JPH093542A - Production of grain oriented silicon steel sheet having extremely low iron loss and extremely high magnetic flux density - Google Patents

Production of grain oriented silicon steel sheet having extremely low iron loss and extremely high magnetic flux density

Info

Publication number
JPH093542A
JPH093542A JP7150424A JP15042495A JPH093542A JP H093542 A JPH093542 A JP H093542A JP 7150424 A JP7150424 A JP 7150424A JP 15042495 A JP15042495 A JP 15042495A JP H093542 A JPH093542 A JP H093542A
Authority
JP
Japan
Prior art keywords
annealing
magnetic flux
flux density
steel sheet
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7150424A
Other languages
Japanese (ja)
Other versions
JP3397273B2 (en
Inventor
Norito Abe
憲人 阿部
Yosuke Kurosaki
洋介 黒崎
Kentarou Chikuma
顯太郎 筑摩
Hidekazu Nanba
英一 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15496638&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH093542(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15042495A priority Critical patent/JP3397273B2/en
Publication of JPH093542A publication Critical patent/JPH093542A/en
Application granted granted Critical
Publication of JP3397273B2 publication Critical patent/JP3397273B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: To stably obtain a grain oriented silicon steel sheet having extremely high magnetic flux density by using a steel slab having a Bi-added specific composition as a starting material and specifying the flow rate of atmospheric gas at finish annealing. CONSTITUTION: A slab, having a composition consisting of, by weight, 0.03-0.15% C, 2.5-4.0% Si, 0.02-0.30% Mn, 0.005-0.040% S and/or Se, 0.015-0.040% acid soluble Al, 0.0030-0.0150% N, 0.0005-0.05% Bi, and the balance Fe, is heated and hot-rolled. The resulting hot rolled plate is finished to product sheet thickness by being subjected to hot rolled plate annealing and to finish cold rolling, or by being cold-rolled plural times while process-annealed between cold rolling stages, or by being subjected to hot rolled plate annealing and then cold-rolled plural times while process-annealed between cold rolling stages. Then, decarburizing annealing is performed. After the application of a separation agent at annealing, finish annealing is done. In this manufacturing method, the flow rate of atmospheric gas at finish annealing is regulated to a value in the range satisfying (flow rate of atmospheric gas)/(furnace volume) >=0.5Nm<3> /(h.m<3> ). By this method, the grain oriented silicon steel sheet with extremely high magnetic flux density, having >=1.92T magnetic flux density B8 , can be stably obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トランス等の鉄心とし
て用いられる{110}<001>方位集積度を高度に
発達させた超高磁束密度一方向性電磁鋼板の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ultra-high magnetic flux density unidirectional electrical steel sheet having a highly developed {110} <001> orientation integration used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性が優れていることが要求され
ている。励磁特性を表す数値としては、通常800A/
mの磁場における磁束密度B(これをB8 と以下示す)
が使用される。また鉄損特性を表す代表数値としては、
17/50 (周波数50Hzにおいて1.7Tまで磁化さ
せた時の単位1kgあたりの鉄損)が用いられる。
2. Description of the Related Art Unidirectional electrical steel sheets are mainly used as iron core materials for transformers and other electric equipment, and are required to have excellent magnetic characteristics such as excitation characteristics and iron loss characteristics. The value that shows the excitation characteristics is usually 800 A /
Magnetic flux density B in a magnetic field of m (this is shown below as B 8 )
Is used. Also, as a representative numerical value showing the iron loss characteristic,
W 17/50 (iron loss per unit of 1 kg when magnetized to 1.7 T at a frequency of 50 Hz) is used.

【0003】磁束密度は鉄損特性の重要支配因子であ
り、一般的にいって磁束密度が高いほど鉄損はよい。た
だしあまり磁束密度が高くなると、二次再結晶粒が大き
くなることに起因して異常渦電流損失が大きくなり鉄損
を悪くすることがある。これに対しては、磁区制御する
ことによって二次再結晶粒に関係なく鉄損を改善するこ
とができる。
[0003] The magnetic flux density is an important controlling factor of the iron loss characteristics. Generally speaking, the higher the magnetic flux density, the better the iron loss. However, when the magnetic flux density is too high, abnormal eddy current loss is increased due to an increase in secondary recrystallized grains, and iron loss may be deteriorated. On the other hand, iron loss can be improved by controlling the magnetic domains regardless of the secondary recrystallized grains.

【0004】一方向性電磁鋼板は製造工程の仕上焼鈍に
おいて、二次再結晶を起こさせて鋼板面に{110}、
圧延方向に<001>を有するいわゆるGoss組織を
発達させることによって得られる。そのなかでB8
1.88Tの優れた励磁特性を持つものは高磁束密度一
方向性電磁鋼板と呼ばれている。
[0004] In the finish annealing in the manufacturing process, the grain-oriented electrical steel sheet causes secondary recrystallization to cause {110} on the steel sheet surface.
It is obtained by developing a so-called Goss structure having <001> in the rolling direction. Among them, B 8
Those having excellent excitation characteristics of 1.88T are called high magnetic flux density unidirectional magnetic steel sheets.

【0005】高磁束密度一方向性電磁鋼板の代表的製造
方法としては、特公昭40−15644号公報、および
特公昭51−13469号公報が挙げられる。Goss
組織の二次再結晶を起こさせる主なインヒビターとして
前者においてはMnSおよびAlNを、後者においては
MnS、MnSe、Sb等を用いている。これらの製造
方法による製品は、現在世界的に生産されている。特公
昭40−15644号公報によればその製造方法は、熱
延板焼鈍をした後、冷延率80〜95%の一回冷延を行
うことを特徴としている。
As a typical method for producing a high magnetic flux density unidirectional electrical steel sheet, there are JP-B-40-15644 and JP-B-51-13469. Goss
MnS and AlN are used in the former, and MnS, MnSe, Sb, etc. are used in the latter as main inhibitors that cause secondary recrystallization of the tissue. Products produced by these manufacturing methods are currently produced worldwide. According to Japanese Examined Patent Publication No. 40-15644, the manufacturing method is characterized in that after the hot-rolled sheet is annealed, the cold-rolling rate is 80-95% once.

【0006】また、一方向性電磁鋼板の表面には電気的
に絶縁性を有する被膜が形成されていることが要求され
る。この被膜は絶縁性を保持する役割の他、鋼板に張力
を付与し鉄損を低減させる役割も担っている。そのため
均一に形成させることは極めて重要である。
Further, it is required that a coating having an electrically insulating property is formed on the surface of the unidirectional electrical steel sheet. In addition to maintaining insulating properties, this coating also has a role of applying tension to the steel sheet to reduce iron loss. Therefore, it is extremely important to form them uniformly.

