JPH09328355A - Alumina-based sintered compact and its production - Google Patents

Alumina-based sintered compact and its production

Info

Publication number
JPH09328355A
JPH09328355A JP8138446A JP13844696A JPH09328355A JP H09328355 A JPH09328355 A JP H09328355A JP 8138446 A JP8138446 A JP 8138446A JP 13844696 A JP13844696 A JP 13844696A JP H09328355 A JPH09328355 A JP H09328355A
Authority
JP
Japan
Prior art keywords
alumina
crystal
based sintered
sintered body
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8138446A
Other languages
Japanese (ja)
Other versions
JP3340025B2 (en
Inventor
Usou Ou
雨叢 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP13844696A priority Critical patent/JP3340025B2/en
Publication of JPH09328355A publication Critical patent/JPH09328355A/en
Application granted granted Critical
Publication of JP3340025B2 publication Critical patent/JP3340025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an alumina-based sintered compact having stable strength in an oxidizing atmosphere from a room temperature to a high temperature and improved toughness and to provide a method for production thereof. SOLUTION: A molding compact comprising alumina as a main component and containing at least Fe element is heated in an oxidizing atmosphere so as to subject the Fe element to solid solution treatment in alumina crystal. The solid solution is heat-treated in a temperature range of a reducing atmosphere and a compound oxide of the formula FeAl2 O4 is precipitated in the alumina crystal particle to give the objective alumina-based sintered compact comprising alumina crystal having <=6μm average particle diameter as a main phase and >=1vol.% based on the whole amount of the compound oxide of the formula FeAl2 O4 having <=0.5μm average particle diameter in the alumina crystal particle. Another metal oxide crystal phase, in an amount of 3vol.% based on the whole amount, different from the FeAl2 O4 crystal is added to the compact to suppress the granule growth.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高強度、高靭性お
よびと耐環境性に優れたアルミナ質焼結体およびその製
造方法に関わり、酸化および還元性雰囲気で使用される
高温用構造材料のアルミナ質焼結体およびその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alumina-based sintered body excellent in high strength, high toughness and environment resistance and a method for producing the same, and relates to a high temperature structural material used in an oxidizing and reducing atmosphere. The present invention relates to an alumina-based sintered body and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来から、構造部材として、アルミナ質
焼結体は、耐環境性および強度特性がともに優れること
から種々の産業機械用部材として多用されている。最近
では、このアルミナ質焼結体の用途を拡大する上で、そ
の強度と破壊靭性をさらに向上させるために種々の複合
化が試みられている。例えば、Al2 3 −SiCナノ
コンポジィット複合材料(特開昭61−122164号
公報等参照)、Al2 3 −ZrO2 複合材料(特開昭
63−139044号公報等参照)、Al2 3−Ti
2 複合材料(特開平7−257964号公報を参照)
等が知られており、このような複合材料によれば、一般
的なアルミナ質焼結体より強度と靭性が向上することが
できる。
2. Description of the Related Art Conventionally, as a structural member, an alumina-based sintered body has been widely used as a member for various industrial machines because of its excellent environmental resistance and strength characteristics. Recently, in order to expand the applications of this alumina sintered body, various composites have been tried in order to further improve its strength and fracture toughness. For example, Al 2 O 3 -SiC nanocomposite composite material (see JP-A-61-122164, etc.), Al 2 O 3 -ZrO 2 composite material (see JP-A-63-139044, etc.), Al 2 O 3 -Ti
O 2 composite material (see JP-A-7-257964)
Etc. are known, and such a composite material can improve strength and toughness as compared with a general alumina-based sintered body.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記A
2 3 −SiCナノコンポジィット複合材料では、A
2 3 中に非酸化物であるSiC粒子を分散している
ために、高温状態で長時間保持されると、SiCが母相
のAl2 3 と反応するという問題があった。
However, the above A
In the l 2 O 3 -SiC nanocomposite composite material, A
Since the non-oxide SiC particles are dispersed in l 2 O 3 , there is a problem that the SiC reacts with the matrix Al 2 O 3 when it is kept at a high temperature for a long time.

