406 A JP H0936406A JP 7185315 A JP7185315 A JP 7185315A JP 18531595 A JP18531595 A JP 18531595A JP H0936406 A JPH0936406 A JP H0936406A
Authority
JP
Japan
Prior art keywords
layer
photoelectric conversion
electrode layer
lower electrode
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7185315A
Other languages
Japanese (ja)
Inventor
Koki Sato
広喜 佐藤
Takaoki Sasaki
隆興 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7185315A priority Critical patent/JPH0936406A/en
Publication of JPH0936406A publication Critical patent/JPH0936406A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To obtain a thin film having irregular surface through low temperature formation by a structure wherein a lower electrode layer comprises an upper layer of high reflectance metal having specified average thickness, and a lower metal layer having specified melting point and irregular upper surface. SOLUTION: ZnO 2 is deposited on the surface of a substrate 1 and a low temperature formation metal layer 3 of Al having irregular surface is formed thereon. The Al layer 3 having irregular surface is formed under conditions of substrate temperature in the range of 225-325 deg.C and the thickness in the range of 75-140nm. Subsequently, a high reflectance metal layer 4 of Ag is formed thereon. Total thickness of the lower electrode layer comprising the metal layers 3, 4 is set at 250nm or less and a photoelectric conversion layer 5 is formed on the lower electrode layer. Since a metal having melting point of 700 deg.C or below is employed in the lower layer, a thin film having irregular surface can be obtained by low temperature formation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体薄膜を光電変換
層に用いた光電変換装置およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric conversion device using a semiconductor thin film as a photoelectric conversion layer and a method for manufacturing the same.

【0002】[0002]

【従来の技術】原料ガスをプラズマCVD法、光CVD
法あるいは熱CVD法によって分解することにより形成
される、アモルファスシリコン(以下a−Siと記す)
等を主成分とする半導体薄膜を用いた光電変換装置は、
大面積化が容易という特徴をもっており、低コスト太陽
電池などとして期待されている。このような光電変換装
置では、半導体薄膜からなる光電変換層に上面の透明電
極層を介して直接入射する光のほかに、半導体薄膜の基
板側に設けられる下部電極層の表面で反射して光電変換
層に入射する光も発電に寄与する。この電極層の表面が
平坦でなく、凹凸の表面形状を有すると、それにより光
の散乱が生じ、光路長が増加するため、光電変換効率が
向上することが知られている。このような表面形状をも
つ電極を基板上に形成する方法としては、特開昭56−
152276号、特開昭58−180069号、特開平
1−119074号等の公報に記載されているように電
極を支持する基体の表面を凹凸化する方法や、特開昭5
9−61973号、特開平3−94173号、特開平3
−99477号、特開平3−99478号、特開平4−
218977号、特開平4−334069号等の公報に
記載されているように平坦な基体上に凹凸を有する電極
を形成する方法があった。
2. Description of the Related Art A raw material gas is a plasma CVD method or an optical CVD method.
Amorphous silicon (hereinafter referred to as a-Si) formed by decomposing by a CVD method or a thermal CVD method
A photoelectric conversion device using a semiconductor thin film whose main component is
It has the characteristic that it can be easily enlarged, and is expected as a low-cost solar cell. In such a photoelectric conversion device, in addition to light that is directly incident on the photoelectric conversion layer formed of a semiconductor thin film through the transparent electrode layer on the upper surface, the light is reflected on the surface of the lower electrode layer provided on the substrate side of the semiconductor thin film and photoelectrically converted. Light incident on the conversion layer also contributes to power generation. It is known that if the surface of the electrode layer is not flat and has an uneven surface shape, light scattering is caused thereby and the optical path length is increased, so that the photoelectric conversion efficiency is improved. A method for forming an electrode having such a surface shape on a substrate is described in JP-A-56-
As disclosed in JP-A-152276, JP-A-58-180069, JP-A-1119074, and the like, a method of making the surface of a substrate supporting an electrode uneven, and JP-A-5-
9-61973, JP-A-3-94173, JP-A-3
-99477, JP-A-3-99478, JP-A-4-9947
There has been a method of forming an electrode having irregularities on a flat substrate as described in JP-A-218977 and JP-A-4-334069.