【0007】高磁束密度一方向性電磁鋼板の被膜は、一
次被膜と二次被膜の二段構成である。そのうち一次被膜
は、製造工程の脱炭焼鈍において鋼板表面に形成された
SiO2 が、その後に塗布された焼鈍分離剤と反応して
得られる。一般的に焼鈍分離剤はMgOを主成分とした
ものが用いられ、仕上げ焼鈍時にSiO2 と反応してM
2 SiO4 となり、これが一次被膜となる。
The coating of the high magnetic flux density unidirectional magnetic steel sheet has a two-stage structure of a primary coating and a secondary coating. Among them, the primary coating is obtained by reacting SiO 2 formed on the steel sheet surface in the decarburizing annealing in the manufacturing process with the subsequently applied annealing separator. In general, an annealing separator containing MgO as a main component is used, and it reacts with SiO 2 at the time of finish annealing to react with M.
It becomes g 2 SiO 4 , which becomes the primary coating.

【0008】ところで最近、B8 ≧1.92Tの極めて
優れた励磁特性を持つ超高磁束密度一方向性電磁鋼板が
報告されている。その代表的例としては特開平6−88
174号公報が挙げられる。またその製造方法の代表的
例としては特開平6−88171号公報が挙げられる。
いずれもスラブ中にBiを含むことを特徴としている
が、その他は特公昭40−15644号公報で述べられ
ている製造方法と変わりなく、大きな制約もない。
By the way, recently, an ultrahigh magnetic flux density unidirectional electrical steel sheet having an extremely excellent excitation characteristic of B 8 ≧ 1.92T has been reported. As a typical example thereof, Japanese Patent Laid-Open No. 6-88
No. 174 publication is cited. Further, as a typical example of the manufacturing method thereof, there is JP-A-6-88171.
All of them are characterized by containing Bi in the slab, but the others are the same as the manufacturing method described in Japanese Patent Publication No. 40-15644 and there are no major restrictions.

【0009】[0009]

【発明が解決しようとする課題】しかし、1.92T以
上の磁束密度が得られていても、鋼中にBiを含むと、
これによると考えられる一次被膜密着性の劣化や、一次
被膜が形成されにくい場合が少なくない。そのため、
1.92T以上の磁束密度が得られても、一次被膜の形
成が不十分であるため鉄損低減効果が得られず、到達鉄
損レベルが良好でない場合がある。本発明は、かかる問
題を回避し、極めて磁束密度の高い一方向性電磁鋼板を
安定的製造を可能にし、一次被膜密着性の劣化や、一次
被膜が形成されないための付与張力不足による鉄損不良
を改善することを目的とする。
However, even if the magnetic flux density of 1.92 T or more is obtained, if Bi is contained in the steel,
It is often the case that the adhesion of the primary coating is considered to be deteriorated and the primary coating is difficult to form. for that reason,
Even if a magnetic flux density of 1.92 T or more is obtained, the effect of reducing iron loss cannot be obtained because the formation of the primary coating is insufficient, and the achieved iron loss level may not be good. The present invention avoids such a problem, enables stable production of a grain-oriented electrical steel sheet having an extremely high magnetic flux density, deteriorates adhesion of the primary coating, and causes iron loss due to insufficient applied tension because the primary coating is not formed. Aim to improve.

【0010】[0010]

【課題を解決するための手段】本発明の特徴とするとこ
ろは、次の通りである。 1)重量%で、C:0.03〜0.15%、Si:2.
5〜4.0%、Mn:0.02〜0.30%、Sおよ
び、またはSe:0.005〜0.040%、酸可溶性
Al:0.015〜0.040%、N:0.0030〜
0.0150%、Bi:0.0005〜0.05%、残
部:Feおよび不可避的不純物からなるスラブを出発材
として加熱した後熱延し、熱延板焼鈍後仕上げ冷延、あ
るいは中間焼鈍を含む複数の冷延、あるいは熱延板焼鈍
後中間焼鈍を含む複数の冷延によって製品板厚に仕上げ
た後に、脱炭焼鈍し、焼鈍分離材を塗布後、仕上焼鈍を
する超高磁束密度一方向性電磁鋼板の製造方法におい
て、仕上げ焼鈍における雰囲気ガス流量を以下に示す範
囲とすることを特徴とするB8 ≧1.92Tの超低鉄損
超高磁束密度一方向性電磁鋼板の製造方法。 雰囲気ガス流量/(炉内容積−鋼板体積)≧0.5Nm3
/(h・m3
The features of the present invention are as follows. 1) wt%, C: 0.03 to 0.15%, Si: 2.
5 to 4.0%, Mn: 0.02 to 0.30%, S and or Se: 0.005 to 0.040%, acid-soluble Al: 0.015 to 0.040%, N: 0. 0030 ~
0.0150%, Bi: 0.0005 to 0.05%, balance: Fe and slab consisting of unavoidable impurities are heated as a starting material, then hot rolled, hot rolled sheet annealed, then finish cold rolled, or intermediate annealed. After finishing the product sheet thickness by multiple cold rolling including multiple cold rolling including hot-rolled sheet annealing or intermediate annealing after annealing, decarburization annealing, after applying an annealing separator, finish annealing is performed. In the method for producing a grain-oriented electrical steel sheet, the atmospheric gas flow rate in finish annealing is set in the range shown below, and a method for producing a grain-oriented electrical steel sheet with ultra-low iron loss and ultra-high magnetic flux density of B 8 ≧ 1.92T. . Atmospheric gas flow rate / (furnace volume-steel plate volume) ≧ 0.5 Nm 3
/ (H ・ m 3 )

【0011】2)重量%で、C:0.03〜0.15
%、Si:2.5〜4.0%、Mn:0.02〜0.3
0%、Sおよび、またはSe:0.005〜0.040
%、酸可溶性Al:0.015〜0.040%、N:
0.0030〜0.0150%、Sn:0.05〜0.
50%、Bi:0.0005〜0.05%、残部:Fe
および不可避的不純物からなるスラブを出発材とした前
記1)記載の超低鉄損超高磁束密度一方向性電磁鋼板の
製造方法。
2) C: 0.03 to 0.15 by weight%
%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.3%
0%, S and / or Se: 0.005-0.040
%, Acid-soluble Al: 0.015 to 0.040%, N:
0.0030 to 0.0150%, Sn: 0.05 to 0.
50%, Bi: 0.0005 to 0.05%, balance: Fe
And the method for producing an ultra-low iron loss ultra-high magnetic flux density grain-oriented electrical steel sheet as described in 1) above, wherein a slab consisting of inevitable impurities is used as a starting material.