【0004】また、Al2 3 −ZrO2 複合材料は9
00℃付近の温度で強度が急激に低下するという問題が
あるため、高温下において応力が作用するような状態で
の使用には適しないという問題があった。
Al 2 O 3 -ZrO 2 composite material is 9
Since there is a problem that the strength sharply decreases at a temperature near 00 ° C., there is a problem that it is not suitable for use in a state where stress acts at a high temperature.

【0005】更に、Al2 3 −TiO2 複合材料は、
1300℃以上の温度ではAl2 3 とTiO2 とが反
応してAl2 TiO5 を生成し、材料の特性が不安定で
ある問題があった。
Further, the Al 2 O 3 -TiO 2 composite material is
At a temperature of 1300 ° C. or higher, Al 2 O 3 and TiO 2 react with each other to form Al 2 TiO 5, which causes a problem that the material properties are unstable.

【0006】従って、本発明は、室温から高温まで安定
した強度を有するとともに、靱性に富んだアルミナ質焼
結体およびその製法を提供することを目的とするもので
ある。
Therefore, an object of the present invention is to provide an alumina-based sintered body which has stable strength from room temperature to high temperature and is rich in toughness, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記目的に
対して検討を重ねた結果、アルミナ結晶粒内にFeAl
2 4 で表される複合酸化物を平均粒径が全量中1体積
%以上の割合で、平均粒径が0.5μm以下の微細な粒
子として分散させることにより、上記目的が達成される
ことを見いだし本発明に至った。また、そのアルミナ主
結晶の粒界に前記粒内分散相やアルミナ結晶相とは異な
る他の金属酸化物相を分散させると、アルミナの粒成長
を抑制し、焼結体の強度を一層向上することを見いだし
本発明に至った。
Means for Solving the Problems As a result of repeated studies on the above object, the present inventor has found that FeAl is contained in alumina crystal grains.
The above object can be achieved by dispersing the composite oxide represented by 2 O 4 as fine particles having an average particle size of 1% by volume or more in the total amount and an average particle size of 0.5 μm or less. The present invention has been found out. Further, when the intragranular dispersed phase or another metal oxide phase different from the alumina crystal phase is dispersed in the grain boundary of the alumina main crystal, the grain growth of alumina is suppressed and the strength of the sintered body is further improved. The present invention was discovered and the present invention was reached.

【0008】また、上記のアルミナ質焼結体の製造方法
として、アルミナを主成分とし、少なくともFe元素を
含む成形体を酸化性雰囲気中で加熱処理して、Fe元素
をアルミナ結晶中に固溶させた後に、さらにこの固溶体
を還元性雰囲気中で熱処理を施すことにより、上記Fe
元素をFeAl2 4 の形でアルミナ結晶粒内に析出さ
せることができることを見いだし本発明に至った。
Further, as a method for producing the above-mentioned alumina sintered body, a formed body containing alumina as a main component and containing at least Fe element is heat-treated in an oxidizing atmosphere to form a solid solution of Fe element in the alumina crystal. After this, the solid solution is further heat-treated in a reducing atmosphere to obtain the above-mentioned Fe.
It has been found that the element can be precipitated in the alumina crystal grains in the form of FeAl 2 O 4 , and the present invention has been completed.

【0009】このような本発明によれば、アルミナ主結
晶粒内に微細な粒子のFeAl2 4 を分散させること
により、室温から高温まで安定した高強度を実現できる
とともに、高い靱性を付与することができる。
According to the present invention as described above, by dispersing fine particles of FeAl 2 O 4 in the alumina main crystal grains, stable high strength from room temperature to high temperature can be realized and high toughness is imparted. be able to.