【0003】[0003]

【発明が解決しようとする課題】上記特開平4−334
069号公報に記載された方法は、基板の上に形成した
SiとAlなどの金属との合金からなり表面が凹凸形状
をもつ光散乱層の上に、凹凸形状を損なわないで反射率
の高いCuあるいはAgよりなる金属被覆を形成するも
のである。この場合、金属被覆からの拡散によりその上
に形成される光電変換構造の特性が低下するのを防ぐた
め、金属被覆の厚さは200nm以下とする。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The method disclosed in Japanese Patent No. 069 has a high reflectance without impairing the uneven shape on the light scattering layer made of an alloy of Si and a metal such as Al formed on the substrate and having an uneven shape on the surface. A metal coating made of Cu or Ag is formed. In this case, the thickness of the metal coating is 200 nm or less in order to prevent the characteristics of the photoelectric conversion structure formed thereon from being deteriorated due to diffusion from the metal coating.

【0004】しかし、光散乱層としてある程度の粒径を
もつ金属あるいは合金の薄膜を形成するには、成膜温度
を高温にし、かつ膜厚をある程度厚くする必要があっ
た。特に基板にプラスチックフィルムなどの可とう性基
板を用いる場合は、成膜温度を高くすると基板の収縮に
より電極層に熱応力が生ずる。また、膜厚を厚くするこ
とによっても応力が大きくなる。これらの応力に起因し
て電極剥離やそれに伴う短絡などの特性劣化が生ずる問
題があった。
However, in order to form a metal or alloy thin film having a certain grain size as the light-scattering layer, it was necessary to raise the film-forming temperature and increase the film thickness to some extent. In particular, when a flexible substrate such as a plastic film is used as the substrate, when the film forming temperature is increased, the electrode layer is thermally stressed due to the contraction of the substrate. In addition, the stress is increased by increasing the film thickness. Due to these stresses, there has been a problem that characteristic deterioration such as electrode peeling and accompanying short circuit occurs.

【0005】本発明の目的は、上記の問題を解決し、膜
厚が薄く成膜温度を高めることなく形成でき、しかも表
面に凹凸形状を有する下部電極層を有する光電変換装置
およびその製造方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems, to provide a photoelectric conversion device having a thin electrode film which can be formed without increasing the film formation temperature, and which has a lower electrode layer having an uneven surface, and a method for manufacturing the same. To provide.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、絶縁性の基板上に下部電極層、光電変
換層および透明上部電極層が順次積層された光電変換装
置において、下部電極層がその平均厚さが250nm以
下であり、高反射率金属よりなる上部層と、上面に凹凸
形状を有し、融点700℃以下の金属よりなる下部層と
を有するものとする。下部電極層の下部層の上面におけ
る凹凸の山頂の平均間隔が150nm以上1000nm
以下であることが好ましい。基板が高分子材料よりなっ
て可撓性を有することもよく、その場合下部電極層の基
板に接する層部分が導電性酸化物よりなることがよい。
下部電極層の下部層がAlよりなることがよく、その場
合下部層の厚さが150nm以下であることが好まし
い。下部電極層の上部層がAgよりなることがよい。下
部電極層の下部層がアルミニウムよりなる場合の本発明
の光電変換装置の製造方法は、その下部層を基板温度2
25℃ないし325℃で成膜することが有効であり、下
部電極層の上部層を基板温度200℃以下で成膜するこ
とがよい。
To achieve the above object, the present invention provides a photoelectric conversion device in which a lower electrode layer, a photoelectric conversion layer and a transparent upper electrode layer are sequentially laminated on an insulating substrate, The lower electrode layer has an average thickness of 250 nm or less, an upper layer made of a high-reflectance metal, and a lower layer made of a metal having an uneven shape on the upper surface and having a melting point of 700 ° C. or less. The average distance between the peaks of the irregularities on the upper surface of the lower electrode layer is 150 nm or more and 1000 nm.
The following is preferred. The substrate may be made of a polymer material and flexible, and in that case, the layer portion of the lower electrode layer in contact with the substrate may be made of a conductive oxide.
The lower layer of the lower electrode layer is preferably made of Al, and in that case, the thickness of the lower layer is preferably 150 nm or less. The upper layer of the lower electrode layer is preferably made of Ag. In the method for manufacturing a photoelectric conversion device of the present invention in which the lower layer of the lower electrode layer is made of aluminum, the lower layer has a substrate temperature of 2
It is effective to form the film at 25 ° C. to 325 ° C., and it is preferable to form the upper layer of the lower electrode layer at a substrate temperature of 200 ° C. or less.