【0012】3)重量%で、C:0.03〜0.15
%、Si:2.5〜4.0%、Mn:0.02〜0.3
0%、Sおよび、またはSe:0.005〜0.040
%、酸可溶性Al:0.015〜0.040%、N:
0.0030〜0.0150%、Sn:0.05〜0.
50%、Cu:0.01〜0.10%、Bi:0.00
05〜0.05%、残部:Feおよび不可避的不純物か
らなるスラブを出発材とした前記1)記載の超低鉄損超
高磁束密度一方向性電磁鋼板の製造方法。
3) C: 0.03 to 0.15 by weight%
%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.3%
0%, S and / or Se: 0.005-0.040
%, Acid-soluble Al: 0.015 to 0.040%, N:
0.0030 to 0.0150%, Sn: 0.05 to 0.
50%, Cu: 0.01 to 0.10%, Bi: 0.00
The method for producing an ultra-low iron loss ultra-high magnetic flux density grain-oriented electrical steel sheet as described in 1) above, wherein a slab consisting of 05 to 0.05% and the balance: Fe and inevitable impurities is used as a starting material.

【0013】4)重量%で、C:0.03〜0.15
%、Si:2.5〜4.0%、Mn:0.02〜0.3
0%、Sおよび、またはSe:0.005〜0.040
%、酸可溶性Al:0.015〜0.040%、N:
0.0030〜0.0150%、Sbおよび、またはM
o:0.0030〜0.3%、Bi:0.0005〜
0.05%、残部:Feおよび不可避的不純物からなる
スラブを出発材とした前記1)記載の超低鉄損超高磁束
密度一方向性電磁鋼板の製造方法。
4) C: 0.03 to 0.15 by weight%
%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.3%
0%, S and / or Se: 0.005-0.040
%, Acid-soluble Al: 0.015 to 0.040%, N:
0.0030 to 0.0150%, Sb and / or M
o: 0.0030 to 0.3%, Bi: 0.0005 to
The method for producing an ultra-low iron loss ultra-high magnetic flux density grain-oriented electrical steel sheet as described in 1) above, wherein a slab consisting of 0.05% and the balance: Fe and inevitable impurities is used as a starting material.

【0014】以下本発明を詳細に説明する。まず本発明
の成分条件について説明する。Cは0.03%未満で
は、熱延に先立つスラブ加熱時において結晶粒が異常粒
成長し、製品において線状細粒と呼ばれる二次再結晶不
良を起こすので好ましくない。一方0.15%を超えた
場合では、冷延後の脱炭焼鈍において脱炭時間が長時間
必要となり経済的でないばかりでなく、脱炭が不完全と
なりやすく、製品での磁気時効と呼ばれる磁性不良を起
こすので好ましくない。
The present invention will be described in detail below. First, the component conditions of the present invention will be described. If C is less than 0.03%, crystal grains grow abnormally during slab heating prior to hot rolling, and secondary recrystallization defects called linear fine grains occur in the product, which is not preferable. On the other hand, when the content exceeds 0.15%, decarburization annealing after cold rolling requires a long time for decarburization, which is not economical, and the decarburization is likely to be incomplete, resulting in a magnetic aging called magnetic aging in the product. It is not preferable because it causes defects.

【0015】Siは鋼の電気抵抗を高めて鉄損の一部を
構成する渦電流損失を低減するのに極めて有効な元素で
あるが、2.5%未満では製品の渦電流損失を抑制でき
ない。また4.0%を超えた場合では、加工性が著しく
劣化して常温での冷延が困難になるので好ましくない。
Si is an extremely effective element for increasing the electrical resistance of steel and reducing the eddy current loss that constitutes a part of iron loss, but if it is less than 2.5%, the eddy current loss of the product cannot be suppressed. . Further, if it exceeds 4.0%, the workability is remarkably deteriorated and cold rolling at room temperature becomes difficult, which is not preferable.

【0016】Mnは二次再結晶を左右するインヒビター
と呼ばれるMnSおよび、またはMnSeを形成する重
要な元素である。0.02%未満では二次再結晶を生じ
させるのに必要なMnSの絶対量が不足するので好まし
くない。一方0.30%を超えた場合は、スラブ加熱時
の固溶が困難になるばかりでなく、熱延時の析出サイズ
が粗大化しやすくインヒビターとしての最適サイズ分布
が損なわれて好ましくない。
Mn is an important element that forms MnS and / or MnSe called an inhibitor that influences secondary recrystallization. If it is less than 0.02%, the absolute amount of MnS necessary for causing secondary recrystallization is insufficient, which is not preferable. On the other hand, if it exceeds 0.30%, not only is it difficult to form a solid solution during heating of the slab, but also the precipitation size during hot rolling tends to become coarse, and the optimum size distribution as an inhibitor is impaired, which is not preferable.

【0017】Sおよび、またはSeは上掲したMnとM
nSおよび、またはMnSeを形成する重要な元素であ
る。上記範囲を逸脱すると十分なインヒビター効果が得
られないので0.005〜0.040%に限定する必要
がある。
S and / or Se are Mn and M listed above.
It is an important element that forms nS and / or MnSe. If it deviates from the above range, a sufficient inhibitory effect cannot be obtained, so it is necessary to limit the content to 0.005 to 0.040%.

【0018】酸可溶性Alは、高磁束密度一方向性電磁
鋼板のための主要インヒビター構成元素であり、0.0
15%未満では量的に不足してインヒビター強度が不足
するので好ましくない。一方0.040%超ではインヒ
ビターとして析出させるAlNが粗大化し、結果として
インヒビター強度を低下させるので好ましくない。
Acid-soluble Al is a main inhibitor constituent element for high magnetic flux density grain-oriented electrical steel sheet, and is 0.0
If it is less than 15%, it is not preferable because the amount is insufficient and the inhibitor strength is insufficient. On the other hand, if it exceeds 0.040%, AlN precipitated as an inhibitor becomes coarse, and as a result, the inhibitor strength is lowered, which is not preferable.

【0019】Nは上掲した酸可溶性AlとAlNを形成
する重要な元素である。上記範囲を逸脱すると十分なイ
ンヒビター効果が得られないので0.0030〜0.0
150%に限定する必要がある。
N is an important element that forms AlN with the acid-soluble Al mentioned above. If it deviates from the above range, a sufficient inhibitory effect cannot be obtained, so 0.0030 to 0.0
It must be limited to 150%.

【0020】更にSnについては薄手製品の二次再結晶
を安定して得る元素として有効であり、また二次再結晶
粒を小さくする作用もある。この効果を得るためには、
0.05%以上の添加が必要であり、0.50%を超え
た場合にはその作用が飽和するのでコストアップの点か
ら0.50%以下に限定する。
Further, Sn is effective as an element for stably obtaining secondary recrystallization of thin products, and also has an effect of reducing secondary recrystallization grains. To get this effect,
It is necessary to add 0.05% or more, and if it exceeds 0.50%, the action is saturated, so from the viewpoint of cost increase, it is limited to 0.50% or less.

【0021】CuについてはSn添加鋼の一次被膜向上
元素として有効である。0.01%未満では効果が少な
く、0.10%を超えると製品の磁束密度が低下するの
で好ましくない。
Cu is effective as an element for improving the primary coating of Sn-added steel. If it is less than 0.01%, the effect is small, and if it exceeds 0.10%, the magnetic flux density of the product is undesirably reduced.