【0010】[0010]

【発明の実施の形態】本発明のアルミナ質焼結体は、ア
ルミナ結晶を主とするものであるが、アルミナ結晶は焼
成中に粒成長を起こしやすいが、平均粒径が6μm以下
であることが焼結体の高強度化に対して有利であり、特
にアルミナ結晶の平均粒径は特に4μ以下であることが
望ましい。従って、このアルミナ主結晶は平均粒径が6
μmを越えると所望の強度が得られない。このアルミナ
主結晶相は、全量中において50体積%以上、特に70
〜95体積%の割合で存在することが強度の点から適当
である。
BEST MODE FOR CARRYING OUT THE INVENTION The alumina-based sintered body of the present invention is mainly composed of alumina crystals. The alumina crystals are prone to grain growth during firing, but the average grain size is 6 μm or less. Is advantageous for increasing the strength of the sintered body, and the average grain size of the alumina crystals is particularly preferably 4 μm or less. Therefore, this alumina main crystal has an average grain size of 6
If it exceeds μm, the desired strength cannot be obtained. This alumina main crystal phase is 50% by volume or more, especially 70% by volume in the total amount.
From the viewpoint of strength, it is suitable to exist in a proportion of ˜95% by volume.

【0011】また、本発明によれば、第2の結晶相とし
て、上記アルミナ結晶の粒内にFeAl2 4 で表され
る複合酸化物相が平均粒径0.5μm以下の微細な粒子
として分散している。アルミナ結晶の粒内にFeAl2
4 相が微細な粒子として分散すると、母相であるアル
ミナ結晶自体が強化され、焼結体全体の強度、靭性およ
び高温強度が向上される。
Further, according to the present invention, as the second crystal phase, the composite oxide phase represented by FeAl 2 O 4 in the particles of the alumina crystal is formed as fine particles having an average particle size of 0.5 μm or less. It is dispersed. FeAl 2 in the grains of the alumina crystal
When the O 4 phase is dispersed as fine particles, the alumina crystal itself, which is the mother phase, is strengthened, and the strength, toughness and high temperature strength of the entire sintered body are improved.

【0012】なお、FeAl2 4 からなる粒内分散相
の量が少ないと強度と靭性向上の効果が小さいため、全
量中に1体積%以上、特に3〜10体積%の割合で分散
していることが望ましい。本発明において、上記粒内分
散相の平均粒径を上記のように限定したのは、粒内分散
相の平均サイズが0.5μmを越えるとアルミナ結晶に
対する強化効果が低下し、場合によっては析出粒子と母
相結晶の間に過大な応力が生じ、クラックを発生するこ
とがある為である。粒内分散相のサイズは特に0.3μ
m以下であることが好ましい。
If the amount of the FeAl 2 O 4 intragranular dispersed phase is small, the effect of improving the strength and toughness is small. Therefore, it is dispersed in a total amount of 1% by volume or more, particularly 3 to 10% by volume. Is desirable. In the present invention, the average grain size of the intragranular dispersed phase is limited as described above because the strengthening effect on the alumina crystal is reduced when the average size of the intragranular dispersed phase exceeds 0.5 μm, and in some cases precipitation occurs. This is because an excessive stress may be generated between the particles and the matrix crystal to cause cracks. The size of the intragranular dispersed phase is especially 0.3μ
m or less.

【0013】また、本発明によれば、上記アルミナ結晶
の粒界に、第3の結晶相として、前記アルミナ結晶やF
eAl2 4 とは異なる他の金属酸化物が3体積%以
上、特に5〜40体積%の割合で存在することが望まし
い。これらの粒界分散相は、母相であるアルミナ結晶の
粒成長を効果的に抑制すると同時に、材料の強度向上に
も寄与できる。上記第3の結晶相としては、特に周期律
表2A〜7A族元素を含む酸化物、例えば、MgAl2
4 、CaAl1219、Y3 Al5 12、LaAl11
18、HfO2 、V2 5 などの化合物から選ばれる1種
以上が好適であり、これらのものは高温での安定性およ
び粒成長抑制効果が優れる。
Further, according to the present invention, at the grain boundary of the alumina crystal, the alumina crystal or F is used as a third crystal phase.
It is desirable that another metal oxide different from eAl 2 O 4 is present in a proportion of 3% by volume or more, particularly 5 to 40% by volume. These grain boundary dispersed phases can effectively suppress the grain growth of the alumina crystal that is the parent phase and at the same time contribute to the improvement of the strength of the material. As the third crystal phase, an oxide containing a group 2A to 7A element of the periodic table, for example, MgAl 2
O 4 , CaAl 12 O 19 , Y 3 Al 5 O 12 , LaAl 11 O
One or more selected from compounds such as 18 , HfO 2 and V 2 O 5 are suitable, and these compounds are excellent in stability at high temperature and grain growth suppressing effect.