【0007】[0007]

【作用】融点700℃以下の例えばAlなどの純金属を
用いて下部電極層の下部層を成膜するときは、薄い膜厚
で上面に凹凸形状を形成でき、導電率を低下させる合金
元素を添加する必要がない。その上にAgなどの高反射
率金属よりなる上部層を形成すれば、その層の厚さが均
一であっても表面に凹凸形状を有する下部電極層が得ら
れ、透明上部電極層より入射する光を高反射率で反射
し、散乱させるので、光電変換効率が向上する。そして
凹凸の表面形状をもつ下部電極層の平均厚さを250n
m以下とすることにより応力が緩和され、特に高分子材
料よりなる可撓性基板を用いた光電変換装置の特性劣化
が抑制される。下部電極層表面の凹凸形状の山頂の平均
間隔は、入射する光の波長の1/2であるとき、光の散
乱に有効に働くことは公知である。従って、光電変換層
a−Si系材料よりなる場合、a−Si系材料が吸収す
る300nmないし2000nmの波長の1/2の15
0nm以上1000nm以下に山の平均間隔を調整する
ことが有効である。可撓性基板に高分子材料を用いた場
合、基板上に導電性酸化物薄膜が存在すると、高分子材
料に含まれた水分を吸収して金属薄膜に影響を及ぼすの
を防ぐ効果がある。下部電極層の下部層をAlで形成す
る場合、その厚さが150nm以下のときに安定した光
電変換特性が得られる。そして、成膜時の基板温度22
5℃以上で表面凹凸形状をもつAl層が得られる。基板
温度350℃以上で電極の成膜を行う従来の方法では、
可撓性基板の約1%の熱収縮が観測されるが、基板温度
325℃以下の成膜では、基板の熱収縮は0.3%以下
となって測定できないレベルとなる。Alの下部層を形
成後、Agなどの上部層の成膜を200℃より高い基板
温度で行うと、Alの再結晶が起こり、Al層表面の凹
凸が上部層の上に残らなくなるので、上部層の成膜は2
00℃以下で行う。
When the lower layer of the lower electrode layer is formed by using a pure metal such as Al having a melting point of 700 ° C. or lower, an uneven shape can be formed on the upper surface with a thin film thickness, and an alloying element that lowers the conductivity is used. No need to add. If an upper layer made of a high-reflectance metal such as Ag is formed thereon, a lower electrode layer having an uneven surface is obtained even if the thickness of the layer is uniform, and the light is incident from the transparent upper electrode layer. Since light is reflected and scattered with high reflectance, photoelectric conversion efficiency is improved. And, the average thickness of the lower electrode layer having the uneven surface shape is 250 n
When the thickness is m or less, the stress is relieved, and in particular, the characteristic deterioration of the photoelectric conversion device using the flexible substrate made of a polymer material is suppressed. It is known that when the average spacing of the peaks of the uneven shape on the surface of the lower electrode layer is 1/2 of the wavelength of incident light, it works effectively for light scattering. Therefore, when the photoelectric conversion layer is made of an a-Si based material, it is 15 which is 1/2 of the wavelength of 300 nm to 2000 nm absorbed by the a-Si based material.
It is effective to adjust the average spacing of the peaks to 0 nm or more and 1000 nm or less. When a polymer material is used for the flexible substrate, the presence of the conductive oxide thin film on the substrate has an effect of absorbing moisture contained in the polymer material and preventing the metal thin film from being affected. When the lower layer of the lower electrode layer is formed of Al, stable photoelectric conversion characteristics can be obtained when the thickness is 150 nm or less. Then, the substrate temperature during film formation 22
An Al layer having a surface irregular shape is obtained at 5 ° C. or higher. In the conventional method of forming an electrode film at a substrate temperature of 350 ° C. or higher,
Although about 1% of the heat shrinkage of the flexible substrate is observed, in the film formation at the substrate temperature of 325 ° C. or less, the heat shrinkage of the substrate becomes 0.3% or less, which is an unmeasurable level. If the upper layer of Ag or the like is formed at a substrate temperature higher than 200 ° C. after the lower layer of Al is formed, recrystallization of Al occurs and the unevenness of the surface of the Al layer does not remain on the upper layer. Layer formation is 2
It is performed at 00 ° C or lower.