【0022】Sbおよび、またはMoについては薄手製
品の二次再結晶を安定して得る元素として有効である。
この効果を得るためには、0.0030%以上の添加が
必要であり、0.30%を超えた場合にはその作用が飽
和するのでコストアップの点から0.30%以下に限定
する。
Sb and / or Mo are effective as elements for stably obtaining secondary recrystallization of thin products.
In order to obtain this effect, it is necessary to add 0.0030% or more. If it exceeds 0.30%, the effect is saturated, so that the content is limited to 0.30% or less from the viewpoint of cost increase.

【0023】Biは本発明であるB≧8 ≧1.92Tの
超高磁束密度一方向性電磁鋼板の製造において、そのス
ラブ中に必須の元素である。すなわち磁束密度向上効果
がある0.0005%未満ではその効果が充分に得られ
ず、また0.05%を超えた場合は磁束密度向上効果が
飽和するだけでなく、熱延コイルの端部に割れが発生す
るので好ましくない。
Bi is an essential element in the slab in the production of the superhigh magnetic flux density grain-oriented electrical steel sheet of B ≧ 8 ≧ 1.92T according to the present invention. That is, if the magnetic flux density improving effect is less than 0.0005%, the effect is not sufficiently obtained, and if it exceeds 0.05%, not only the magnetic flux density improving effect is saturated, but also at the end of the hot rolled coil. It is not preferable because cracks occur.

【0024】次に本発明の製造工程について説明する。
上記のごとく成分を調整した超高磁束密度一方向性電磁
鋼板製造用溶鋼は、通常の方法で鋳造する。特に鋳造方
法に限定はない。次いで通常の熱間圧延によって熱延コ
イルに圧延される。
Next, the manufacturing process of the present invention will be described.
The molten steel for producing an ultra-high magnetic flux density unidirectional electrical steel sheet having the components adjusted as described above is cast by a usual method. There is no particular limitation on the casting method. Then, it is rolled into a hot rolled coil by ordinary hot rolling.

【0025】引き続いて、熱延板焼鈍後仕上げ冷延、あ
るいは中間焼鈍を含む複数の冷延、あるいは熱延板焼鈍
後中間焼鈍を含む複数の冷延によって製品板厚に仕上げ
るわけであるが、仕上げ冷延前の焼鈍では結晶組織の均
質化と、AlNの析出制御を行う。
Subsequently, the product sheet thickness is finished by hot-rolled sheet annealing followed by finish cold-rolling, a plurality of cold-rolled sheets including intermediate annealing, or a plurality of cold-rolled sheets including hot-rolled sheet annealing and intermediate annealing. In the annealing before finish cold rolling, the crystal structure is homogenized and AlN precipitation is controlled.

【0026】冷延後に連続脱炭焼鈍を施し、MgOを主
成分とする焼鈍分離材を塗布後、仕上げ焼鈍をするわけ
であるが、この時の雰囲気ガス流量を以下に示す範囲と
することを本発明は特徴としている。 雰囲気ガス流量/炉内容積≧0.5Nm3 /(h・m3 ) 仕上げ焼鈍は、連続歪取り焼鈍・二次被膜塗布および焼
き付けを行う。更に必要に応じてレーザ照射、溝等の磁
区細分化処理を施す。
After cold rolling, continuous decarburization annealing is performed, and an annealing separator containing MgO as a main component is applied, followed by finish annealing. At this time, the atmospheric gas flow rate should be within the range shown below. The present invention is characterized. Atmosphere gas flow rate / furnace internal volume ≧ 0.5 Nm 3 / (h · m 3 ) In the final annealing, continuous strain relief annealing, secondary coating application and baking are performed. Further, laser irradiation and magnetic domain subdivision processing such as grooves are performed if necessary.

【0027】本発明者らは、一次被膜による鉄損低減効
果の十分な超低鉄損超高磁束密度一方向性電磁鋼板を安
定して製造するために、仕上げ焼鈍時の雰囲気ガス流量
に注目して以下の実験を行った。
The present inventors pay attention to the atmospheric gas flow rate during finish annealing in order to stably manufacture an ultra-low iron loss ultra-high magnetic flux density grain-oriented electrical steel sheet with a sufficient iron loss reduction effect by the primary coating. Then, the following experiment was conducted.

【0028】[実験1] C:0.077%、Si:3.25%、Mn:0.08
%、S:0.024%、酸可溶性Al:0.025%、
N:0.0086%、Bi:0〜0.0200% 以上を含有するスラブを通常工程でMgOを主成分とす
る焼鈍分離材塗布まで行った。その後、仕上げ焼鈍を行
い炉内容積が1m3 の仕上げ焼鈍炉に挿入し、窒素:水
素=1:1で構成される雰囲気ガスの流量を0.1〜1
0Nm3 として仕上げ焼鈍し、さらに後工程処理を行い、
得られた鋼板の磁束密度B8 値と磁区制御後の鉄損W
17/50 値とを測定し、一次被膜密着性を評価した。図1
にBi含有量と、雰囲気ガス流量/炉内容積の値と、磁
区制御後の鉄損W17/50 値と、一次被膜密着性評点を示
す。評点はAが一番良好で、続いてB、Cと続く。
[Experiment 1] C: 0.077%, Si: 3.25%, Mn: 0.08
%, S: 0.024%, acid-soluble Al: 0.025%,
A slab containing N: 0.0086% and Bi: 0 to 0.0200% or more was subjected to an annealing separation material coating containing MgO as a main component in a normal process. After that, finish annealing is performed and the furnace is inserted into a finish annealing furnace having a volume of 1 m 3 and the flow rate of the atmosphere gas composed of nitrogen: hydrogen = 1: 1 is 0.1-1.
0Nm 3 finish annealing, further post-process treatment,
Magnetic flux density B 8 value of the obtained steel sheet and iron loss W after magnetic domain control
The value of 17/50 was measured and the adhesion of the primary coating was evaluated. FIG.
Shows the Bi content, the value of the atmosphere gas flow rate / the furnace internal volume, the iron loss W 17/50 value after the magnetic domain control, and the primary coating adhesion rating. A is the best score, followed by B and C.

【0029】図からも明らかなように、Bi含有量が5
ppm未満の場合は、雰囲気ガス流量/炉内容積<0.
5Nm3 /(h・m3 )でも、一次被膜密着性評点は0.
5Nm3 /(h・m3 )以上とした場合のそれと差異が認
められない。しかしBi含有量が5ppm以上の場合、
雰囲気ガス流量/炉内容積<0.5Nm3 /(h・m3
とした場合では、一次被膜密着性評点がA、あるいはB
となっている。それにともなって極めて低い鉄損が得ら
れている。
As is clear from the figure, the Bi content is 5
When it is less than ppm, the flow rate of the atmosphere gas / internal volume <0.
Even with 5 Nm 3 / (h · m 3 ), the primary film adhesion rating is 0.
No difference is observed when it is set to 5 Nm 3 / (h · m 3 ) or more. However, if the Bi content is 5 ppm or more,
Atmospheric gas flow rate / furnace internal volume <0.5 Nm 3 / (h · m 3 )
In the case of, the primary coating adhesion rating is A or B.
It has become. Along with that, extremely low iron loss is obtained.