【0014】次に、本発明のアルミナ質焼結体の製法に
ついて述べる。上記のアルミナ質焼結体を作製するに
は、まず、アルミナを主成分とし、少なくともFe元素
を含む成形体を作製する。この成形体は、アルミナ粉末
に対して、Fe元素を含む化合物、例えば、鉄粉末、F
eO、Fe2 3 、Fe3 4 などの酸化鉄粉末、Fe
を含む有機塩や無機塩およびそれらの溶液を添加して、
ボールミル等で十分に混合し乾燥した後、所望の成形手
段、例えば、金型プレス,冷間静水圧プレス,押出し成
形等により任意の形状に成形後、焼成する。ここで、F
e添加量は、前述したFeAl2 4 を全量中1体積%
以上の割合で析出させるためにはFe2 3 に換算して
0.5mol%以上が適当である。
Next, a method for producing the alumina-based sintered body of the present invention will be described. In order to manufacture the above-mentioned alumina sintered body, first, a molded body containing alumina as a main component and containing at least Fe element is manufactured. This compact is a compound containing Fe element with respect to alumina powder, such as iron powder or F powder.
Iron oxide powder such as eO, Fe 2 O 3 and Fe 3 O 4 , Fe
Add an organic salt or inorganic salt containing
After thoroughly mixing and drying with a ball mill or the like, it is molded into a desired shape by a desired molding means such as a die press, a cold isostatic press, an extrusion molding and the like, and then fired. Where F
The amount of e added is 1 vol% of the above-mentioned FeAl 2 O 4 in the total amount.
In order to precipitate at the above ratio, 0.5 mol% or more in terms of Fe 2 O 3 is suitable.

【0015】焼成にあたっては、まず、上記のようにし
て作製した成形体を大気または酸素分圧が10-3以上の
酸化性雰囲気で1300〜1700℃の温度で1〜10
時間程度加熱処理すると、Fe元素はFe3+イオンとな
り、アルミナ結晶中に固溶する。
In the firing, first, the molded body produced as described above is exposed to the atmosphere or an oxidizing atmosphere having an oxygen partial pressure of 10 -3 or more at a temperature of 1300 to 1700 ° C for 1 to 10 ° C.
When heat treatment is performed for about an hour, Fe element becomes Fe 3+ ions and forms a solid solution in the alumina crystal.

【0016】そして、上記の方法で得られた固溶体を例
えばCO、H2 ガス或いはCO、H2 を含む非酸化性混
合ガス雰囲気からなる還元性雰囲気中において加熱処理
を施す。還元雰囲気での熱処理によりFe元素はFe2+
イオンに還元される。このFe2+イオンのアルミナ中で
の固溶量はFe3+イオンより少ないためFeイオンがア
ルミナ格子結晶から離脱し、アルミナと反応して、結果
的にFeAl2 4 の結晶としてアルミナ結晶粒内に析
出することになる。
Then, the solid solution obtained by the above method is subjected to heat treatment in a reducing atmosphere composed of, for example, CO, H 2 gas or a non-oxidizing mixed gas atmosphere containing CO, H 2 . By heat treatment in a reducing atmosphere, Fe element becomes Fe 2+
Reduced to ions. Since the solid solution amount of Fe 2+ ions in alumina is smaller than that of Fe 3+ ions, Fe ions are separated from the alumina lattice crystal and react with alumina, resulting in the formation of FeAl 2 O 4 crystals as alumina crystal grains. Will be deposited inside.