【0008】[0008]

【実施例】図1に本発明の一実施例の太陽電池の断面図
を示す。絶縁性かつ可撓性を有する基板1として厚さ5
0μmのポリイミドシートを用いた。この基板は、同様
な絶縁性および可撓性を有するものであれば何でもよ
く、PES、PEN、PET、アラミドなど他の絶縁性
プラスチックフィルム等が考えられる。この基板1の表
面上に、基板温度200℃、Ar圧力1×10-3Tor
rでのRFスパッタ法によりZnO薄膜2を約30nm
の厚さに形成する。ZnOは、プラスチックフィルムか
らの水分を吸収する作用をもつ。このZnO薄膜2の上
に表面に凹凸形状をもつ低温形成金属層3をAlにより
形成したが、その成膜條件を決めるために次のような実
験を行った。
EXAMPLE FIG. 1 is a sectional view of a solar cell according to an example of the present invention. Insulating and flexible substrate 1 having a thickness of 5
A 0 μm polyimide sheet was used. This substrate may be anything as long as it has similar insulating properties and flexibility, and other insulating plastic films such as PES, PEN, PET, and aramid can be considered. On the surface of the substrate 1, the substrate temperature is 200 ° C. and the Ar pressure is 1 × 10 −3 Tor.
Approximately 30 nm of ZnO thin film 2 by RF sputtering method at r
Formed to a thickness of ZnO has a function of absorbing moisture from the plastic film. A low temperature forming metal layer 3 having an uneven surface was formed of Al on the ZnO thin film 2, and the following experiment was conducted to determine the film forming conditions.