【0030】[実験2] C:0.078%、Si:3.22%、Mn:0.08
%、S:0.025%、酸可溶性Al:0.025%、
N:0.0088%、Sn:0.10%、Bi:0〜
0.0050% 以上を含有するスラブを通常工程で製品板厚0.220
mmまで仕上げて、MgOを主成分とする焼鈍分離材塗布
まで行った。その後、仕上げ焼鈍を行い炉内容積が1m
3 の仕上げ焼鈍炉に挿入し、窒素:水素=1:2で構成
される雰囲気ガスの流量を0.1〜20Nm3 として焼鈍
し、二次被膜塗布、磁区制御の後工程処理を行い、得ら
れた鋼板の磁束密度B8 値と、一次被膜量と、鉄損W
17/50 を測定した。図2に実験2の結果を示す。
[Experiment 2] C: 0.078%, Si: 3.22%, Mn: 0.08
%, S: 0.025%, acid-soluble Al: 0.025%,
N: 0.0088%, Sn: 0.10%, Bi: 0
A slab containing 0.0050% or more is produced in a normal process with a product thickness of 0.220
After finishing to mm, the annealing separation material containing MgO as a main component was applied. After that, finish annealing is performed and the furnace volume is 1 m.
It was inserted into the finishing annealing furnace of No. 3 and annealed with the flow rate of the atmosphere gas composed of nitrogen: hydrogen = 1: 2 being 0.1 to 20 Nm 3 , and the secondary film coating and the post-process treatment of the magnetic domain control were performed to obtain the Magnetic flux density B 8 value of the obtained steel sheet, primary coating amount, iron loss W
17/50 was measured. The result of Experiment 2 is shown in FIG.

【0031】図から明らかなように、雰囲気ガス流量/
炉内容積<0.5Nm3 /(h・m3)では、一次被膜量
が2g/m2 未満となっているため、付与張力不足が原
因と考えられる鉄損過多となっている。しかし、雰囲気
ガス流量/炉内容積≧0.5Nm3 /(h・m3 )では、
一次被膜量が2g/m以上となっているため、付与張力
も充分となり優れた鉄損が得られていることがわかる。
As is apparent from the figure, the atmospheric gas flow rate /
When the internal volume of the furnace is <0.5 Nm 3 / (h · m 3 ), the amount of primary coating is less than 2 g / m 2, so iron loss is considered to be excessive due to insufficient applied tension. However, when the atmospheric gas flow rate / furnace internal volume ≧ 0.5 Nm 3 / (h · m 3 ),
It can be seen that since the amount of primary coating is 2 g / m or more, the applied tension is sufficient and excellent iron loss is obtained.

【0032】この理由としては、次のように考えてい
る。すなわち、仕上げ焼鈍は一般的にコイル上で行われ
るが、雰囲気ガス流量/炉内容積≧0.5Nm3 /(h・
3 )にすることによって、仕上げ焼鈍途中での地鉄中
のBiが拡散でき、地鉄中のBiが地鉄との酸化層との
界面、あるいは酸化層中に長時間滞在することなく抜け
ることが可能となるため、一次被膜形成後の破壊が行わ
れることなく安定形成されたと考える。
The reason for this is as follows. That is, finish annealing is generally performed on the coil, but the atmosphere gas flow rate / furnace internal volume ≧ 0.5 Nm 3 / (h ·
m 3 ) makes it possible to diffuse Bi in the base metal during finish annealing, and Bi in the base iron escapes without staying at the interface with the base layer or the oxide layer for a long time. Therefore, it is considered that stable formation was achieved without destruction after the formation of the primary coating.

【0033】以上の実験の結果から、仕上げ焼鈍時の雰
囲気ガス流量を以下に示す範囲とすることが、一次被膜
による鉄損低減効果の十分な超低鉄損超高磁束密度一方
向性電磁鋼板の製造に極めて重要であることが判明し
た。 雰囲気ガス流量/炉内容積≧0.5Nm3 /(h・m3 ) なお雰囲気ガス流量/炉内容積の上限値は、特に限定さ
れるものではないが、コストの観点から20Nm3 /(h
・m3 )以下とすることが望ましい。また雰囲気ガスに
ついては窒素と水素の混合ガスが望ましいが、その混合
比は特に限定されるものではない。
From the results of the above experiments, it is necessary to set the atmospheric gas flow rate during finish annealing within the range shown below to obtain an ultra-low iron loss ultra-high magnetic flux density unidirectional electrical steel sheet with a sufficient iron loss reduction effect by the primary coating. Was found to be extremely important in the manufacture of. Atmospheric gas flow rate / furnace internal volume ≧ 0.5 Nm 3 / (h · m 3 ) The upper limit value of atmospheric gas flow rate / furnace internal volume is not particularly limited, but from the viewpoint of cost, it is 20 Nm 3 / (h
・ It is desirable to be less than m 3 ). The atmosphere gas is preferably a mixed gas of nitrogen and hydrogen, but the mixing ratio thereof is not particularly limited.

【0034】高磁束密度一方向性電磁鋼板の製造におい
て、仕上げ焼鈍中のガス流量を制御することは、これま
でにも述べられている。例えば、特開平2−12581
5号公報が挙げられる。これは仕上げ焼鈍中のガス流量
を2cc/分・kg以上とすることによって、地鉄中と
フォルステライト中のS、Se、Nの純化が著しく改善
されて、磁束密度や鉄損特性が向上するとしている。
Controlling the gas flow rate during finish annealing in the manufacture of high magnetic flux density grain-oriented electrical steel sheets has been previously described. For example, Japanese Patent Laid-Open No. 12581/1991
No. 5 publication is mentioned. This is because when the gas flow rate during finish annealing is set to 2 cc / min · kg or more, the purification of S, Se, and N in the ground iron and forsterite is significantly improved, and the magnetic flux density and iron loss characteristics are improved. I am trying.

【0035】これに対し本発明は、地鉄中のBiの仕上
げ焼鈍における挙動が一次被膜に多大な影響を及ぼすと
考え、その挙動を仕上げ焼鈍中のガス流量によって制御
しようとするものであり、従来技術とはまったく異な
る。
On the other hand, the present invention considers that the behavior of Bi in the base metal during finish annealing has a great influence on the primary coating, and the behavior is controlled by the gas flow rate during finish annealing. It is completely different from the conventional technology.