【0017】この時、析出処理温度が低いとFe3+イオ
ンの還元が進行できなく、また、析出処理温度が高いと
母相のアルミナ結晶と粒内析出相が粒成長し、FeAl
2 4 が粒界に偏析する傾向がある。従って、上記析出
処理は、1300℃〜1650℃の温度範囲で行うこと
が好ましい。
At this time, if the precipitation treatment temperature is low, reduction of Fe 3+ ions cannot proceed, and if the precipitation treatment temperature is high, the alumina crystals of the mother phase and the intragranular precipitation phase undergo grain growth, resulting in FeAl.
2 O 4 tends to segregate at grain boundaries. Therefore, it is preferable that the precipitation treatment is performed in the temperature range of 1300 ° C to 1650 ° C.

【0018】また、析出処理時は、抵抗加熱、高周波加
熱など任意の加熱方法は可能であるが、マイクロ波の照
射によって加熱することが、粒内析出相をより均一に分
布させることができ、また大きなサイズの焼結体を作製
する上で有効である。
Although any heating method such as resistance heating or high frequency heating can be used during the precipitation treatment, heating by irradiation with microwaves makes it possible to more uniformly distribute the intragranular precipitation phase, It is also effective in producing a large-sized sintered body.

【0019】さらに、本発明の製造方法によれば、上記
の系に対して、さらにY2 3 、La2 3 などの希土
類元素酸化物、Ca、Mg等のアルカリ土類酸化物、H
f、Zr、V、W、Mo、Mnなどの周期律表第4A〜
7A族元素酸化物をアルミナ粉末に対して酸化物換算で
1〜20重量%の割合で添加することにより、これらの
酸化物相またはこれらの酸化物とアルミナとの複合酸化
物相を粒界に析出させることができる。
Furthermore, according to the production method of the present invention, rare earth element oxides such as Y 2 O 3 and La 2 O 3 , alkaline earth oxides such as Ca and Mg, and H are added to the above system.
Periodic Table 4A to f, Zr, V, W, Mo, Mn, etc.
By adding the 7A group element oxide to the alumina powder in an amount of 1 to 20% by weight in terms of oxide, these oxide phases or a composite oxide phase of these oxides and alumina are added to the grain boundaries. It can be deposited.

【0020】[0020]

【実施例】原料粉末として、アルミナ(Al2 3 )、
酸化鉄(Fe2 3 )および酸化イットリウム(Y2
3 )、水酸化マグネシウム(Mg(OH)2 )、酸化ラ
ンタン(La2 3 )、酸化ハフニウム(HfO2 )粉
末を用いて、表1に示す組成比に調合し、1t/cm2
の圧力で金型成形した後、3t/cm2 の圧力で静水圧
処理を加えた。焼成条件は表1に示すように、大気中で
1500〜1700℃で5時間焼成した。析出熱処理は
水素雰囲気で1300℃〜1600℃で行った。また、
一部の試料の析出処理はマイクロ波加熱により行った。
Example As raw material powder, alumina (Al 2 O 3 ),
Iron oxide (Fe 2 O 3 ) and yttrium oxide (Y 2 O)
3 ), magnesium hydroxide (Mg (OH) 2 ), lanthanum oxide (La 2 O 3 ), and hafnium oxide (HfO 2 ) powders were mixed at the composition ratio shown in Table 1 to 1 t / cm 2.
After mold molding at a pressure of 3, a hydrostatic pressure treatment was applied at a pressure of 3 t / cm 2 . As for the firing conditions, as shown in Table 1, firing was performed in the air at 1500 to 1700 ° C. for 5 hours. The deposition heat treatment was performed at 1300 ° C. to 1600 ° C. in a hydrogen atmosphere. Also,
Precipitation treatment of some samples was performed by microwave heating.