【0009】ガラス板上にSnO2 薄膜を成膜條件、膜
圧を変えて被着した4種の基板を用い、その上に下部電
極をAgにより形成し、さらにi層の厚さが400nm
のa−Si光電変換層、透明電極層を積層して光電変換
セルを作製した。Ag電極層の成膜はスパッタ(S
P)、250℃および室温(RT)での電子ビーム蒸着
(EB)により行った。図2はそのようにして作製した
各セルの短絡電流値を示す。線21、22、23、24
はそれぞれ基板の種類を示す。この結果、基板23を用
いたセルが最もすぐれた特性を示すことがわかった。こ
の基板の表面凹凸形状の山頂間の間隔は、約150nm
から約500nmの間にあり、平均間隔は約200nm
である。このような凹凸形状をもつAl膜を、基板温度
225℃ないし325℃、膜厚75nmないし140n
mの成膜條件で形成した。次に、Agからなる高反射率
金属層4を積層する。この高反射率層4は、下層表面の
凹凸形状を良好にカバーするためには、約100nm以
上の厚さが必要であるが、金属層3と金属層4よりなる
下部電極層の合計の膜厚を250nm以下とする。この
下部電極層の上に光電変換層5を形成する。本実施例で
は、n形、i形、p形のa−Si層をRFグロー放電に
よって順次形成して光電変換層とした。最後にスパッタ
により、In23 :SnO2 であるITOにより透明電
極層6を形成した。この透明電極層6の表面での反射
は、周知のように膜厚を制御することにより防止するこ
とができる。このようにして製造する光電変換装置の製
造歩留まりと、低温形成金属層3のAl膜厚との関係を
図3に示す。高反射金属層4のAg膜厚は100nmに
固定した。不良は主として短絡により発生する。図に示
されるようにAlの膜厚は150nm以下、望ましくは
100nm以下であることがわかった。
A SnO 2 thin film was formed on a glass plate, and four kinds of substrates were deposited by changing the film pressure. A lower electrode was formed of Ag on the substrate, and the i layer had a thickness of 400 nm.
The a-Si photoelectric conversion layer and the transparent electrode layer were laminated to prepare a photoelectric conversion cell. The Ag electrode layer is formed by sputtering (S
P), electron beam evaporation (EB) at 250 ° C. and room temperature (RT). FIG. 2 shows the short circuit current value of each cell thus manufactured. Lines 21, 22, 23, 24
Indicates the type of substrate. As a result, it was found that the cell using the substrate 23 has the best characteristics. The distance between the peaks of the uneven surface of the substrate is about 150 nm.
To about 500 nm with an average spacing of about 200 nm
It is. An Al film having such an uneven shape is formed with a substrate temperature of 225 ° C. to 325 ° C. and a film thickness of 75 nm to 140 n.
It was formed by the film forming condition of m. Next, the high reflectance metal layer 4 made of Ag is laminated. The high reflectance layer 4 needs to have a thickness of about 100 nm or more in order to satisfactorily cover the uneven shape of the lower layer surface, but the total film of the lower electrode layer including the metal layer 3 and the metal layer 4 is required. The thickness is 250 nm or less. The photoelectric conversion layer 5 is formed on this lower electrode layer. In this example, the n-type, i-type, and p-type a-Si layers were sequentially formed by RF glow discharge to form a photoelectric conversion layer. Finally by sputtering, I n2 O 3: to form a transparent electrode layer 6 of ITO is SnO 2. The reflection on the surface of the transparent electrode layer 6 can be prevented by controlling the film thickness as is well known. FIG. 3 shows the relationship between the manufacturing yield of the photoelectric conversion device manufactured in this manner and the Al film thickness of the low-temperature formed metal layer 3. The Ag film thickness of the highly reflective metal layer 4 was fixed to 100 nm. Defects are mainly caused by short circuits. As shown in the figure, the film thickness of Al was found to be 150 nm or less, preferably 100 nm or less.

【0010】図4に、本発明の実施例の光電変換装置の
量子効率分光特性を点線41として、従来の光電変換装
置の量子効率分光特性を実線42として示す。従来の光
電変換装置は、下部電極を可撓性基板上にZnO薄膜を
介してAgのみで形成したもので、Ag膜の成膜温度は
350℃である。それ以外の上部の構造は図1と同様で
ある。この二つの曲線の比較からわかるとおり、波長6
00nmから700nm付近での分光感度特性の差は顕
著である。短絡電流は、従来の光電変換装置が16.3
mA/cm2 であるのに対し、実施例の光電変換装置で
は、17.65mA/cm2 であった。
FIG. 4 shows a quantum efficiency spectral characteristic of the photoelectric conversion device of the embodiment of the present invention as a dotted line 41 and a quantum efficiency spectral characteristic of the conventional photoelectric conversion device as a solid line 42. A conventional photoelectric conversion device is one in which a lower electrode is formed of Ag only on a flexible substrate via a ZnO thin film, and the film formation temperature of the Ag film is 350 ° C. The other upper structure is the same as that of FIG. As you can see from the comparison of these two curves,
The difference in the spectral sensitivity characteristics in the vicinity of 00 nm to 700 nm is remarkable. The short-circuit current is 16.3 in the conventional photoelectric conversion device.
whereas a mA / cm 2, in the photoelectric conversion device of Example was 17.65mA / cm 2.

【0011】上記の実施例では、低温形成金属層3にA
lを用いたが、Alより低融点の金属、例えばZn、I
nなども用いることができる。また、高反射率金属層4
にはAgの代わりにCuを用いることができる。
In the above embodiment, the low temperature forming metal layer 3 is made of A.
1 was used, but a metal having a melting point lower than that of Al, for example, Zn or I
n and the like can also be used. In addition, the high reflectance metal layer 4
Cu can be used in place of Ag.