【0036】[0036]

【実施例】【Example】

[実施例1]C:0.078%、Si:3.22%、M
n:0.08%、S:0.025%、酸可溶性Al:
0.025%、N:0.0084%、Bi:0.007
0%を含有するスラブを1350℃で加熱後直ちに熱延
して2.4mm厚の熱延コイルとした。
[Example 1] C: 0.078%, Si: 3.22%, M
n: 0.08%, S: 0.025%, acid-soluble Al:
0.025%, N: 0.0084%, Bi: 0.007
The slab containing 0% was heated at 1350 ° C. and immediately hot-rolled into a hot-rolled coil having a thickness of 2.4 mm.

【0037】熱延コイルに1100℃の焼鈍を施し、一
回冷延で0.220mm厚とした後、860℃で脱炭焼鈍
を行った。
The hot rolled coil was annealed at 1100 ° C., once cold rolled to a thickness of 0.220 mm, and then decarburized and annealed at 860 ° C.

【0038】次にMgOを主成分とする焼鈍分離材を塗
布した後、炉内容積が1m3 の仕上げ焼鈍炉に挿入し、
窒素:水素=3:1で構成される雰囲気ガスの流量を
0.2Nm3 /hと2.0Nm3 /hとして焼鈍した。
Next, after applying an annealing separation material containing MgO as a main component, it was inserted into a finish annealing furnace having a furnace internal volume of 1 m 3 .
Annealing was performed with the flow rate of the atmosphere gas composed of nitrogen: hydrogen = 3: 1 being 0.2 Nm 3 / h and 2.0 Nm 3 / h.

【0039】その後、二次被膜塗布、さらにはレーザ照
射による磁区制御を行った。一次被膜密着性を評価する
ために、60mm幅×300mm長にそれぞれ5枚を試料と
して切り出した。
After that, the secondary coating was applied and the magnetic domains were controlled by laser irradiation. In order to evaluate the adhesion of the primary coating, 5 sheets each having a width of 60 mm and a length of 300 mm were cut out as samples.

【0040】雰囲気ガス流量/炉内容積と磁束密度B8
と一次被膜密着性評点と磁区制御後の鉄損W17/50 を表
1に示す。評点はAが一番良好で、続いてB、Cと続
く。
Atmosphere gas flow rate / furnace internal volume and magnetic flux density B 8
Table 1 shows the primary coating adhesion rating and the iron loss W 17/50 after controlling the magnetic domains. A is the best score, followed by B and C.

【0041】[0041]

【表1】 [Table 1]

【0042】表1より明らかなように、雰囲気ガス流量
/炉内容積を2.0Nm3 /(h・m3 )とすることで極
めて優れた一次被膜密着性評点が得られている。そして
0.75W/kg以下の極めて優れた鉄損特性を示して
いる。
As is clear from Table 1, by setting the atmospheric gas flow rate / furnace internal volume to 2.0 Nm 3 / (h · m 3 ), an extremely excellent primary coating adhesion rating was obtained. And it shows an extremely excellent iron loss characteristic of 0.75 W / kg or less.

【0043】[実施例2]C:0.076%、Si:
3.25%、Mn:0.08%、S:0.025%、酸
可溶性Al:0.028%、N:0.0080%、S
n:0.12%、Bi:0.00120%を含有するス
ラブを1330℃で加熱後直ちに熱延して2.3mm厚の
熱延コイルとした。
[Example 2] C: 0.076%, Si:
3.25%, Mn: 0.08%, S: 0.025%, acid-soluble Al: 0.028%, N: 0.0080%, S
A slab containing n: 0.12% and Bi: 0.00120% was heated at 1330 ° C. and immediately hot rolled to give a hot rolled coil having a thickness of 2.3 mm.

【0044】酸洗後1.75mmに予備冷延し、1000
℃の焼鈍後0.200mmとした。次にMgOを主成分と
する焼鈍分離材を塗布した後、炉内容積が1m3 の仕上
げ焼鈍炉に挿入し、窒素と水素で構成される雰囲気ガス
の流量を0.1Nm3 /hと10.0Nm3 /hとして焼鈍
した。その後、実施例1と同様の処理を行った。
After pickling, pre-cold rolled to 1.75 mm,
After annealing at 0 ° C, the thickness was 0.200 mm. Next, after applying an annealing separator containing MgO as a main component, the furnace was inserted into a finishing annealing furnace having an internal volume of 1 m 3 , and the flow rate of an atmosphere gas composed of nitrogen and hydrogen was 0.1 Nm 3 / h and 10%. Annealed at 0.0 Nm 3 / h. Then, the same treatment as in Example 1 was performed.

【0045】雰囲気ガス流量/炉内容積と磁束密度B8
と一次被膜量を表2に示す。
Atmosphere gas flow rate / furnace internal volume and magnetic flux density B 8
Table 1 shows the primary coating amount.

【0046】[0046]

【表2】 [Table 2]

【0047】表2より明らかなように、雰囲気ガス流量
/炉内容積を10.0Nm3 /(h・m3 )とすることで
一次被膜量が確保、形成されていることがわかる。
As is clear from Table 2, it can be seen that the primary coating amount is secured and formed by setting the atmospheric gas flow rate / furnace internal volume to 10.0 Nm 3 / (h · m 3 ).

【0048】表2に示す比較例1と、本発明例1の磁区
制御後の磁束密度B8 とW17/50 を表3に示す。
Table 3 shows Comparative Example 1 shown in Table 2 and the magnetic flux densities B 8 and W 17/50 after magnetic domain control in Example 1 of the present invention.

【0049】[0049]

【表3】 [Table 3]

【0050】表3より明らかなように、磁区細分化処理
後の鉄損も極めて優れており、工業的に非常に価値の高
い有益なものといえる。
As is clear from Table 3, the iron loss after the magnetic domain refining treatment is also extremely excellent, and can be said to be industrially very valuable and useful.

【0051】[実施例3]C:0.078%、Si:
3.30%、Mn:0.08%、S:0.025%、酸
可溶性Al:0.022%、N:0.0084%、S
n:0.16%、Cu:0.060%を含有する溶鋼に
Bi:0.0178%添加含有したスラブを1350℃
で加熱後直ちに熱延して2.5mm厚の熱延コイルとし
た。
[Example 3] C: 0.078%, Si:
3.30%, Mn: 0.08%, S: 0.025%, acid-soluble Al: 0.022%, N: 0.0084%, S
A slab containing Bi: 0.0178% added to molten steel containing n: 0.16% and Cu: 0.060% at 1350 ° C.
Immediately after it was heated in, a hot rolled coil having a thickness of 2.5 mm was obtained.

【0052】熱延コイルに1050℃の焼鈍を施し、9
80℃の中間焼鈍を挟む二回冷延で0.220mm厚とし
た後、840℃で脱炭焼鈍を行った。
The hot rolled coil was annealed at 1050 ° C.
After twice cold rolling sandwiching an intermediate annealing of 80 ° C to a thickness of 0.220 mm, decarburization annealing was performed at 840 ° C.