【0021】得られた焼結体をJIS−R1601にて
指定されている形状まで研磨し抗折試料を作製した。こ
の試料についてJIS−R1601に基づく大気中で室
温および1400℃での4点曲げ抗折強度試験を実施し
た。また、ビッカース圧痕法により破壊靭性(K1c)を
測定した。X線回折測定データより焼結体中の結晶相を
同定した。また、走査型電子顕微鏡写真から、アルミナ
母相と粒内析出相の平均粒径および粒内、粒界分散相の
体積分率を定量的に測定した。結果は表2に示した。
The sintered body thus obtained was ground to a shape specified in JIS-R1601 to prepare a bending sample. This sample was subjected to a 4-point bending transverse strength test at room temperature and 1400 ° C. in the atmosphere based on JIS-R1601. Further, the fracture toughness (K 1 c) was measured by the Vickers indentation method. The crystal phase in the sintered body was identified from the X-ray diffraction measurement data. Further, the average grain size of the alumina matrix phase and the intragranular precipitation phase and the volume fraction of the intragranular and grain boundary dispersed phase were quantitatively measured from the scanning electron micrograph. The results are shown in Table 2.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】表1および表2の結果から、FeAl2
4 がアルミナ結晶粒内に微細に分散したアルミナ質焼結
体は、いずれも室温強度が500MPa以上、1400
℃強度が350MPa以上、破壊靭性が4.0MPa・
1/2 以上であった。また、粒内分散相とともに粒界分
散相を有する本発明の試料No.4、6〜10の焼結体は
アルミナ結晶の平均粒径が小さくなる傾向にあり、アル
ミナ結晶の粒径が小さいほど強度も高くなることがわか
る。
From the results of Table 1 and Table 2, FeAl 2 O
All of the alumina-based sintered bodies in which 4 is finely dispersed in the alumina crystal grains have room temperature strengths of 500 MPa or more and 1400
℃ strength is 350MPa or more, fracture toughness is 4.0MPa
m 1/2 or more. Further, the sintered bodies of Samples Nos. 4 and 6 to 10 of the present invention having the intragranular dispersed phase and the grain boundary dispersed phase tended to have a smaller average particle size of alumina crystals, and the smaller the alumina crystal particle size, the smaller It can be seen that the strength also increases.

【0025】これに対して、試料No.11と12は無添
加あるいは析出処理を施していない焼結体であり、No.
13は粒内析出相が大きく成長したもの、No.14と1
5はアルミナ結晶が大きく成長したものであり、いずれ
も本発明の焼結体より強度と靭性が低いことが分かる。
On the other hand, Sample Nos. 11 and 12 are sintered bodies with no addition or precipitation treatment.
No. 13 is a large grown intragranular precipitation phase, No. 14 and 1
No. 5 is a large-grown alumina crystal, and it can be seen that all of them have lower strength and toughness than the sintered body of the present invention.

【0026】[0026]