【0012】[0012]

【発明の効果】本発明によれば、下部電極層を高反射率
の金属よりなる上部層と表面に凹凸形状をもつ下部層に
分ける際に、下部層に融点700℃以下の金属を用いる
ことにより、低温で形成し、かつ薄い膜厚で凹凸形状の
表面を得ることができた。これにより、高温の工程を介
する必要がなくなり、熱応力等の歩留まり低下の要因を
回避することができた。また、下部層に合金を用いる必
要がなくなり、電極層の導電率低下も避けられた。この
結果、特に、高分子フィルム基板を用いた光電変換装置
の安定性の向上、高効率化の同時達成が可能となった。
According to the present invention, when the lower electrode layer is divided into an upper layer made of a metal having a high reflectance and a lower layer having an uneven surface, a metal having a melting point of 700 ° C. or less is used for the lower layer. As a result, it was possible to form the surface at a low temperature and obtain an uneven surface with a thin film thickness. As a result, it is not necessary to go through a high temperature process, and it is possible to avoid the factor of yield reduction such as thermal stress. Further, it is not necessary to use an alloy for the lower layer, and it is possible to avoid a decrease in conductivity of the electrode layer. As a result, in particular, it has become possible to simultaneously improve the stability and increase the efficiency of a photoelectric conversion device using a polymer film substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の光電変換装置の構造を示す断
面図
FIG. 1 is a sectional view showing a structure of a photoelectric conversion device according to an embodiment of the present invention.

【図2】異なるガラス基板上に下部電極としてのAg電
極を形成した光電変換装置の短絡電流と基板の種類およ
び成膜方法との関係線図
FIG. 2 is a relationship diagram of a short-circuit current of a photoelectric conversion device in which an Ag electrode is formed as a lower electrode on a different glass substrate, the type of substrate, and a film forming method.

【図3】本発明の実施例の光電変換装置の製造歩留まり
とAl下部層の膜厚との関係線図
FIG. 3 is a relationship diagram of the manufacturing yield of the photoelectric conversion device according to the example of the present invention and the film thickness of an Al lower layer.

【図4】本発明の実施例と比較例の光電変換装置の量子
効率分光特性線図
FIG. 4 is a quantum efficiency spectral characteristic diagram of photoelectric conversion devices of Examples and Comparative Examples of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 ZnO薄膜 3 低温形成金属層 4 高反射率金属層 5 光電変換層 6 透明電極層 1 Substrate 2 ZnO Thin Film 3 Low Temperature Forming Metal Layer 4 High Reflectance Metal Layer 5 Photoelectric Conversion Layer 6 Transparent Electrode Layer

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】絶縁性の基板上に下部電極層、光電変換層
および透明上部電極層が順次積層された光電変換装置に
おいて、下部電極層がその平均厚さが250nm以下で
あり、高反射率金属よりなる上部層と、上面に凹凸形状
を有し、融点700℃以下の金属よりなる下部層とを有
することを特徴とする光電変換装置。
1. A photoelectric conversion device in which a lower electrode layer, a photoelectric conversion layer and a transparent upper electrode layer are sequentially laminated on an insulating substrate, wherein the lower electrode layer has an average thickness of 250 nm or less and high reflectance. A photoelectric conversion device comprising an upper layer made of a metal and a lower layer made of a metal having an uneven shape on the upper surface and having a melting point of 700 ° C. or less.
【請求項2】下部電極層の下部層の上面における凹凸の
山頂の平均間隔が150nm以上1000nm以下であ
る請求項1記載の光電変換装置。
2. The photoelectric conversion device according to claim 1, wherein the average spacing between peaks of irregularities on the upper surface of the lower layer of the lower electrode layer is 150 nm or more and 1000 nm or less.
【請求項3】基板が高分子材料よりなって可撓性を有す
る請求項1あるいは2記載の光電変換装置。
3. The photoelectric conversion device according to claim 1, wherein the substrate is made of a polymer material and has flexibility.
【請求項4】下部電極層の基板に接する層部分が導電性
酸化物よりなる請求項3記載の光電変換装置。
4. The photoelectric conversion device according to claim 3, wherein a layer portion of the lower electrode layer in contact with the substrate is made of a conductive oxide.
【請求項5】下部電極層の下部層がアルミニウムよりな
る請求項1ないし4のいずれかに記載の光電変換装置。
5. The photoelectric conversion device according to claim 1, wherein the lower layer of the lower electrode layer is made of aluminum.
【請求項6】下部電極層の下部層の厚さが150nm以
下である請求項5記載の光電変換装置。
6. The photoelectric conversion device according to claim 5, wherein the thickness of the lower layer of the lower electrode layer is 150 nm or less.
【請求項7】下部電極層の上部層が銀よりなる請求項1
ないし6のいずれかに記載の光電変換装置。
7. The upper layer of the lower electrode layer is made of silver.
7. The photoelectric conversion device according to any one of 1 to 6.
【請求項8】下部電極層の下部層を基板温度225℃な
いし325℃で成膜することを特徴とする請求項5記載
の光電変換装置の製造方法。
8. The method for manufacturing a photoelectric conversion device according to claim 5, wherein the lower layer of the lower electrode layer is formed at a substrate temperature of 225 ° C. to 325 ° C.
【請求項9】下部電極層の上部層を基板温度200℃以
下で成膜する請求項8記載の光電変換装置の製造方法。
9. The method for manufacturing a photoelectric conversion device according to claim 8, wherein the upper layer of the lower electrode layer is formed at a substrate temperature of 200 ° C. or lower.
JP7185315A 1995-07-21 1995-07-21 Photoelectric converter and production thereof Pending JPH0936406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7185315A JPH0936406A (en) 1995-07-21 1995-07-21 Photoelectric converter and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7185315A JPH0936406A (en) 1995-07-21 1995-07-21 Photoelectric converter and production thereof

Publications (1)

Publication Number Publication Date
JPH0936406A true JPH0936406A (en) 1997-02-07

Family

ID=16168699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7185315A Pending JPH0936406A (en) 1995-07-21 1995-07-21 Photoelectric converter and production thereof

Country Status (1)

Country Link
JP (1) JPH0936406A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003901A (en) * 2008-06-20 2010-01-07 Fujifilm Corp Photoelectric converting element and solid-state imaging element
JP2012522403A (en) * 2009-05-06 2012-09-20 シンシリコン・コーポレーション Photovoltaic cell and method for enhancing light capture in a semiconductor layer stack

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003901A (en) * 2008-06-20 2010-01-07 Fujifilm Corp Photoelectric converting element and solid-state imaging element
JP2012522403A (en) * 2009-05-06 2012-09-20 シンシリコン・コーポレーション Photovoltaic cell and method for enhancing light capture in a semiconductor layer stack

Similar Documents

Publication Publication Date Title
US5296045A (en) Composite back reflector for photovoltaic device
JP3056200B1 (en) Method of manufacturing thin film photoelectric conversion device
US20080308147A1 (en) Rear electrode structure for use in photovoltaic device such as CIGS/CIS photovoltaic device and method of making same
KR20070119702A (en) Solar cell
JP2002057359A (en) Laminated solar battery
JP3801342B2 (en) Solar cell substrate, manufacturing method thereof, and semiconductor element
JP2000294812A (en) Photoelectric converter element and its manufacture
JP2008270562A (en) Multi-junction type solar cell
JPH09139515A (en) Transparent conducting film electrode
US4922218A (en) Photovoltaic device
JP2008305945A (en) Substrate for thin film solar cell and manufacturing method of the same, and manufacturing method of thin film solar cell
US4507519A (en) Photoelectronic conversion device
JP3025392B2 (en) Thin film solar cell and manufacturing method
JPH0936406A (en) Photoelectric converter and production thereof
JP3419108B2 (en) Manufacturing method of thin film solar cell
JP2010034230A (en) Thin-film solar cell and surface electrode for thin-film solar cell
JP3196155B2 (en) Photovoltaic device
JPH08288529A (en) Photoelectric conversion device and manufacture thereof
JP2975751B2 (en) Photovoltaic device
JP2002222969A (en) Laminated solar battery
JP4247947B2 (en) Manufacturing method of semiconductor thin film photoelectric conversion device
JP4404521B2 (en) Multilayer thin film photoelectric conversion element and method for manufacturing the same
JPS59125669A (en) Solar battery
JPS58111379A (en) Thin-film solar cell
JP2003008036A (en) Solar battery and its manufacturing method