【0053】次にMgOを主成分とする焼鈍分離材を塗
布した後、炉内容積が1m3 の仕上げ焼鈍炉に挿入し、
窒素と水素で構成される雰囲気ガスの流量を0.4Nm3
/hと0.5Nm3 /hとして焼鈍した。その後、実施例
1と同様の処理を行った。
Next, after applying an annealing separation material containing MgO as a main component, it was inserted into a finishing annealing furnace having a furnace internal volume of 1 m 3 .
The flow rate of the atmosphere gas composed of nitrogen and hydrogen is 0.4 Nm 3
/ H and 0.5 Nm 3 / h. Then, the same treatment as in Example 1 was performed.

【0054】雰囲気ガス流量/炉内容積と磁束密度B8
と一次被膜密着性評点と磁区制御後の鉄損W17/50 を表
4に示す。評点はAが一番良好で、続いてB、Cと続
く。
Atmosphere gas flow rate / furnace volume and magnetic flux density B 8
Table 4 shows the primary coating adhesion rating and the iron loss W 17/50 after controlling the magnetic domains. A is the best score, followed by B and C.

【0055】[0055]

【表4】 [Table 4]

【0056】表4より明らかなように、雰囲気ガス流量
/炉内容積を0.5Nm3 /(h・m3 )とすることで極
めて優れた一次被膜密着性評点が得られているととも
に、磁区制御後の鉄損も極めて優れている。
As is clear from Table 4, by setting the atmospheric gas flow rate / furnace internal volume to 0.5 Nm 3 / (h · m 3 ), an extremely excellent primary coating adhesion rating was obtained and the magnetic domain The iron loss after control is also extremely excellent.

【0057】[実施例4]C:0.078%、Si:
3.30%、Mn:0.08%、Se:0.025%、
酸可溶性Al:0.026%、N:0.0084%、S
b:0.020%、Mo:0.014%、Bi:0.0
024%を含有するスラブを1350℃で加熱後直ちに
熱延して2.3mm厚の熱延コイルとした。
[Example 4] C: 0.078%, Si:
3.30%, Mn: 0.08%, Se: 0.025%,
Acid-soluble Al: 0.026%, N: 0.0084%, S
b: 0.020%, Mo: 0.014%, Bi: 0.0
The slab containing 024% was heated at 1350 ° C. and immediately hot-rolled into a hot-rolled coil having a thickness of 2.3 mm.

【0058】1000℃の中間焼鈍を挟む二回冷延で
0.220mm厚とした後、860℃で脱炭焼鈍を行っ
た。
After being twice cold-rolled with an intermediate anneal at 1000 ° C. to obtain a thickness of 0.220 mm, decarburization anneal was performed at 860 ° C.

【0059】次にMgOを主成分とする焼鈍分離材を塗
布した後、炉内容積が1.0m3 の仕上げ焼鈍炉に挿入
し、窒素と水素で構成される雰囲気ガスの流量を0.3
Nm3/hと3.0Nm3 /hとして焼鈍した。その後、実
施例1と同様の処理を行った。
Next, after applying an annealing separation material containing MgO as a main component, it was inserted into a finishing annealing furnace having a furnace internal volume of 1.0 m 3 , and the flow rate of an atmosphere gas composed of nitrogen and hydrogen was 0.3.
And annealed as Nm 3 / h and 3.0Nm 3 / h. Then, the same treatment as in Example 1 was performed.

【0060】雰囲気ガス流量/炉内容積と磁束密度B8
と一次被膜量を表5に示す。
Atmosphere gas flow rate / furnace internal volume and magnetic flux density B 8
Table 5 shows the primary coating amount.

【0061】[0061]

【表5】 [Table 5]

【0062】表5より明らかなように、雰囲気ガス流量
/炉内容積を3.0Nm3 /(h・m3 )とすることで一
次被膜量が確保、形成されていることがわかる。
As is clear from Table 5, it can be seen that the amount of the primary coating is secured and formed by setting the atmospheric gas flow rate / furnace internal volume to 3.0 Nm 3 / (h · m 3 ).

【0063】表5に示す比較例5と、本発明例4の磁区
制御後の磁束密度B8 とW17/50 を表6に示す。
Table 6 shows Comparative Example 5 shown in Table 5 and the magnetic flux densities B 8 and W 17/50 after magnetic domain control in Example 4 of the present invention.

【0064】[0064]

【表6】 [Table 6]

【0065】表6より明らかなように、磁区細分化処理
後の鉄損も極めて優れており、工業的に非常に価値の高
い有益なものといえる。
As is clear from Table 6, the iron loss after the magnetic domain refining treatment is also extremely excellent, and can be said to be industrially very valuable and useful.

【0066】[0066]

【発明の効果】以上説明した通り本発明は、Biを添加
含有した一方向性電磁鋼板の製造方法において、仕上げ
焼鈍における雰囲気ガス流量を調整することによって、
密着性の優れた一次被膜を有する超高磁束密度一方向性
電磁鋼板が得られるとともに、磁区細分化処理後の鉄損
特性も極めて優れており、工業的に非常に価値の高い有
益なものといえる。
As described above, according to the present invention, in the method for producing a grain-oriented electrical steel sheet containing Bi, by adjusting the atmospheric gas flow rate in finish annealing,
It is possible to obtain an ultra-high magnetic flux density grain-oriented electrical steel sheet having a primary coating with excellent adhesion, and also have extremely excellent iron loss properties after magnetic domain refinement treatment, which is very valuable industrially. I can say.

【図面の簡単な説明】[Brief description of drawings]

【図1】Bi含有量と雰囲気ガス流量/炉内容積と磁束
密度B8 と一次被膜密着性評点と磁区制御後の鉄損W
17/50 の相関を示す図表である。
FIG. 1 Bi content, atmosphere gas flow rate / furnace volume, magnetic flux density B 8 , primary coating adhesion rating, and iron loss W after magnetic domain control
It is a chart showing the correlation of 17/50 .

【図2】一次被膜量と磁束密度B8 と鉄損W17/50 を示
す。
FIG. 2 shows the amount of primary coating, magnetic flux density B 8 and iron loss W 17/50 .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 難波 英一 兵庫県姫路市広畑区富士町1番地 新日本 製鐵株式会社広畑製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Eiichi Namba 1 Fujimachi, Hirohata-ku, Himeji-shi, Hyogo Shin Nippon Steel Corp. Hirohata Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.0%、 Mn:0.02〜0.30%、 Sおよび、またはSe:0.005〜0.040%、 酸可溶性Al:0.015〜0.040%、 N :0.0030〜0.0150%、 Bi:0.0005〜0.05% 残部:Feおよび不可避的不純物からなるスラブを出発
材として加熱した後熱延し、熱延板焼鈍後仕上げ冷延、
あるいは中間焼鈍を含む複数の冷延、あるいは熱延板焼
鈍後中間焼鈍を含む複数の冷延によって製品板厚に仕上
げた後に、脱炭焼鈍し、焼鈍分離材を塗布後、仕上焼鈍
をする超高磁束密度一方向性電磁鋼板の製造方法におい
て、仕上げ焼鈍における雰囲気ガス流量を以下に示す範
囲とすることを特徴とするB8 ≧1.92Tの超低鉄損
超高磁束密度一方向性電磁鋼板の製造方法。 雰囲気ガス流量/炉内容積≧0.5Nm3 /(h・m3
1. By weight%, C: 0.03 to 0.15%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.30%, S and or Se: 0. 005 to 0.040%, acid-soluble Al: 0.015 to 0.040%, N: 0.0030 to 0.0150%, Bi: 0.0005 to 0.05%, balance: Fe and unavoidable impurities After heating with a slab as a starting material, hot rolling, hot-rolled sheet annealing and finish cold rolling,
Alternatively, after finishing the product sheet thickness by a plurality of cold rolling including intermediate annealing or a plurality of cold rolling including hot rolled sheet annealing and intermediate annealing, decarburization annealing, after applying an annealing separation material, finish annealing is performed. In a method for producing a high magnetic flux density unidirectional electrical steel sheet, an atmosphere gas flow rate in finish annealing is set to a range shown below, ultra low iron loss of B 8 ≧ 1.92 T, ultrahigh magnetic flux density unidirectional electromagnetic field. Steel plate manufacturing method. Atmosphere gas flow rate / Internal furnace volume ≧ 0.5 Nm 3 / (h · m 3 )
【請求項2】 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.0%、 Mn:0.02〜0.30%、 Sおよび、またはSe:0.005〜0.040%、 酸可溶性Al:0.015〜0.040%、 N :0.0030〜0.0150%、 Sn:0.05〜0.50%、 Bi:0.0005〜0.05% 残部:Feおよび不可避的不純物からなるスラブを出発
材とした請求項1記載の超低鉄損超高磁束密度一方向性
電磁鋼板の製造方法。
2. By weight%, C: 0.03 to 0.15%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.30%, S and or Se: 0. 005-0.040%, acid-soluble Al: 0.015-0.040%, N: 0.0030-0.0150%, Sn: 0.05-0.50%, Bi: 0.0005-0. 05% balance: The method for producing an ultra-low iron loss ultra-high magnetic flux density grain-oriented electrical steel sheet according to claim 1, wherein a slab composed of Fe and inevitable impurities is used as a starting material.
【請求項3】 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.0%、 Mn:0.02〜0.30%、 Sおよび、またはSe:0.005〜0.040%、 酸可溶性Al:0.015〜0.040%、 N :0.0030〜0.0150%、 Sn:0.05〜0.50%、 Cu:0.01〜0.10%、 Bi:0.0005〜0.05% 残部:Feおよび不可避的不純物からなるスラブを出発
材とした請求項1記載の超低鉄損超高磁束密度一方向性
電磁鋼板の製造方法。
3. By weight%, C: 0.03 to 0.15%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.30%, S and or Se: 0. 005-0.040%, acid-soluble Al: 0.015-0.040%, N: 0.0030-0.0150%, Sn: 0.05-0.50%, Cu: 0.01-0. 10%, Bi: 0.0005-0.05% The balance: The manufacturing method of the super-low iron loss super-high magnetic flux density grain-oriented electrical steel sheet of Claim 1 which used the slab which consists of Fe and inevitable impurities as a starting material.
【請求項4】 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.0%、 Mn:0.02〜0.30%、 Sおよび、またはSe:0.005〜0.040%、 酸可溶性Al:0.015〜0.040%、 N :0.0030〜0.0150%、 Sbおよび、またはMo:0.0030〜0.3%、 Bi:0.0005〜0.05% 残部:Feおよび不可避的不純物からなるスラブを出発
材とした請求項1記載の超低鉄損超高磁束密度一方向性
電磁鋼板の製造方法。
4. By weight%, C: 0.03 to 0.15%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.30%, S and or Se: 0. 005-0.040%, acid-soluble Al: 0.015-0.040%, N: 0.0030-0.0150%, Sb and / or Mo: 0.0030-0.3%, Bi: 0. The method for producing an ultra-low iron loss ultra-high magnetic flux density grain-oriented electrical steel sheet according to claim 1, wherein a slab composed of the balance: Fe and inevitable impurities is used as a starting material.
JP15042495A 1995-06-16 1995-06-16 Manufacturing method for ultra-low iron loss ultra-high magnetic flux density unidirectional electrical steel sheet Expired - Lifetime JP3397273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15042495A JP3397273B2 (en) 1995-06-16 1995-06-16 Manufacturing method for ultra-low iron loss ultra-high magnetic flux density unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15042495A JP3397273B2 (en) 1995-06-16 1995-06-16 Manufacturing method for ultra-low iron loss ultra-high magnetic flux density unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH093542A true JPH093542A (en) 1997-01-07
JP3397273B2 JP3397273B2 (en) 2003-04-14

Family

ID=15496638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15042495A Expired - Lifetime JP3397273B2 (en) 1995-06-16 1995-06-16 Manufacturing method for ultra-low iron loss ultra-high magnetic flux density unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3397273B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100446919C (en) * 2005-06-30 2008-12-31 宝山钢铁股份有限公司 Production process of cold rolled orientation-free electrical steel plate with low iron loss and high magnetic induction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100446919C (en) * 2005-06-30 2008-12-31 宝山钢铁股份有限公司 Production process of cold rolled orientation-free electrical steel plate with low iron loss and high magnetic induction

Also Published As

Publication number Publication date
JP3397273B2 (en) 2003-04-14

Similar Documents

Publication Publication Date Title
JP3397277B2 (en) Manufacturing method of ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JP3098628B2 (en) Ultra high magnetic flux density unidirectional electrical steel sheet
JPH0689805A (en) Very high magnetic flux density oriented electromagnetic steel plate
JP3434936B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3397273B2 (en) Manufacturing method for ultra-low iron loss ultra-high magnetic flux density unidirectional electrical steel sheet
JP3397293B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH0949023A (en) Production of grain oriented silicon steel sheet excellent in iron loss
JP2003089821A (en) Method for producing ultrahigh magnetic flux density grain oriented silicon steel sheet
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPH06256846A (en) Production of grain oriented electrical steel sheet having stable high magnetic flux density
JP3561323B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3388116B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2712913B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP3527309B2 (en) Heating method of slab for ultra high magnetic flux density unidirectional electrical steel sheet
JPH08253815A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JP3399721B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3507232B2 (en) Manufacturing method of unidirectional electrical steel sheet with large product thickness
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JPH1025516A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JPH07310124A (en) Production of thick grain-oriented silicon steel plate excellent in magnetic characteristic and film coating characteristic
JP3215240B2 (en) Material for ultra high magnetic flux density unidirectional electrical steel sheet
JP3527276B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property
JPH10121212A (en) Grain-oriented silicon steel sheet and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140214

Year of fee payment: 11

EXPY Cancellation because of completion of term