【発明の効果】以上詳述した通り、本発明によれば、室
温から1400℃の高温まで、安定した高い強度を有す
るとともに、高い靱性を有するアルミナ質焼結体を作製
することができる。
As described in detail above, according to the present invention, it is possible to produce an alumina-based sintered body having stable and high strength from room temperature to a high temperature of 1400 ° C. and having high toughness.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】平均粒径が6μm以下のアルミナ結晶を主
相とし、該アルミナの結晶粒内に平均粒径が0.5μm
以下のFeAl2 4 で表される複合酸化物を全量中1
体積%以上の割合で分散含有することを特徴とするアル
ミナ質焼結体。
1. An alumina crystal having an average particle size of 6 μm or less as a main phase, and an average particle size of 0.5 μm in the crystal grains of the alumina.
The total amount of the composite oxide represented by FeAl 2 O 4 below is 1
An alumina-based sintered body characterized by being dispersed and contained in a proportion of not less than volume%.
【請求項2】前記アルミナ結晶の粒界に、前記FeAl
2 4 結晶とは異なる他の金属酸化物結晶相を全量中3
体積%以上の割合で含むことを特徴とする請求項1記載
アルミナ質焼結体。
2. The FeAl at the grain boundary of the alumina crystal.
3% of other metal oxide crystal phases different from 2 O 4 crystals
The alumina-based sintered body according to claim 1, characterized in that it is contained in a proportion of not less than volume%.
【請求項3】アルミナを主成分とし、少なくともFe元
素を含有する成形体を酸化性雰囲気で加熱してFe元素
をアルミナ結晶中に固溶処理した後、前記固溶体を還元
性雰囲気中の温度範囲で熱処理を施し、アルミナ結晶粒
内にFeAl24 で表される複合酸化物を析出させた
ことを特徴とするアルミナ質焼結体の製造方法。
3. A molded body containing alumina as a main component and containing at least Fe element is heated in an oxidizing atmosphere to effect solid solution of Fe element in alumina crystals, and then the solid solution is subjected to a temperature range in a reducing atmosphere. A method for producing an alumina-based sintered body, characterized in that the composite oxide represented by FeAl 2 O 4 is precipitated in the alumina crystal grains by heat treatment.
JP13844696A 1996-05-31 1996-05-31 Alumina sintered body and method for producing the same Expired - Fee Related JP3340025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13844696A JP3340025B2 (en) 1996-05-31 1996-05-31 Alumina sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13844696A JP3340025B2 (en) 1996-05-31 1996-05-31 Alumina sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09328355A true JPH09328355A (en) 1997-12-22
JP3340025B2 JP3340025B2 (en) 2002-10-28

Family

ID=15222201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13844696A Expired - Fee Related JP3340025B2 (en) 1996-05-31 1996-05-31 Alumina sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3340025B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114702327A (en) * 2022-03-24 2022-07-05 广东工业大学 High-strength and high-toughness alumina-based composite ceramic substrate and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114702327A (en) * 2022-03-24 2022-07-05 广东工业大学 High-strength and high-toughness alumina-based composite ceramic substrate and preparation method thereof

Also Published As

Publication number Publication date
JP3340025B2 (en) 2002-10-28

Similar Documents

Publication Publication Date Title
US20170362129A1 (en) ZrO2-Al2O3-BASED CERAMIC SINTERED COMPACT AND PRODUCTION METHOD THEREOF
CN1673173A (en) Nano crystal adding alumina ceramic material and its low temperature liquid phase sintering process
JP3279885B2 (en) Method for producing alumina-based sintered body
JPH06219840A (en) Silicon nitride sintered compact and its production
JP3366938B2 (en) Calcium zirconate / magnesia composite porous body and method for producing the same
JP3777031B2 (en) High wear-resistant alumina sintered body and manufacturing method thereof
JP3340025B2 (en) Alumina sintered body and method for producing the same
JP3145597B2 (en) Alumina sintered body and method for producing the same
JP3311915B2 (en) Alumina sintered body
JP3121996B2 (en) Alumina sintered body
JP3152853B2 (en) Alumina sintered body and method for producing the same
JP2773416B2 (en) Aluminum nitride sintered body and method for producing the same
JP3559413B2 (en) Alumina sintered body and method for producing the same
JPH0987009A (en) Alumina-mullite combined sintered compact and its production
JPH0826815A (en) Rare earth compound oxide-based sintered compact and its production
JP3488350B2 (en) Alumina sintered body and method for producing the same
JP3141505B2 (en) Aluminum nitride sintered body and method for producing the same
JPH08208317A (en) Alumina sintered body and production thereof
JPH02311361A (en) Production of aluminum titanate sintered compact stable at high temperature
JP3965466B2 (en) Alumina sintered body and manufacturing method thereof
JP3618036B2 (en) Alumina sintered body manufacturing method
JP3101972B2 (en) Alumina sintered body and method for producing the same
JP3534963B2 (en) Manufacturing method of ceramics
JPH08198664A (en) Alumina-base sintered body and its production
JP3078462B2 (en) Alumina sintered body and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees