JPH09320603A - Manufacture of pulverized active material for lithium secondary battery - Google Patents

Manufacture of pulverized active material for lithium secondary battery

Info

Publication number
JPH09320603A
JPH09320603A JP9087689A JP8768997A JPH09320603A JP H09320603 A JPH09320603 A JP H09320603A JP 9087689 A JP9087689 A JP 9087689A JP 8768997 A JP8768997 A JP 8768997A JP H09320603 A JPH09320603 A JP H09320603A
Authority
JP
Japan
Prior art keywords
active material
droplets
powdery active
secondary battery
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9087689A
Other languages
Japanese (ja)
Inventor
Akio Takahashi
昭夫 高橋
Masahiko Kato
雅彦 加藤
Akihiko Murakami
彰彦 村上
Kazumasa Takatori
一雅 鷹取
Naoyoshi Watanabe
直義 渡辺
Toshihiko Tani
俊彦 谷
Itsuki Sasaki
厳 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Aichi Steel Corp
Original Assignee
Toyota Central R&D Labs Inc
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc, Aichi Steel Corp filed Critical Toyota Central R&D Labs Inc
Priority to JP9087689A priority Critical patent/JPH09320603A/en
Priority to US08/824,967 priority patent/US5958362A/en
Publication of JPH09320603A publication Critical patent/JPH09320603A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/34Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of sprayed or atomised solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a pulverized active material for use in a lithium secondary battery, that is made from a spinel or stratified type lithium-containing oxide which has a uniform composition, has a small particle diameter, does not cause oxygen loss, and undergoes almost no capacity deterioration even in the case of repeated charge and discharge at high current density. SOLUTION: A suspension 1 in which the raw material of a pulverized active material is suspended in a combustible liquid, or an emulsion in which a solution of the raw material is emulsified in a combustible liquid, is sprayed in the form of droplets 15, along with an oxygen-containing gas 2, and the combustible liquid in the droplets 15 is burned. The raw material in the droplets is thereby reacted and the solvent is evaporated to manufacture pulverized active material 4 of a spinel type lithium-containing oxide. Also, oxide powders are obtained by spraying and heating of the droplets, and are reheated to obtain pulverized active material of a stratified lithium-containing oxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は,非水電解液を用いたリチウム二
次電池における,正極用或は負極用に用いる粉末状活物
質の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a powdery active material used for a positive electrode or a negative electrode in a lithium secondary battery using a non-aqueous electrolyte.

【0002】[0002]

【従来技術】種々の二次電池のうち,特にリチウム二次
電池は,電圧が高いうえ,自己放電が少なく保存性に優
れている。そのため,多くの分野において有望な二次電
池として期待されている。リチウム二次電池としては,
正極活物質にLiCoO2 ,LiNiO2 ,LiMn2
4 等の金属酸化物を,一方負極活物質にリチウム金
属,リチウム合金,もしくはリチウムイオンを吸蔵・放
出可能な炭素体等を用いるものがある(特開昭63−1
14065号)。
2. Description of the Related Art Among various secondary batteries, lithium secondary batteries, in particular, have high voltage, low self-discharge, and excellent storage stability. Therefore, it is expected as a promising secondary battery in many fields. As a lithium secondary battery,
LiCoO 2 , LiNiO 2 , LiMn 2 may be used as the positive electrode active material.
There is one that uses a metal oxide such as O 4 and a negative electrode active material such as lithium metal, a lithium alloy, or a carbon body capable of absorbing and desorbing lithium ions (JP-A-63-1).
14065).

【0003】ところで,上記活物質は,従来,Li(リ
チウム)金属,Liの酸化物,水酸化物,炭酸化物等の
リチウム原料の粉末と,Mn,Ni,Co等の金属或い
はこれらの酸化物,水酸化物,炭酸化物等の粉末とを混
合し,これらを高温で長時間加熱する,固相反応法によ
り製造していた。
By the way, the above-mentioned active materials are conventionally powders of lithium raw materials such as Li (lithium) metal, oxides of Li, hydroxides and carbonates, and metals such as Mn, Ni and Co, or oxides thereof. It was manufactured by a solid-phase reaction method in which powders such as hydroxide and carbonate were mixed and heated at a high temperature for a long time.

【0004】[0004]

【解決しようとする課題】しかしながら,上記従来の固
相反応方法による活物質の製造方法は,高温かつ長時間
を必要とする。また,上記従来の活物質は,固相反応で
あるため,活物質原料が充分に反応せず,均一な組成を
有する活物質が得られない。また得られた活物質はその
平均粒子径が10μm〜20μmと大きい。また,上記
活物質を用いたリチウム二次電池においては,高電流密
度の充放電を行った場合,その容量劣化が大きい。
However, the above-mentioned conventional method for producing an active material by the solid-phase reaction method requires a high temperature and a long time. Further, since the above-mentioned conventional active material is a solid-phase reaction, the active material raw material does not react sufficiently, and an active material having a uniform composition cannot be obtained. The obtained active material has a large average particle diameter of 10 μm to 20 μm. Further, in a lithium secondary battery using the above active material, the capacity deterioration is large when charging and discharging at high current density.

【0005】また,均一な組成を有し,粒子径が小さ
く,かつ高電流密度の充放電においてもその容量劣化が
少ない,リチウム二次電池用の粉末状活物質を製造する
方法として,上記粉末状活物質の原料を溶媒に溶解した
原料を液滴状に噴霧し,次いで,上記液滴を加熱して,
その中の上記溶媒を蒸発させて粉末状活物質を得るとい
う噴霧熱分解法がある(特開平2−9722)。
Further, as a method for producing a powdery active material for a lithium secondary battery, which has a uniform composition, a small particle size, and a small capacity deterioration even when charged and discharged at a high current density, A raw material obtained by dissolving the raw material for the active material in a solvent is sprayed in a droplet shape, and then the droplet is heated to
There is a spray pyrolysis method in which the above-mentioned solvent therein is evaporated to obtain a powdery active material (JP-A-2-9722).

【0006】しかしながら,上記従来の噴霧熱分解法で
は,加熱方式が外熱式にしろ内熱式にしろ加熱部に温度
分布が生じるため,組成の均一性が得られないことが多
い。特に,蒸気圧が異なる物質の複合酸化物を製造する
場合には,組成が不均一になりやすい。また,温度分布
があると,酸化物の形成に最適な温度条件に設定して
も,場所によっては温度が高すぎたり,低すぎたりする
ため,原料の中に揮発成分を含む場合に制御できない。
However, in the above-mentioned conventional spray pyrolysis method, even if the heating method is the external heating method or the internal heating method, a temperature distribution is generated in the heating portion, so that the uniformity of the composition is often not obtained. In particular, when producing a complex oxide of substances having different vapor pressures, the composition tends to be non-uniform. In addition, if there is a temperature distribution, even if the optimum temperature conditions for oxide formation are set, the temperature may be too high or too low depending on the location, so it cannot be controlled when the raw material contains volatile components. .

【0007】また,上記リチウム二次電池用の粉末状活
物質の製造方法ではないが,加熱部の温度分布が小さ
く,組成の均一な上記複合酸化物粉末を製造することが
できる方法が提示されている。この方法は,酸化される
ことにより酸化物となる物質を可燃性液体中に懸濁させ
たサスペンション,または酸化させることにより酸化物
となる物質を液体中に溶解させた溶液を可燃性液体中に
乳濁させたエマルジョンのうちの一方または双方を噴霧
するとともに,酸化雰囲気中で加熱するという,燃焼噴
霧熱分解法である(特開平7−81905号)。
Although not a method for producing a powdered active material for a lithium secondary battery, a method is proposed which can produce a composite oxide powder having a uniform temperature distribution and a small temperature distribution in the heating part. ing. In this method, a suspension in which a substance that becomes an oxide when oxidized is suspended in a flammable liquid, or a solution in which a substance that becomes an oxide when oxidized is dissolved in a liquid is placed in a flammable liquid. This is a combustion spray pyrolysis method in which one or both of emulsified emulsions are sprayed and heated in an oxidizing atmosphere (JP-A-7-81905).

【0008】しかしながら,上記燃焼噴霧熱分解法で
は,可燃性液体が燃焼する際,多量の酸素を消費する。
そのため,スピネル構造を持つ複合酸化物を上記燃焼噴
霧熱分解法で合成すれば,多くの酸素欠損を生じた粉末
しか得られない。
However, in the combustion spray pyrolysis method, a large amount of oxygen is consumed when the combustible liquid burns.
Therefore, if a composite oxide having a spinel structure is synthesized by the above-mentioned combustion spray pyrolysis method, only powder with many oxygen deficiencies can be obtained.

【0009】特に,LiMn24 のようなスピネル型
リチウム含有酸化物は,酸素欠損があると,結晶構造に
歪みを生じ,リチウム二次電池用の粉末状活物質として
用いた場合,繰り返し充放電による容量劣化が大きい。
In particular, spinel type lithium-containing oxides such as LiMn 2 O 4 have distortions in the crystal structure when oxygen is deficient, and when used as a powdery active material for a lithium secondary battery, they are repeatedly charged. Large capacity deterioration due to discharge.

【0010】本発明は,かかる従来の問題点に鑑み,均
一な組成を有し,粒子径が小さく,更に酸素欠損がな
く,かつ高電流密度の繰り返し充放電においてもその容
量劣化が殆どない,スピネル型又は層状型のリチウム含
有酸化物よりなる,リチウム二次電池用の粉末状活物質
の製造方法を提供しようとするものである。
In view of such conventional problems, the present invention has a uniform composition, a small particle size, no oxygen deficiency, and almost no capacity deterioration even during repeated charge / discharge at high current density. An object of the present invention is to provide a method for producing a powdery active material for a lithium secondary battery, which method comprises a spinel-type or layer-type lithium-containing oxide.

【0011】[0011]

【課題の解決手段】請求項1の発明は,リチウム二次電
池用の粉末状活物質を製造する方法であって,上記粉末
状活物質の原料を可燃性液体中に懸濁させたサスペンシ
ョン,または上記粉末状活物質の原料を溶媒中に溶解さ
せた溶液を可燃性液体中に乳濁させたエマルジョンを,
酸素を含む雰囲気中で液滴状に噴霧し,次いで,上記液
滴中の上記可燃性液体を燃焼させることにより,上記液
滴を加熱処理して,該液滴中の原料を反応させて,スピ
ネル型リチウム含有酸化物よりなる粉末状活物質を製造
することを特徴とするリチウム二次電池用粉末状活物質
の製造方法(以下,第1発明という)にある。
According to a first aspect of the present invention, there is provided a method for producing a powdery active material for a lithium secondary battery, the suspension comprising a raw material of the powdery active material suspended in a flammable liquid, Alternatively, an emulsion prepared by emulsifying a solution of the raw material of the above powdery active material in a solvent in a flammable liquid,
The droplets are sprayed in an atmosphere containing oxygen, and then the flammable liquid in the droplets is burned to heat-treat the droplets to react the raw materials in the droplets, A method for producing a powdery active material for a lithium secondary battery, which comprises producing a powdery active material made of a spinel-type lithium-containing oxide (hereinafter referred to as a first invention).

【0012】本第1発明において最も注目すべき点は,
上記サスペンション又はエマルジョンとなした粉末状活
物質の原料を,酸素を含む雰囲気中で液滴に噴霧し,上
記可燃性液体を燃焼させることにより液滴を加熱処理し
て,上記原料を反応させてスピネル型リチウム含有酸化
物よりなる粉末状活物質を得ることにある。つまり,本
発明は,上記液滴を酸素を含む雰囲気中で噴霧すること
により,上記燃焼時における酸素の不足を補充しつつ,
上記反応を促進させるのである。
The most remarkable point in the first invention is
The raw material of the powdery active material in the form of suspension or emulsion is sprayed into droplets in an atmosphere containing oxygen, and the flammable liquid is burned to heat the droplets to react the raw materials. To obtain a powdery active material composed of a spinel-type lithium-containing oxide. That is, the present invention supplements the shortage of oxygen during the combustion by spraying the droplets in an atmosphere containing oxygen,
It promotes the above reaction.

【0013】上記可燃性液体は,サスペンションまたは
エマルジョンの媒体となるものであり,軽油,重油,ケ
ロシン,ガソリン等の一種以上を使用する。なお,上記
粉末状活物質の原料を可燃性液体中に乳濁させる場合に
は,乳化剤の添加,あるいはホモミキサ等による攪拌を
行うのがよい。乳化剤としては,金属イオンを含まない
ものが望ましく,特にノニオン系界面活性剤を用いるの
が望ましい。
The flammable liquid serves as a suspension or emulsion medium, and uses one or more of light oil, heavy oil, kerosene, gasoline and the like. When the raw material of the powdered active material is emulsified in a flammable liquid, it is preferable to add an emulsifier or stir with a homomixer or the like. As the emulsifier, one that does not contain metal ions is desirable, and it is particularly desirable to use a nonionic surfactant.

【0014】また,エマルジョンを作製する際,ソルビ
タンモノラウレート等の適切な乳化剤を用いることによ
り,径がほぼ均一な球状体が分散した乳濁液が得られ
る。この分散球の径の均一性が,得られる粉末状活物質
の粒子径に反映される。本発明によれば,上記のごと
く,分散球の径が均一なエマルジョンを作製することが
容易である。そのため,粒子径の均一な粉末状活物質を
製造することが容易である。また,エマルジョンとし
て,可燃性液体中に上記原料が溶媒に溶解した溶液が乳
濁すると共に,上記可燃性液体中に上記原料が懸濁した
もの,即ちエマルジョン状態とサスペンション状態とが
共存するものも利用することができる。
When an emulsion is prepared, a suitable emulsifier such as sorbitan monolaurate is used to obtain an emulsion in which spherical particles having a substantially uniform diameter are dispersed. The uniformity of the diameter of the dispersed spheres is reflected in the particle diameter of the obtained powdery active material. According to the present invention, as described above, it is easy to prepare an emulsion in which the diameter of dispersed spheres is uniform. Therefore, it is easy to manufacture a powdery active material having a uniform particle size. In addition, as an emulsion, a solution in which the above raw material is dissolved in a solvent in a flammable liquid is emulsified, and the above raw material is suspended in the above flammable liquid, that is, one in which an emulsion state and a suspension state coexist. Can be used.

【0015】サスペンションまたはエマルジョンを噴霧
する方法としては,酸素含有ガスと共に噴霧する方法,
あるいは酸素が存在する雰囲気(ガス)中にサスペンシ
ョン又はエマルジョンを噴霧する方法がある。その中で
も,酸素含有ガスと共に噴霧する方法の方が反応効率が
高く,望ましい。この酸素含有ガスと共に噴霧する方法
としては,圧縮空気を用いた噴霧器(アトマイザー)
に,定量ポンプによりサスペンションまたはエマルジョ
ンを供給し,反応器中に噴霧する方法等が挙げられる。
噴霧量は多いほど生産効率がよいが,反応器中における
酸素分圧の低下を生じたり,燃焼温度が高くなりすぎる
ことがある。そのため,噴霧量はこれらの点を考慮して
行う。
As a method of spraying the suspension or emulsion, a method of spraying with a gas containing oxygen,
Alternatively, there is a method of spraying the suspension or emulsion in an atmosphere (gas) in which oxygen exists. Among them, the method of spraying with the oxygen-containing gas is preferable because the reaction efficiency is higher. As a method of spraying with this oxygen-containing gas, a sprayer (atomizer) using compressed air is used.
In addition, a method of supplying a suspension or emulsion by a metering pump and spraying it into the reactor can be mentioned.
The higher the spray amount, the better the production efficiency, but the oxygen partial pressure in the reactor may decrease, and the combustion temperature may become too high. Therefore, the amount of spray should be determined in consideration of these points.

【0016】本発明では,サスペンションまたはエマル
ジョンを酸素を含む雰囲気中で反応器中に噴霧し,その
際にサスペンション,エマルジョン中の可燃性液体を燃
焼させる。この燃焼方法としては,噴霧液滴をバーナー
等により加熱する。あるいは噴霧液滴を火炎又は高温に
加熱した部分を通過させることにより行う。また,安定
な燃焼を支援すると共に着火しやすくするためにパイロ
ットバーナーを用いるのがよい。
In the present invention, the suspension or emulsion is sprayed into the reactor in an atmosphere containing oxygen, and the flammable liquid in the suspension or emulsion is burned at that time. As the combustion method, the sprayed droplets are heated by a burner or the like. Alternatively, the spray droplets are passed through a flame or a portion heated to a high temperature. A pilot burner should be used to support stable combustion and facilitate ignition.

【0017】加熱する際の雰囲気としては,上記のごと
く粉末状活物質に酸素欠損を生じさせないために,酸化
雰囲気が必要である。そのため,上記のごとく,液滴を
酸素を含む雰囲気中で噴霧する。上記加熱処理時におけ
る反応器中の酸素分圧は,可燃性液体が完全燃焼したと
仮定したとき,その酸素分圧が20%以上となるように
制御することが好ましい。
As an atmosphere for heating, an oxidizing atmosphere is required in order to prevent oxygen deficiency in the powdery active material as described above. Therefore, as described above, the droplets are sprayed in the atmosphere containing oxygen. The oxygen partial pressure in the reactor during the heat treatment is preferably controlled so that the oxygen partial pressure is 20% or more, assuming that the combustible liquid is completely combusted.

【0018】例えば,サスペンションまたはエマルジョ
ンを酸素含有ガスと共に噴霧する場合,そのような酸素
分圧となるように酸素含有ガス量をコントロールするこ
とによって,酸素欠損のないスピネル型リチウム含有酸
化物が合成でき,リチウム二次電池用の粉末状活物質と
して使用できる。なお,上記酸素分圧の上限は,ケロシ
ン等の可燃性液体の燃焼によって消費される酸素量を考
慮し,95%以下とすることが好ましい。また,上記酸
化雰囲気を形成するための酸素含有ガスとしては,例え
ば,空気,或いは,窒素ガスや空気と酸素とを混合した
混合ガスがある。
For example, when a suspension or emulsion is sprayed with an oxygen-containing gas, a spinel-type lithium-containing oxide without oxygen deficiency can be synthesized by controlling the amount of oxygen-containing gas so that the oxygen partial pressure becomes such. , It can be used as a powdery active material for lithium secondary batteries. The upper limit of the oxygen partial pressure is preferably 95% or less in consideration of the amount of oxygen consumed by the combustion of combustible liquid such as kerosene. The oxygen-containing gas for forming the oxidizing atmosphere is, for example, air, nitrogen gas, or a mixed gas of air and oxygen.

【0019】製造した上記粉末状活物質は,飛散しない
ように捕集する。また,粉末状活物質の生成と同時に燃
焼によって水蒸気を含んだ排ガスが生じる。そのため,
特に水蒸気により粉末状活物質が湿ることがある。それ
故,高温の間に粉末状活物質を捕集し,排ガスと分離す
るのがよい。例えば,粉末状活物質のみを捕集するため
に,パンチングメタル等のフィルターを用いて,これを
通過させた粉末状活物質のみを堆積,捕集してもよい
(実施形態例参照)。
The produced powdery active material is collected so as not to scatter. Further, exhaust gas containing water vapor is generated by combustion at the same time as the generation of the powdery active material. for that reason,
In particular, the water vapor may wet the powdery active material. Therefore, it is advisable to collect the powdered active material during high temperature and separate it from the exhaust gas. For example, in order to collect only the powdery active material, a filter such as punching metal may be used, and only the powdery active material that has passed through may be deposited and collected (see the embodiment example).

【0020】次に,本発明の作用につき説明する。本発
明においては,上記原料をサスペンションまたはエマル
ジョンの液体状態で混合している。そのため,原料を完
全に均質化できる。この均質化された液滴を噴霧し,加
熱するため,得られる粉末状活物質の組成は均一性が損
なわれない。
Next, the operation of the present invention will be described. In the present invention, the above raw materials are mixed in the liquid state of suspension or emulsion. Therefore, the raw material can be completely homogenized. Since the homogenized droplets are sprayed and heated, the composition of the obtained powdery active material does not lose uniformity.

【0021】即ち,原料は,加熱処理時の熱により,上
記液滴中において,瞬時に反応して活物質となる。一
方,エマルジョンを用いた場合,液滴中の溶媒は,加熱
処理時の熱により不要部分として蒸発し,反応系外へ放
出される。それ故,上記活物質は均一な組成のものを得
ることができる。
That is, the raw material instantly reacts with the heat of the heat treatment in the droplet to become an active material. On the other hand, when an emulsion is used, the solvent in the droplets evaporates as an unnecessary portion due to the heat during the heat treatment and is released to the outside of the reaction system. Therefore, the active material can have a uniform composition.

【0022】また,上記個々の活物質粒子は,上記のご
とく噴霧された液滴毎に個々に形成される。そのため,
活物質は微粒子の一次粒子,又はこのものが結合した二
次粒子からなる粉末状活物質として得られる(図4参
照)。また,噴霧された各液滴から生成した上記微粒子
は,その平均粒子径が0.01〜10μmである。
Further, the individual active material particles are individually formed for each of the droplets sprayed as described above. for that reason,
The active material is obtained as a powdery active material composed of primary particles of fine particles or secondary particles in which these particles are bonded (see FIG. 4). Further, the fine particles generated from the sprayed droplets have an average particle diameter of 0.01 to 10 μm.

【0023】また,本発明においては,上記液滴の加熱
処理は,可燃性液体を燃焼させることにより行ってお
り,また液滴噴霧は酸素を含む雰囲気中で行っている。
そのため,得られるスピネル型リチウム含有酸化物に
は,酸素欠損を生ずることがなく,優れた粉末状活物質
を得ることができる。このように,酸素欠損を生じない
理由は,次のようであると推定される。即ち,スピネル
型リチウム含有酸化物の酸素欠損は,温度と酸素分圧の
関数となり,温度が高い程,また酸素分圧が低い程酸素
欠損が生じやすい傾向がある。そのため,一定量以上の
酸素分圧があれば酸素欠損を生じないと考えられる。
Further, in the present invention, the heat treatment of the droplets is performed by burning a combustible liquid, and the droplet spraying is performed in an atmosphere containing oxygen.
Therefore, in the obtained spinel-type lithium-containing oxide, oxygen deficiency does not occur, and an excellent powdery active material can be obtained. Thus, the reason why oxygen deficiency does not occur is presumed to be as follows. That is, the oxygen deficiency of the spinel-type lithium-containing oxide is a function of temperature and oxygen partial pressure, and the higher the temperature and the lower the oxygen partial pressure, the more likely oxygen deficiency will occur. Therefore, it is considered that oxygen deficiency does not occur if the oxygen partial pressure exceeds a certain level.

【0024】また,上記粉末状活物質は,これをリチウ
ム二次電池の正極活物質又は負極活物質として用いる場
合,その組成が均一で,粒子径が小さく,高電流密度の
充放電においても容量劣化が殆どない。また,酸素欠損
がないため,繰り返し充放電による容量劣化も殆どな
く,優れたリチウム二次電池とすることができる。
When the powdered active material is used as a positive electrode active material or a negative electrode active material of a lithium secondary battery, the composition is uniform, the particle size is small, and the capacity is high even when charging and discharging at high current density. Almost no deterioration. Further, since there is no oxygen deficiency, there is almost no capacity deterioration due to repeated charge and discharge, and an excellent lithium secondary battery can be obtained.

【0025】上記のごとく,本発明によれば,均一な組
成を有し,粒子径が小さく,かつ高電流密度の繰り返し
充放電においても容量劣化が殆どない,スピネル型リチ
ウム含有酸化物よりなる,リチウム二次電池用の粉末状
活物質が得られる。
As described above, according to the present invention, a spinel-type lithium-containing oxide having a uniform composition, a small particle size, and almost no capacity deterioration even during repeated charge / discharge with high current density, A powdery active material for a lithium secondary battery is obtained.

【0026】次に,請求項2に記載の発明のように,層
状型リチウム含有酸化物よりなる粉末状活物質の製造方
法として,リチウム二次電池用の粉末状活物質を製造す
る方法であって,上記粉末状活物質の原料を可燃性液体
中に懸濁させたサスペンション,または上記粉末状活物
質の原料を溶媒中に溶解させた溶液を可燃性液体中に乳
濁させたエマルジョンを,酸素を含む雰囲気中で液滴状
に噴霧し,次いで,上記液滴中の上記可燃性液体を燃焼
させることにより,上記液滴を加熱処理して,該液滴中
の原料を反応させることにより酸化物粉末となし,次い
で該酸化物粉末を400〜1000℃に再加熱して,層
状型リチウム含有酸化物よりなる粉末状活物質を製造す
ることを特徴とするリチウム二次電池用粉末状活物質の
製造方法(以下,第2発明という)がある。
Next, as a second aspect of the present invention, a method for producing a powdery active material comprising a layered lithium-containing oxide is a method for producing a powdery active material for a lithium secondary battery. Then, a suspension obtained by suspending the raw material of the powdery active material in a flammable liquid, or an emulsion obtained by emulsifying a solution of the raw material of the powdery active material in a solvent in a flammable liquid, By spraying the droplets in an atmosphere containing oxygen and then burning the flammable liquid in the droplets to heat treat the droplets and react the raw materials in the droplets. A powdery active material for a lithium secondary battery, characterized by producing an oxide powder, and then reheating the oxide powder to 400 to 1000 ° C. to produce a powdery active material composed of a layered lithium-containing oxide. Method of manufacturing substance (hereinafter, 2 invention that) there is.

【0027】本第2発明において,最も注目すべき点
は,上記第1発明と同様に,液滴噴霧,加熱処理を行な
った後,これにより得られた酸化物粉末を,400〜1
000℃に再加熱して層状型リチウム含有酸化物よりな
る粉末状活物質を得ることである。したがって,本方法
においては,上記サスペンジョン又はエマルジョンの作
製,液滴噴霧,液滴中の上記可燃性液体及びその燃焼,
この燃焼熱による液滴の加熱処理,液滴中の原料の反応
に関しては,上記第1発明の方法に関して説明した内容
と同じである。
In the second aspect of the present invention, the most remarkable point is that, similarly to the first aspect of the present invention, after the droplet spraying and the heat treatment are performed, the oxide powder obtained by this is 400 to 1
Reheating to 000 ° C. to obtain a powdery active material composed of a layered lithium-containing oxide. Therefore, in this method, the suspension or emulsion preparation, droplet spraying, the flammable liquid in the droplets and their combustion,
The heat treatment of the droplets by the combustion heat and the reaction of the raw material in the droplets are the same as those described in the method of the first invention.

【0028】本方法においては,上記液滴中の原料の反
応によりまず酸化物粉末が得られる。そこで,この酸化
物粉末を400〜1000℃に再加熱する。これにより
上記酸化物粉末は層状型リチウム含有酸化物となり,粉
末状活物質となる。上記再加熱の温度が400℃未満の
場合には,温度が低いために,層状型リチウム含有酸化
物を得ることができない。一方,1000℃を越える
と,再結晶化によって結晶構造が乱れ,層状型リチウム
含有酸化物が生成され難いという問題を生ずる。
In this method, the oxide powder is first obtained by the reaction of the raw materials in the droplets. Therefore, the oxide powder is reheated to 400 to 1000 ° C. As a result, the oxide powder becomes a layered lithium-containing oxide and a powdered active material. When the reheating temperature is lower than 400 ° C., the layered lithium-containing oxide cannot be obtained because the temperature is low. On the other hand, when the temperature exceeds 1000 ° C., the crystal structure is disturbed by recrystallization, which causes a problem that the layered lithium-containing oxide is difficult to be generated.

【0029】また,上記酸化物粉末の再加熱は,大気中
で行なえば良い。なお,粉末状活物質の原料としてNi
(ニッケル)を用いる場合には酸素ガス雰囲気で行なう
ことが好ましい。これにより,層状型リチウム含有酸化
物を効率良く得ることができる。
The oxide powder may be reheated in the atmosphere. As a raw material for the powdery active material, Ni
When (nickel) is used, it is preferably performed in an oxygen gas atmosphere. Thereby, the layered lithium-containing oxide can be efficiently obtained.

【0030】次に,この第2発明の作用効果につき説明
する。本発明においては,上記原料をサスペンションま
たはエマルジョンの液体状態で混合している。そのた
め,原料を完全に均質化できる。この均質化された液滴
を噴霧し,加熱するため,得られる粉末状活物質の組成
は均一性が損なわれない。
Next, the function and effect of the second invention will be described. In the present invention, the above raw materials are mixed in the liquid state of suspension or emulsion. Therefore, the raw material can be completely homogenized. Since the homogenized droplets are sprayed and heated, the composition of the obtained powdery active material does not lose uniformity.

【0031】即ち,原料は,加熱処理時の熱により,上
記液滴中において,瞬時に反応して活物質となる。一
方,エマルジョンを用いた場合,液滴中の溶媒は,加熱
処理時の熱により不要部分として蒸発し,反応系外へ放
出される。それ故,上記活物質は均一な組成のものを得
ることができる。
That is, the raw material instantly reacts in the droplets by the heat of the heat treatment to become an active material. On the other hand, when an emulsion is used, the solvent in the droplets evaporates as an unnecessary portion due to the heat during the heat treatment and is released to the outside of the reaction system. Therefore, the active material can have a uniform composition.

【0032】また,上記個々の活物質粒子は,上記のご
とく噴霧された液滴毎に個々に形成される。そのため,
活物質は微粒子の一次粒子,又はこのものが結合した二
次粒子からなる粉末状活物質として得られる(図4参
照)。また,噴霧された各液滴から生成した上記微粒子
は,その平均粒子径が0.01〜10μmである。
Further, the individual active material particles are individually formed for each droplet sprayed as described above. for that reason,
The active material is obtained as a powdery active material composed of primary particles of fine particles or secondary particles in which these particles are bonded (see FIG. 4). Further, the fine particles generated from the sprayed droplets have an average particle diameter of 0.01 to 10 μm.

【0033】また,本発明においては,上記液滴の加熱
処理は,可燃性液体を燃焼させることにより行ってお
り,また液滴噴霧は酸素を含む雰囲気中で行っている。
そのため,得られる層状型リチウム含有酸化物には,酸
素欠損を生ずることがなく,優れた粉末状活物質を得る
ことができる。このように,酸素欠損を生じない理由
は,次のようであると推定される。即ち,層状型リチウ
ム含有酸化物の酸素欠損は,温度と酸素分圧の関数とな
り,温度が高い程,また酸素分圧が低い程酸素欠損が生
じやすい傾向がある。そのため,一定量以上の酸素分圧
があれば酸素欠損を生じないと考えられる。
Further, in the present invention, the heat treatment of the droplets is performed by burning a combustible liquid, and the droplet spraying is performed in an atmosphere containing oxygen.
Therefore, in the obtained layered lithium-containing oxide, oxygen deficiency does not occur, and an excellent powdery active material can be obtained. Thus, the reason why oxygen deficiency does not occur is presumed to be as follows. That is, the oxygen deficiency of the layered lithium-containing oxide is a function of temperature and oxygen partial pressure, and the higher the temperature and the lower the oxygen partial pressure, the more likely oxygen deficiency will occur. Therefore, it is considered that oxygen deficiency does not occur if the oxygen partial pressure exceeds a certain level.

【0034】また,上記粉末状活物質は,これをリチウ
ム二次電池の正極活物質又は負極活物質として用いる場
合,その組成が均一で,粒子径が小さく,高電流密度の
充放電においても容量劣化が殆どない。また,酸素欠損
がないため,繰り返し充放電による容量劣化も殆どな
く,優れたリチウム二次電池とすることができる。上記
のごとく,本第2発明においても,均一な組成を有し,
粒子径が小さく,かつ高電流密度の繰り返し充放電にお
いても容量劣化が殆どない,層状型リチウム含有酸化物
よりなる,リチウム二次電池用の粉末状活物質が得られ
る。
When the powdery active material is used as a positive electrode active material or a negative electrode active material of a lithium secondary battery, the composition is uniform, the particle size is small, and the capacity is high even when charging and discharging at high current density. Almost no deterioration. Further, since there is no oxygen deficiency, there is almost no capacity deterioration due to repeated charge and discharge, and an excellent lithium secondary battery can be obtained. As described above, the present invention also has a uniform composition,
It is possible to obtain a powdery active material for a lithium secondary battery, which is composed of a layered lithium-containing oxide and has a small particle size and has almost no capacity deterioration even under repeated charge / discharge at high current density.

【0035】次に,請求項3の発明のように,上記原料
はリチウム化合物と,金属又は金属化合物とよりなり,
上記リチウム化合物はLiの酸化物,水酸化物,炭酸
塩,硝酸塩,硫酸塩,酢酸塩又は蓚酸塩のうちの一種以
上の化合物であることが好ましい。これらのものは,比
較的,溶液中でイオン化しやすく均一性向上の点で,優
れている。
Next, as in the invention of claim 3, the raw material comprises a lithium compound and a metal or a metal compound,
The lithium compound is preferably one or more compounds of Li oxide, hydroxide, carbonate, nitrate, sulfate, acetate or oxalate. These are relatively easy to ionize in a solution and are excellent in uniformity.

【0036】次に,請求項4の発明のように,上記金属
は,Mn,Ni,Co,Ti,V,Al,Zn,Mo,
Cu,Fe,Cr,のうちの一種以上の金属元素であ
り,上記金属化合物は上記金属の酸化物,水酸化物,炭
酸塩,硝酸塩,硫酸塩,酢酸塩,蓚酸塩の金属化合物の
うちの一種以上の金属又は金属化合物であることが好ま
しい。これらのものは,比較的溶液中でイオン化しやす
く均一性向上の点で優れている。
Next, as in the invention of claim 4, the metal is Mn, Ni, Co, Ti, V, Al, Zn, Mo,
One or more metal elements of Cu, Fe, Cr, wherein the metal compound is a metal compound of oxides, hydroxides, carbonates, nitrates, sulfates, acetates, and oxalates of the above metals. It is preferably one or more metals or metal compounds. These are relatively easy to ionize in solution and are excellent in improving uniformity.

【0037】また,上記金属の中,Mn,Ti及びV
は,上記第1発明により,スピネル型リチウム含有酸化
物よりなる粉末状活物質を製造する場合に最適である。
一方,上記金属の中,Mn,Ni,Co,V,Al,Z
n,Mo,Cu,Fe及びCrは,上記第2発明により
層状型リチウム含有酸化物よりなる粉末状活物質を製造
する場合に最適である。
Among the above metals, Mn, Ti and V
Is most suitable for producing a powdery active material composed of a spinel-type lithium-containing oxide according to the first invention.
On the other hand, among the above metals, Mn, Ni, Co, V, Al, Z
n, Mo, Cu, Fe, and Cr are optimal when the powdery active material made of the layered lithium-containing oxide is produced according to the second invention.

【0038】次に,請求項5の発明のように,上記溶媒
は,例えば水,酸水溶液,アルカリ水溶液,有機溶媒の
うちの一種以上のものを用いる。
Next, as in the invention of claim 5, as the solvent, one or more of water, an acid aqueous solution, an alkaline aqueous solution, and an organic solvent are used.

【0039】また,上記液滴の加熱処理は,300〜1
200℃の加熱雰囲気中において行うことが好ましい。
300℃未満では加熱処理が不十分であり,一方120
0℃を超えると安定した装置の稼働が困難となるなどの
問題がある。
In addition, the heat treatment of the droplets is performed in the range of 300 to 1
It is preferable to carry out in a heating atmosphere of 200 ° C.
If the temperature is less than 300 ° C, the heat treatment is insufficient, while 120
If the temperature exceeds 0 ° C, there is a problem such that stable operation of the device becomes difficult.

【0040】また,上記いずれの方法においても,上記
粉末状活物質中に,サイクル特性向上のために,例えば
Br,Mg,Zn,Nb,Sn,Sb等の微量添加物を
添加することもできる。本発明方法は,上記のごとく,
粉末状活物質の原料とサスペンションまたはエマルジョ
ンとしているため,上記微量添加物の混合も極めて容易
である。 本発明により得られた粉末状活物質を利用す
ることができるリチウム二次電池は,電解質が非水系の
ものでも水系のものでもよいが,特に非水電解液を用い
たものが優れた電池特性を発揮し,望ましい。
In any of the above methods, a minute amount of additive such as Br, Mg, Zn, Nb, Sn, Sb may be added to the powdery active material in order to improve cycle characteristics. . The method of the present invention, as described above,
Since the raw material of the powdered active material and the suspension or emulsion are used, it is very easy to mix the trace amount of the additive. The lithium secondary battery capable of utilizing the powdery active material obtained by the present invention may have a non-aqueous electrolyte or an aqueous electrolyte, but especially the one using a non-aqueous electrolyte has excellent battery characteristics. Is desirable and desirable.

【0041】[0041]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施形態例1 上記第1発明の実施形態例にかかるリチウム二次電池用
の粉末状活物質の製造方法につき,図1を用いて,該製
造方法を実施する装置と共に説明する。即ち,本例にお
ける粉末状活物質の製造方法は,同図に示すごとく,ま
ず粉末状活物質の原料を可燃性液体中に懸濁させたサス
ペンション1を酸素含有ガス2と共にアトマイザ31よ
り反応器3内に液滴15として噴霧する。
Embodiment 1 A method for manufacturing a powdery active material for a lithium secondary battery according to an embodiment of the first invention will be described with reference to FIG. 1 together with an apparatus for carrying out the manufacturing method. That is, in the method for producing a powdery active material in this example, as shown in the figure, first, a suspension 1 in which a raw material of a powdery active material is suspended in a combustible liquid is used together with an oxygen-containing gas 2 from an atomizer 31 to a reactor. 3 is sprayed as droplets 15.

【0042】そして,この反応器3内において,上記可
燃性液体を燃焼させて上記液滴15を加熱処理する。こ
の加熱処理により,上記液滴15中の原料を反応させる
と共に該液滴中の上記溶媒を蒸発させて,スピネル型リ
チウム含有酸化物よりなる粉末状活物質4を製造する。
該粉末状活物質4は捕集器36において,沈降捕集され
る。
Then, in the reactor 3, the flammable liquid is burned to heat the droplets 15. By this heat treatment, the raw material in the droplet 15 is reacted and the solvent in the droplet is evaporated to produce the powdery active material 4 made of spinel type lithium-containing oxide.
The powdery active material 4 is settled and collected in the collector 36.

【0043】即ち,上記製造装置は,円筒形状の反応器
3と,該反応器3に,タンク10中のサスペンション1
(またはエマルジョン,本例において,以下同じ)を供
給する定量ポンプ11とよりなる。反応器3は,反応通
路(燃焼部)35と該反応通路35にサスペンションを
噴霧するためのアトマイザ31と,噴霧したサスペンシ
ョン1を加熱するためのバーナー32と,製造した粉末
状活物質を捕集するための粉末捕集器36とよりなる。
That is, the above-mentioned manufacturing apparatus comprises a cylindrical reactor 3, and the suspension 3 in the tank 10 in the reactor 3.
(Or emulsion, in the present example, the same applies hereinafter). The reactor 3 includes a reaction passage (combustion part) 35, an atomizer 31 for spraying the suspension into the reaction passage 35, a burner 32 for heating the sprayed suspension 1, and a collected powdered active material. And a powder collector 36 for removing the powder.

【0044】上記製造に当たっては,アトマイザ31
に,空気を用いた酸素含有ガス2と,サスペンション1
が供給される。アトマイザ31からは,反応通路35に
サスペンション1を酸素含有ガス2と共に噴霧して液滴
15とする。反応通路35中に配置したバーナー13に
より,サスペンション1中の可燃性液体に着火し,燃焼
させてリチウム二次電池用の粉末状活物質4を生成させ
る。粉末状活物質4は,反応器3の下部に位置する粉末
捕集器36により捕集する。粉末状活物質4の生成と共
に発生する排ガス37は,粉末捕集器36を経て反応器
3外へ排出される。
In the above production, the atomizer 31
The oxygen-containing gas 2 using air and the suspension 1
Is supplied. From the atomizer 31, the suspension 1 is sprayed into the reaction passage 35 together with the oxygen-containing gas 2 to form droplets 15. The combustible liquid in the suspension 1 is ignited and burned by the burner 13 arranged in the reaction passage 35 to generate the powdery active material 4 for the lithium secondary battery. The powdery active material 4 is collected by the powder collector 36 located at the bottom of the reactor 3. The exhaust gas 37 generated together with the generation of the powdered active material 4 is discharged to the outside of the reactor 3 via the powder collector 36.

【0045】本例によれば,粉末状活物質の原料を可燃
性液体と共にサスペンションとなし,これを噴霧して液
滴とし,反応器3において,溶液反応させている。その
ため,原料は,可燃性液体の燃焼の熱によって液滴中に
おいて,瞬時に反応して活物質となる。
According to the present example, the raw material of the powdery active material is made into a suspension together with the flammable liquid, and the suspension is sprayed to form liquid droplets, and the solution reaction is carried out in the reactor 3. Therefore, the raw material instantly reacts in the droplet due to the heat of combustion of the flammable liquid to become an active material.

【0046】一方,液滴中の溶媒は,早急に反応系外へ
放出される。それ故,上記活物質は均一な組成となる。
また,個々の活物質粒子は,噴霧された液滴毎に形成さ
れる。そのため,活物質は,微粒子の一次粒子,二次粒
子からなる粉末状活物質として得られる。
On the other hand, the solvent in the droplets is promptly released from the reaction system. Therefore, the active material has a uniform composition.
In addition, individual active material particles are formed for each sprayed droplet. Therefore, the active material is obtained as a powdery active material composed of primary particles and secondary particles of fine particles.

【0047】また,液滴の加熱処理は可燃性液体を燃焼
することにより行うと共に液滴の噴霧は酸素含有ガスと
共に行っているので,スピネル型リチウム含有酸化物で
ある粉末状活物質には酸素欠損が生じない。また,上記
粉末状活物質は,正極拡散板又は負極拡散板として用い
る場合,その組成が均一で粒子径が小さく更に酸素欠損
がない。そのため,高電流密度の充放電においても殆ど
容量劣化がない,優れたリチウム二次電池を構成するこ
とができる。
Further, since the heat treatment of the droplets is performed by burning a combustible liquid and the droplets are sprayed together with the oxygen-containing gas, the powdery active material which is the spinel-type lithium-containing oxide contains oxygen. No loss occurs. When the powdered active material is used as a positive electrode diffusion plate or a negative electrode diffusion plate, the composition is uniform, the particle size is small, and there is no oxygen deficiency. Therefore, it is possible to construct an excellent lithium secondary battery that has almost no capacity deterioration even at high current density charge / discharge.

【0048】実施形態例2 本例は,本発明により得られた粉末状活物質を用いてリ
チウム二次電池を作製し,その充放電テストを行った具
体例につき,図2〜図4を用いて示す。まず,上記粉末
状活物質は,実施形態例1に示した装置により,正極用
活物質として,以下のように製造した。
Embodiment 2 This example is a specific example in which a lithium secondary battery was manufactured by using the powdery active material obtained by the present invention and a charge / discharge test was conducted. Indicate. First, the powdery active material was manufactured as the positive electrode active material by the apparatus described in the first embodiment as follows.

【0049】即ち,LiNO3 (硝酸リチウム)及びM
n(NO32 ・6H2 O(硝酸マンガン6水和物)を
モル比1:2で混合したものに,乳化剤ソルビタンモノ
ラウレートを加え,可燃性液体としてのケロシン中に懸
濁させて,エマルジョンを作製した。このエマルジョン
を,上記装置の定量ポンプ11によりアトマイザ31か
ら反応通路35に噴霧すると共に酸素含有ガス2を供給
した。
That is, LiNO 3 (lithium nitrate) and M
n (NO 3) 2 · 6H 2 O mole (manganese nitrate hexahydrate) ratio of 1: in a mixture with 2, added emulsifiers sorbitan monolaurate, suspended in kerosene as flammable liquids , An emulsion was prepared. This emulsion was sprayed from the atomizer 31 to the reaction passage 35 by the metering pump 11 of the above apparatus and the oxygen-containing gas 2 was supplied.

【0050】なお,可燃性液体を完全燃焼させたと仮定
したときの酸素分圧が20〜30%となるよう,酸素含
有ガスの量を調整した。それと同時にバーナー32によ
りエマルジョン噴霧液滴と酸素含有ガスとを600〜7
00℃で燃焼させた。これにより粉末捕集器36におい
て,LiMn24 よりなるスピネル型リチウム含有酸
化物の粉末状活物質を捕集した。得られた粉末状活物質
は,粒径が0.1μm以下の一次粒子が2μm程度の二
次粒子を形成する,粒径の揃ったものであった。
The amount of oxygen-containing gas was adjusted so that the oxygen partial pressure was 20 to 30% when it was assumed that the combustible liquid was completely burned. At the same time, the burner 32 mixes the emulsion spray droplets and the oxygen-containing gas to 600 to 7
Burned at 00 ° C. Thus, the powder collector 36 collected the powdery active material of the spinel-type lithium-containing oxide made of LiMn 2 O 4 . The obtained powdery active material had a uniform particle size, with primary particles having a particle size of 0.1 μm or less forming secondary particles of about 2 μm.

【0051】なお,上記の加熱温度は,φ3mmのシー
ス熱電対で反応通路(燃焼部)壁面の温度をモニタした
ものであり,実際の反応温度は上記より数百程度高いと
見積もられる。上記により得た粉末状活物質を用いて,
導電材としてアセチレンブラックを用い,結着材として
PTFEを用い,正極に作製した。また,一方負極活物
質としてLi金属を準備した。
The above heating temperature is obtained by monitoring the temperature of the wall surface of the reaction passage (combustion part) with a sheath thermocouple of φ3 mm, and the actual reaction temperature is estimated to be several hundreds higher than the above. Using the powdered active material obtained above,
Acetylene black was used as a conductive material, and PTFE was used as a binder to prepare a positive electrode. On the other hand, Li metal was prepared as the negative electrode active material.

【0052】そして,上記LiMn24 正極と,Li
金属負極を用いて,リチウム二次電池を作製した。非水
電解液としては,PC(プロピレンカーボネート)+D
ME(1.2ジメトキシエタン)であり,電解質として
LiClO4 を含有するものを用いた。また,セパレー
ターとしては,ポリプロピレンフィルムを用いた。上記
リチウム二次電池につき,充放電テストを行った。充放
電条件は,カット・オフ電圧3.5〜4.5V,電流密
度1.0〜4.0mA/cm2 で行った。
The LiMn 2 O 4 positive electrode and Li
A lithium secondary battery was manufactured using a metal negative electrode. As non-aqueous electrolyte, PC (propylene carbonate) + D
ME (1.2 dimethoxyethane) was used, which contained LiClO 4 as the electrolyte. A polypropylene film was used as the separator. A charge / discharge test was conducted on the lithium secondary battery. Charge / discharge conditions were a cut-off voltage of 3.5 to 4.5 V and a current density of 1.0 to 4.0 mA / cm 2 .

【0053】また,比較例として,上記LiMn24
正極を固相法により合成した活物質B,及び従来の噴霧
熱分解法で合成した活物質Cを用いて,2種類の比較正
電極を作製した。そして,その他は上記と同様にしてリ
チウム二次電池を構成し,同様の充放電テストを行なっ
た。上記2種類の活物質B,Cは,次のようにして作製
した。
As a comparative example, the above LiMn 2 O 4
Two types of comparative positive electrodes were produced using active material B in which the positive electrode was synthesized by the solid phase method and active material C in which the conventional spray pyrolysis method was synthesized. A lithium secondary battery was constructed in the same manner as above except for the above, and the same charge / discharge test was conducted. The above two types of active materials B and C were manufactured as follows.

【0054】即ち,上記固相法による活物質Bは,硝酸
リチウムと電解二酸化マンガンとを混合し700℃で1
20時間焼成することにより得た。次に,このLiMn
24 活物質を粉砕し,他は上記と同様にして,比較例
としての正極活物質を作製した。
That is, the active material B prepared by the solid phase method was prepared by mixing lithium nitrate and electrolytic manganese dioxide at 700.degree.
It was obtained by firing for 20 hours. Next, this LiMn
The 2 O 4 active material was crushed, and otherwise the same as above, to prepare a positive electrode active material as a comparative example.

【0055】また,上記従来の噴霧熱分解法による活物
質Cは,硝酸リチウムと硝酸マンガン6水和物を混合
し,水溶液としたものを,超音波振動子にて噴霧し,電
気炉中800℃で加熱反応させることにより得た。次
に,このLiMn24 活物質粉末状活物質を上記同様
にして,比較例としての正極に作製した。そして,これ
ら活物質B,Cによる正極を用いて,上記と同様にリチ
ウム二次電池を作成し,上記と同様の充放電テストを行
った。
The active material C obtained by the conventional spray pyrolysis method was prepared by mixing lithium nitrate and manganese nitrate hexahydrate into an aqueous solution, which was sprayed with an ultrasonic vibrator to obtain 800 It was obtained by heating reaction at ℃. Next, this LiMn 2 O 4 active material powdered active material was manufactured in the same manner as above to form a positive electrode as a comparative example. Then, using the positive electrodes made of these active materials B and C, a lithium secondary battery was prepared in the same manner as above, and the same charge / discharge test as above was conducted.

【0056】上記充放電の結果を図2及び図3に示す。
図2は,充放電サイクル数と放電容量との関係を示し,
一方図3は充放電電流密度と放電容量との関係を示して
いる。両図において,曲線Aは本発明により得た粉末状
活物質を用いたリチウム二次電池の,曲線B,Cは上記
比較例において得た活物質B,Cを用いたリチウム二次
電池の放電容量(mAh/g)を示している。
The results of the above charge and discharge are shown in FIGS.
Figure 2 shows the relationship between the number of charge and discharge cycles and the discharge capacity,
On the other hand, FIG. 3 shows the relationship between the charge / discharge current density and the discharge capacity. In both figures, curve A is the discharge of the lithium secondary battery using the powdery active material obtained by the present invention, and curves B and C are the discharges of the lithium secondary battery using the active materials B and C obtained in the above comparative examples. The capacity (mAh / g) is shown.

【0057】図2より,本発明法の粉末状活物質によれ
ば,初期容量が高く,かつ繰り返し充放電によってもリ
チウム二次電池の容量劣化が少ないことが分かる。ま
た,図3より,本発明の粉末状活物質によれば,高電流
密度の充放電によっても,リチウム二次電池の容量劣化
が殆どないことが分る。一方,従来法としての上記比較
例による粉末状活物質B,Cによれば,高電流密度の充
放電によって,早期に容量劣化が生ずることが分る。
It can be seen from FIG. 2 that the powdery active material of the method of the present invention has a high initial capacity and a small capacity deterioration of the lithium secondary battery even after repeated charge and discharge. Further, it can be seen from FIG. 3 that according to the powdery active material of the present invention, the capacity of the lithium secondary battery is hardly deteriorated even by charging / discharging at a high current density. On the other hand, according to the powdery active materials B and C according to the comparative example as the conventional method, it is found that the capacity deterioration occurs at an early stage due to the charge and discharge with a high current density.

【0058】また,上記本発明法により得た粉末状活物
質につき,その粒子構造をSEM写真(倍率4000
倍)に撮影し,これを図4に示した。また,上記比較例
の固相反応法により得たリチウム化合物について図5
に,また上記従来の噴霧熱分解法により得たリチウム化
合物について図6に,示した。
The particle structure of the powdery active material obtained by the method of the present invention is a SEM photograph (magnification: 4000).
4 times) and this is shown in FIG. In addition, the lithium compound obtained by the solid-phase reaction method of the comparative example is shown in FIG.
In addition, FIG. 6 shows the lithium compound obtained by the conventional spray pyrolysis method.

【0059】図4より知られるごとく,本発明法により
得た粉末状活物質は,粒子径0.1μm以下の均一な,
球状の微粒子からなっている。一方,上記比較例の固相
法により得たリチウム化合物は,図5に示すごとく,大
きい角板状を呈していることが分る。また,上記比較例
の噴霧熱分解法により得たリチウム化合物は,図6に示
すごとく,球状ではあるが,その粒径が本発明品(図
4)に比較して,大きなバラツキ(0.2〜3μm)を
生じている。
As is known from FIG. 4, the powdery active material obtained by the method of the present invention has a uniform particle size of 0.1 μm or less,
It consists of spherical particles. On the other hand, it can be seen that the lithium compound obtained by the solid phase method of the above comparative example has a large rectangular plate shape as shown in FIG. As shown in FIG. 6, the lithium compound obtained by the spray pyrolysis method of the above comparative example has a spherical shape, but its particle size has a large variation (0.2%) as compared with the product of the present invention (FIG. 4). .About.3 .mu.m).

【0060】実施形態例3 LiNO3 及びMn(NO32 ・6H2 Oをモル比
1:2で混合したのち,同量の蒸留水を加え,水溶液と
したものを,可燃性液体としてのケロシン中に乳濁させ
てエマルジョンを作製した。このエマルジョンを用い
て,上記実施形態例2と同様にして,粉末状活物質を得
た。さらに,上記実施形態例2と同様にして充放電テス
トを行ったところ,上記実施形態例2と同様な特性が得
られた。
Embodiment 3 LiNO 3 and Mn (NO 3 ) 2 .6H 2 O were mixed at a molar ratio of 1: 2, and then an equal amount of distilled water was added to form an aqueous solution, which was used as a flammable liquid. An emulsion was prepared by emulsifying in kerosene. Using this emulsion, a powdered active material was obtained in the same manner as in Embodiment 2 above. Further, when a charge / discharge test was conducted in the same manner as in the second embodiment, the same characteristics as in the second embodiment were obtained.

【0061】また,上記実施形態例2と同様にしてSE
M写真によって粒子の形態及び粒径を確認した。その結
果,粉末状活物質は,実施形態例2と同様に,粒径0.
1μm以下の微粒子からなり,粒径の揃ったものであっ
た。
Further, in the same manner as in the second embodiment, the SE
The morphology and particle size of the particles were confirmed by the M photograph. As a result, the powdery active material had a particle size of 0.
It was composed of fine particles of 1 μm or less and had a uniform particle size.

【0062】実施形態例4 LiNO3 およびMnO2 (電解2酸化マンガン)をモ
ル比1:2で均質に混合したのち,ケロシン中に混濁さ
せてサスペンションを作成した。このサスペンションを
用いて,上記実施形態例2と同様にして,粉末状活物質
を得た。更に,上記実施形態例2と同様にして充放電テ
ストを行ったところ,上記実施形態例2と同様な特性が
得られた。また,上記実施形態例2と同様にしてSEM
写真によって粒子の形態および粒径を確認した。その結
果,その粉末状活物質は,原料のMnO2 の粒径を保持
しており,0.1μm以下の微粒子からなる粒径の揃っ
たものであった。
Embodiment 4 LiNO 3 and MnO 2 (electrolytic manganese oxide) were homogeneously mixed at a molar ratio of 1: 2 and then turbid in kerosene to prepare a suspension. Using this suspension, a powdery active material was obtained in the same manner as in Embodiment 2 above. Further, when a charge / discharge test was conducted in the same manner as in the second embodiment, the same characteristics as in the second embodiment were obtained. In addition, as in the second embodiment, the SEM
The morphology and particle size of the particles were confirmed by photographs. As a result, the powdery active material retained the particle size of MnO 2 as a raw material and had a uniform particle size consisting of fine particles of 0.1 μm or less.

【0063】比較実験例 可燃性液体を完全燃焼させたと仮定したときの酸素分圧
が10%となるよう,酸素含有ガスの量を調整し,その
他は上記実施形態例2と同様の条件で粉末状活物質を作
製した。さらに,上記実施形態例2と同様にして充放電
テストを行ったところ,容量は上記実施形態例2の場合
の70%程度しか得られなかった。また,上記の粉末状
活物質の酸素量を,誘導結合プラズマ発光分析と過マン
ガン酸カリウム滴定によって求めたところ,LiMn2
3.91なる酸素欠損が認められた。
Comparative Experimental Example The amount of oxygen-containing gas was adjusted so that the oxygen partial pressure was 10% when it was assumed that the combustible liquid was completely combusted, and otherwise the powder was produced under the same conditions as in Embodiment 2 above. The active material was produced. Further, when a charge / discharge test was conducted in the same manner as in the second embodiment, the capacity was only about 70% of that in the second embodiment. The oxygen content of the above powdery active material was determined by inductively coupled plasma emission spectrometry and potassium permanganate titration, and LiMn 2
An oxygen deficiency of O 3.91 was observed.

【0064】一方,上記実施形態例2の粉末状活物質で
は,酸素欠損が認められなかったた。そのため,本比較
例の粉末状活物質を用いたリチウム二次電池が,上記の
ごとくその容量が劣化したのは,適切な酸素分圧下で合
成が行なわれなかったことによる,酸素欠損の生成が起
因していると推定される。
On the other hand, no oxygen deficiency was observed in the powdery active material of Example 2 above. Therefore, the capacity of the lithium secondary battery using the powdered active material of this Comparative Example deteriorated as described above because the oxygen deficiency was generated because the synthesis was not performed under an appropriate oxygen partial pressure. It is presumed that the cause is.

【0065】実施形態例5 層状型リチウム含有酸化物よりなる粉末状活物質を,実
施形態例1に示した装置を用いて製造し,この粉末状活
物質を用いたリチウム二次電池の充放電テストを行なっ
た(実施形態例6〜8も同様)。Li硝酸塩の1モル/
リットル水溶液とNi硝酸塩の1モル/リットル水溶液
を1:1に混合した混合水溶液600ccを,乳化剤の
グリセリン脂肪酸エステル24gとケロシン400cc
とともに撹拌混合して安定なエマルジョンを作成した。
Embodiment 5 A powdery active material made of a layered lithium-containing oxide was manufactured using the apparatus shown in Embodiment 1, and a lithium secondary battery using this powdery active material was charged and discharged. A test was conducted (the same applies to Embodiments 6 to 8). 1 mol of Li nitrate /
Liter aqueous solution and 1 mol / liter aqueous solution of Ni nitrate were mixed 1: 1 to obtain 600 cc of mixed aqueous solution, 24 g of glycerin fatty acid ester as emulsifier and 400 cc of kerosene.
A stable emulsion was prepared by mixing with stirring.

【0066】このエマルジョンを噴霧して着火すること
によりバーナ炎を形成し,火炎温度測定位置で900℃
の条件で酸化物粉末を合成した。なお,このとき,空気
と酸素ガスの混合ガスを用いることにより,反応器中の
酸素過剰量は10%になるように調節した。
A burner flame is formed by spraying and igniting this emulsion, and the flame temperature is measured at 900 ° C.
The oxide powder was synthesized under the conditions of. At this time, the oxygen excess amount in the reactor was adjusted to 10% by using a mixed gas of air and oxygen gas.

【0067】その後,得られた上記酸化物粉末としての
黒色粉末を酸素ガス雰囲気中,700℃〜1000℃
で,各2時間,再加熱した。再加熱後のX線回折パター
ンから求めた結晶相および層状型リチウム含有酸化物の
(003)面と(104)面の回折ピーク強度比を表1
に示す。本例においては,再加熱を施す前の合成粉末
(酸化物粉末)は層状型リチウム含有酸化物の生成量は
少ないが、短時間の加熱により層状構造の発達したリチ
ウム含有酸化物よりなる粉末状活物質を得ることができ
た。
Then, the obtained black powder as the above oxide powder was heated to 700 ° C. to 1000 ° C. in an oxygen gas atmosphere.
And reheated for 2 hours each. Table 1 shows the diffraction peak intensity ratios of the crystal phase and the (003) plane and the (104) plane of the layered lithium-containing oxide obtained from the X-ray diffraction pattern after reheating.
Shown in In this example, the synthetic powder (oxide powder) before being reheated has a small amount of layered lithium-containing oxide, but is a powdery lithium-containing oxide having a layered structure developed by heating for a short time. An active material could be obtained.

【0068】上記により得た再加熱の温度900℃の層
状型リチウム含有酸化物を用いて、導電材としてアセチ
レンデラックを用い,結着材としてPTFEを用い,正
極を作製した。また,一方負極活物質としてLi金属を
準備した。そして,上記LiNiO2 正極と,Li金属
負極を用いて,リチウム二次電池を作製した。
Using the layered lithium-containing oxide having a reheating temperature of 900 ° C. obtained above, acetylene delac was used as the conductive material, and PTFE was used as the binding material to prepare a positive electrode. On the other hand, Li metal was prepared as the negative electrode active material. Then, a lithium secondary battery was produced using the LiNiO 2 positive electrode and the Li metal negative electrode.

【0069】非水電解液としては,PC(プロピレンカ
ーボネート)+DME(1.2ジメトキシエタン)を用
い,電解質としてLiClO4 を含有するものを用い
た。また,セパレーターとしては,ポリプロピレンフィ
ルムを用いた。上記リチウム二次電池につき,充放電テ
ストを行った。充放電条件は,カット・オフ電圧2.7
〜4.2V,電流密度1.0〜4.0mA/cm2 で行
った。上記充放電測定の結果を表2に示す。
As the non-aqueous electrolyte, PC (propylene carbonate) + DME (1.2 dimethoxyethane) was used, and the electrolyte containing LiClO 4 was used. A polypropylene film was used as the separator. A charge / discharge test was conducted on the lithium secondary battery. Charge / discharge conditions are cut-off voltage 2.7
~4.2V, was conducted at a current density 1.0~4.0mA / cm 2. Table 2 shows the results of the charge / discharge measurement.

【0070】表2より,本例の上記層状型リチウム含有
酸化物よりなる粉末状活物質によれば,初期容量が高
く,かつ繰り返し充放電によってもリチウム二次電池の
容量劣化が少ないことが分かる。また,上記粉末状活物
質によれば,高電流密度の充放電によっても,リチウム
二次電池の容量劣化が殆どないことが分かる。
It can be seen from Table 2 that the powdery active material comprising the layered lithium-containing oxide of the present example has a high initial capacity and less capacity deterioration of the lithium secondary battery even after repeated charge and discharge. . Further, it can be seen that, according to the above powdery active material, the capacity of the lithium secondary battery is hardly deteriorated even by charging and discharging at a high current density.

【0071】[0071]

【表1】 [Table 1]

【0072】[0072]

【表2】 [Table 2]

【0073】実施形態例6 Li硝酸塩の1モル/リットル水溶液とNi硝酸塩の1
モル/リットル水溶液を1:1に混合した混合水溶液6
00ccを,乳化剤のグリセリン脂肪酸エステル24g
とケロシン400ccとともに撹拌混合して安定なエマ
ルジョンを作成した。このエマルジョンを噴霧して着火
することによりバーナ炎を形成し,火炎温度測定位置で
900℃の条件で酸化物粉末を合成した。
Embodiment 6 A 1 mol / liter aqueous solution of Li nitrate and 1 of Ni nitrate
Mixed aqueous solution 6 in which a 1: 1 molar / liter aqueous solution is mixed
00cc is 24g of glycerin fatty acid ester as an emulsifier
And a kerosene 400 cc were mixed with stirring to form a stable emulsion. A burner flame was formed by spraying and igniting this emulsion, and an oxide powder was synthesized at a flame temperature measurement position of 900 ° C.

【0074】このとき,空気と酸素ガスの混合ガスを用
いることにより,反応器中の酸素過剰量は25%になる
ように調節した。得られた,酸化物粉末としての黒色粉
末を酸素ガス雰囲気中で900℃で2時間,再加熱する
ことによって,層状構造の発達した層状型のリチウム含
有酸化物よりなる粉末状活物質を得ることができた。
At this time, the oxygen excess amount in the reactor was adjusted to 25% by using a mixed gas of air and oxygen gas. Re-heating the obtained black powder as an oxide powder in an oxygen gas atmosphere at 900 ° C. for 2 hours to obtain a powdered active material composed of a layered lithium-containing oxide with a developed layered structure. I was able to.

【0075】上記により得た粉末状活物質を用いて,導
電材としてアセチレンブラックを用い,結着材としてP
TFEを用い,正極を作製した。また,一方負極活物質
としてLi金属を準備した。そして,上記LiNiO2
正極と,Li金属負極を用いて,リチウム二次電池を作
製した。非水電解液としては,PC+DMEを用い,電
解質としてLiCLO4 を含有するものを用いた。ま
た,セパレーターとしては,ポリプロピレンフィルムを
用いた。
Using the powdery active material obtained above, acetylene black was used as the conductive material, and P was used as the binder.
A positive electrode was produced using TFE. On the other hand, Li metal was prepared as the negative electrode active material. Then, the above LiNiO 2
A lithium secondary battery was manufactured using a positive electrode and a Li metal negative electrode. PC + DME was used as the non-aqueous electrolyte, and LiCLO 4 was used as the electrolyte. A polypropylene film was used as the separator.

【0076】上記リチウム二次電池につき,充放電テス
トを行った。充放電条件は,カット・オフ電圧2.7〜
4.2V,電流密度1.0〜4.0mA/cm2 で行な
った。上記充放電測定の結果を表3に示す。
A charge / discharge test was conducted on the above lithium secondary battery. Charge / discharge conditions include cut-off voltage of 2.7-
It was carried out at 4.2 V and a current density of 1.0 to 4.0 mA / cm 2 . Table 3 shows the results of the charge / discharge measurement.

【0077】表3より,本例の上記層状型リチウム含有
酸化物よりなる粉末状活物質によれば,初期容量が高
く,かつ繰り返し充放電によってもリチウム二次電池の
容量劣化が少ないことが分かる。また,本例の粉末状活
物質によれば,高電流密度の充放電によっても,リチウ
ム二次電池の容量劣化が殆どないことが分かる。
From Table 3, it can be seen that the powdery active material composed of the layered lithium-containing oxide of the present example has a high initial capacity and little capacity deterioration of the lithium secondary battery even after repeated charge and discharge. . Further, according to the powdery active material of this example, it is found that the capacity of the lithium secondary battery is hardly deteriorated even by charging and discharging at high current density.

【0078】[0078]

【表3】 [Table 3]

【0079】実施形態例7 Li硝酸塩の1モル/リットル水溶液とCo硝酸塩の1
モル/リットル水溶液を1:1に混合した混合水溶液6
00ccを,乳化剤のグリセリン脂肪酸エステル24g
とケロシン400ccとともに撹拌混合して安定なエマ
ルジョンを作成した。このエマルジョンを噴霧して着火
することによりバーナ炎を形成し,火炎温度測定位置で
900℃の条件で酸化物粉末を合成した。
Embodiment 7 A 1 mol / liter aqueous solution of Li nitrate and 1 of Co nitrate
Mixed aqueous solution 6 in which a 1: 1 molar / liter aqueous solution is mixed
00cc is 24g of glycerin fatty acid ester as an emulsifier
And a kerosene 400 cc were mixed with stirring to form a stable emulsion. A burner flame was formed by spraying and igniting this emulsion, and an oxide powder was synthesized at a flame temperature measurement position of 900 ° C.

【0080】このとき,空気と酸素ガスの混合ガスを用
いることにより,反応器中の酸素過剰量は10%になる
ように調節した。得られた,酸化物粉末としての黒色粉
末を酸素ガス雰囲気中,800℃で2時間,再加熱する
ことによって,層状構造の発達したリチウム含有酸化物
よりなる粉末状活物質を得ることができた。上記により
得た粉末状活物質を用いて,導電材としてアセチレンブ
ラックを用い,結着材としてPTFEを用い,正極を作
製した。また,一方負極活物質としてLi金属を準備し
た。
At this time, the oxygen excess amount in the reactor was adjusted to 10% by using a mixed gas of air and oxygen gas. By reheating the obtained black powder as an oxide powder in an oxygen gas atmosphere at 800 ° C. for 2 hours, a powdery active material composed of a lithium-containing oxide having a developed layered structure could be obtained. . Using the powdered active material obtained above, acetylene black was used as the conductive material, and PTFE was used as the binding material to prepare a positive electrode. On the other hand, Li metal was prepared as the negative electrode active material.

【0081】そして,上記LiCoO2 正極と,Li金
属負極を用いて,リチウム二次電池を作製した。非水電
解液としては,PC+DMEを用い,電解質としてLi
ClO4 を含有するものを用いた。また,セパレーター
としては,ポリプロピレンフィルムを用いた。
Then, a lithium secondary battery was prepared using the LiCoO 2 positive electrode and the Li metal negative electrode. PC + DME was used as the non-aqueous electrolyte, and Li was used as the electrolyte.
The one containing ClO 4 was used. A polypropylene film was used as the separator.

【0082】上記リチウム二次電池につき,充放電テス
トを行った。充放電条件は,カット・オフ電圧2.7〜
4.2V,電流密度1.0〜4.0mA/cm2 で行っ
た。上記充放電測定の結果を表4に示す。表4より,本
例の上記層状型リチウム含有酸化物よりなる粉末状活物
質によれば,初期容量が高く,かつ繰り返し充放電によ
ってもリチウム二次電池の容量劣化が少ないことが分か
る。また,本例の粉末状活物質によれば,高電流密度の
充放電によっても,リチウム二次電池の容量劣化が殆ど
ないことが分かる。
A charge / discharge test was conducted on the lithium secondary battery. Charge / discharge conditions include cut-off voltage of 2.7-
The test was performed at 4.2 V and a current density of 1.0 to 4.0 mA / cm 2 . Table 4 shows the result of the charge / discharge measurement. From Table 4, it can be seen that the powdery active material composed of the layered lithium-containing oxide of the present example has a high initial capacity and less capacity deterioration of the lithium secondary battery even after repeated charge and discharge. Further, according to the powdery active material of this example, it is found that the capacity of the lithium secondary battery is hardly deteriorated even by charging and discharging at high current density.

【0083】[0083]

【表4】 [Table 4]

【0084】実施形態例8 Li硝酸塩の1モル/リットル水溶液とNiOを,Li
とNiのモル比が1:1になるように混合した懸濁液6
00ccを,乳化剤のグリセリン脂肪酸エステル24g
とケロシン400ccとともに撹拌混合してサスペンシ
ョンを作成した。このサスペンションを噴霧して着火す
ることによりバーナ炎を形成し,火炎温度測定位置で9
00℃の条件で酸化物粉末を合成した。
Embodiment 8 A 1 mol / liter aqueous solution of Li nitrate and NiO were mixed with Li
Suspension 6 in which the molar ratio of Ni and Ni was 1: 1
00cc is 24g of glycerin fatty acid ester as an emulsifier
And a kerosene 400 cc were mixed with stirring to prepare a suspension. A burner flame is formed by spraying and igniting this suspension, and the burner flame is detected at the flame temperature measurement position.
Oxide powder was synthesized under the condition of 00 ° C.

【0085】このとき,空気と酸素ガスの混合ガスを用
いることにより,反応器中の酸素過剰量は25%になる
ように調節した。得られた,酸化物粉末としての黒色粉
末を酸素ガス雰囲気中,900℃で2時間,再加熱する
ことによって,層状構造の発達したリチウム含有酸化物
よりなる粉末状活物質を得ることができた。上記により
得た粉末状活物質を用いて,導電材としてアセチレンブ
ラックを用い,結着材としてPTFEを用い,正極を作
製した。また,一方負極活物質としてLi金属を準備し
た。
At this time, the oxygen excess amount in the reactor was adjusted to 25% by using a mixed gas of air and oxygen gas. By reheating the obtained black powder as an oxide powder in an oxygen gas atmosphere at 900 ° C. for 2 hours, a powdery active material composed of a lithium-containing oxide having a developed layered structure could be obtained. . Using the powdered active material obtained above, acetylene black was used as the conductive material, and PTFE was used as the binding material to prepare a positive electrode. On the other hand, Li metal was prepared as the negative electrode active material.

【0086】そして,上記LiNiO2 正極と,Li金
属負極を用いて,リチウム二次電池を作製した。非水電
解液としては,PC+DMEを用い,電解質としてLi
CLO4 を含有するものを用いた。また,セパレーター
としては,ポリプロピレンフィルムを用いた。上記リチ
ウム二次電池につき,充放電テストを行った。充放電条
件は,カット・オフ電圧2.7〜4.2V,電流密度
1.0〜4.0mA/cm2 で行った。上記充放電測定
の結果を表5に示す。
Then, a lithium secondary battery was prepared using the LiNiO 2 positive electrode and the Li metal negative electrode. PC + DME was used as the non-aqueous electrolyte, and Li was used as the electrolyte.
The one containing CLO 4 was used. A polypropylene film was used as the separator. A charge / discharge test was conducted on the lithium secondary battery. Charge / discharge conditions were a cut-off voltage of 2.7 to 4.2 V and a current density of 1.0 to 4.0 mA / cm 2 . Table 5 shows the result of the charge / discharge measurement.

【0087】表5より,本例の層状型リチウム含有酸化
物よりなる粉末状活物質によれば,初期容量が高く,か
つ繰り返し充放電によってもリチウム二次電池の容量劣
化が少ないことが分かる。また,本例の粉末状活物質に
よれば,高電流密度の充放電によっても,リチウム二次
電池の容量劣化が殆どないことが分かる。
From Table 5, it can be seen that the powdery active material composed of the layered lithium-containing oxide of this example has a high initial capacity and less capacity deterioration of the lithium secondary battery even after repeated charge and discharge. Further, according to the powdery active material of this example, it is found that the capacity of the lithium secondary battery is hardly deteriorated even by charging and discharging at high current density.

【0088】[0088]

【表5】 [Table 5]

【0089】[0089]

【発明の効果】本発明によれば,均一な組成を有し,粒
子径が小さく,更に酸素欠損がなく,かつ高電流密度の
繰り返し充放電においてもその容量劣化が殆どない,ス
ピネル型又は層状型のリチウム含有酸化物よりなる,リ
チウム二次電池用の粉末状活物質の製造方法を提供する
ことができる。
EFFECTS OF THE INVENTION According to the present invention, a spinel type or a layered type having a uniform composition, a small particle size, no oxygen deficiency, and almost no capacity deterioration even during repeated charge / discharge with high current density. It is possible to provide a method for producing a powdery active material for a lithium secondary battery, the method comprising a lithium-containing oxide of a type.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施形態例1における,粉末状活物質の製造方
法を行うための製造装置の説明図。
FIG. 1 is an explanatory diagram of a manufacturing apparatus for performing a method for manufacturing a powdered active material according to the first embodiment.

【図2】実施形態例2の充放電における,サイクル数と
放電容量の関係とを示す線図。
FIG. 2 is a diagram showing the relationship between the number of cycles and the discharge capacity during charge / discharge of the second embodiment.

【図3】実施形態例2の充放電における,充放電電流密
度と放電容量の関係とを示す線図。
FIG. 3 is a diagram showing the relationship between the charge / discharge current density and the discharge capacity during charge / discharge of the second embodiment.

【図4】実施形態例2における,本発明法により得た粉
末状活物質の粒子構造を示す図面代用写真(倍率400
0倍)。
FIG. 4 is a photograph as a substitute for a drawing (magnification: 400, showing the particle structure of the powdery active material obtained by the method of the present invention in Embodiment 2.
0 times).

【図5】実施形態例2における,比較例法としての固相
反応法により得た活物質の粒子構造を示す図面代用写真
(倍率4000倍)。
5 is a drawing-substitute photograph (magnification: 4000 times) showing a particle structure of an active material obtained by a solid-phase reaction method as a comparative example method in Embodiment 2. FIG.

【図6】実施形態例2における,比較例法としての熱分
解法により得た活物質の粒子構造を示す図面代用写真
(倍率4000倍)。
6 is a drawing-substitute photograph (magnification: 4000 times) showing a particle structure of an active material obtained by a thermal decomposition method as a comparative example method in Embodiment 2. FIG.

【符号の説明】[Explanation of symbols]

1...サスペンション, 11...定量ポンプ, 15...液滴, 2...酸素含有ガス, 3...反応器, 31...アトマイザ, 35...反応通路, 36...粉末捕集器, 4...粉末状活物質, 1. . . Suspension, 11. . . Metering pump, 15. . . Droplet, 2. . . Oxygen-containing gas, 3. . . Reactor, 31. . . Atomizer, 35. . . Reaction passage, 36. . . Powder collector, 4. . . Powdered active material,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 雅彦 愛知県東海市荒尾町ワノ割1番地 愛知製 鋼株式会社内 (72)発明者 村上 彰彦 愛知県東海市荒尾町ワノ割1番地 愛知製 鋼株式会社内 (72)発明者 鷹取 一雅 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 渡辺 直義 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 谷 俊彦 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 佐々木 厳 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiko Kato 1 Wanowari, Arao-cho, Tokai-shi, Aichi Aichi Steel Co., Ltd. (72) Akihiko Murakami 1 Wano-wari, Arao-cho, Tokai-shi, Aichi Aichi Steel Incorporated (72) Inventor Kazuma Takatori 1 in No. 41 Yokomichi, Nagakute-cho, Aichi-gun, Aichi-gun, Toyota Central Research Institute, Inc. (72) Inventor Naoyoshi Watanabe 41, Nagakute, Nagakute-machi, Aichi-gun, Aichi Address # 1 Toyota Central Research Institute Co., Ltd. (72) Inventor Toshihiko Tani 41, Nagakute-cho, Aichi-gun, Nagakute-cho Ai-ken, Toyota Central Research Institute Inc. (72) Inventor Gen Sasaki Nagakute, Aichi-gun, Aichi Prefecture No. 41, Yokomichi, Chozai, Kyoto, Japan

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 リチウム二次電池用の粉末状活物質を製
造する方法であって,上記粉末状活物質の原料を可燃性
液体中に懸濁させたサスペンション,または上記粉末状
活物質の原料を溶媒中に溶解させた溶液を可燃性液体中
に乳濁させたエマルジョンを,酸素を含む雰囲気中で液
滴状に噴霧し,次いで,上記液滴中の上記可燃性液体を
燃焼させることにより,上記液滴を加熱処理して,該液
滴中の原料を反応させて,スピネル型リチウム含有酸化
物よりなる粉末状活物質を製造することを特徴とするリ
チウム二次電池用粉末状活物質の製造方法。
1. A method for producing a powdery active material for a lithium secondary battery, comprising: a suspension in which a raw material of the powdery active material is suspended in a flammable liquid; or a raw material of the powdery active material. An emulsion obtained by emulsifying a solution prepared by dissolving in a solvent in a flammable liquid is sprayed in the form of droplets in an atmosphere containing oxygen, and then the flammable liquid in the droplets is burned. A powdery active material for a lithium secondary battery, characterized in that the powdery active material made of spinel-type lithium-containing oxide is produced by heating the liquid droplets and reacting the raw materials in the liquid droplets. Manufacturing method.
【請求項2】 リチウム二次電池用の粉末状活物質を製
造する方法であって,上記粉末状活物質の原料を可燃性
液体中に懸濁させたサスペンション,または上記粉末状
活物質の原料を溶媒中に溶解させた溶液を可燃性液体中
に乳濁させたエマルジョンを,酸素を含む雰囲気中で液
滴状に噴霧し,次いで,上記液滴中の上記可燃性液体を
燃焼させることにより,上記液滴を加熱処理して,該液
滴中の原料を反応させることにより酸化物粉末となし,
次いで該酸化物粉末を400〜1000℃に再加熱し
て,層状型リチウム含有酸化物よりなる粉末状活物質を
製造することを特徴とするリチウム二次電池用粉末状活
物質の製造方法。
2. A method for producing a powdery active material for a lithium secondary battery, comprising: a suspension in which a raw material of the powdery active material is suspended in a flammable liquid; or a raw material of the powdery active material. An emulsion obtained by emulsifying a solution prepared by dissolving in a solvent in a flammable liquid is sprayed in the form of droplets in an atmosphere containing oxygen, and then the flammable liquid in the droplets is burned. , Heating the droplets to react the raw materials in the droplets to form an oxide powder,
Then, the oxide powder is reheated to 400 to 1000 ° C. to produce a powdery active material composed of a layered lithium-containing oxide, a method for producing a powdery active material for a lithium secondary battery.
【請求項3】 請求項1又は2において,上記原料はリ
チウム化合物と,金属又は金属化合物とよりなり,上記
リチウム化合物はLiの酸化物,水酸化物,炭酸塩,硝
酸塩,硫酸塩,酢酸塩又は蓚酸塩のうちの一種以上の化
合物であることを特徴とするリチウム二次電池用粉末状
活物質の製造方法。
3. The material according to claim 1, wherein the raw material comprises a lithium compound and a metal or a metal compound, and the lithium compound is an oxide, hydroxide, carbonate, nitrate, sulfate or acetate of Li. Alternatively, a method for producing a powdery active material for a lithium secondary battery, which is one or more compounds of oxalate.
【請求項4】 請求項3において,上記金属は,Mn,
Ni,Co,Ti,V,Al,Zn,Mo,Cu,F
e,Cr,のうちの一種以上の金属元素であり,上記金
属化合物は,前記した金属元素の酸化物,水酸化物,炭
酸塩,硝酸塩,硫酸塩,酢酸塩,蓚酸塩の金属化合物の
うちの一種以上であることを特徴とするリチウム二次電
池用粉末状活物質の製造方法。
4. The metal according to claim 3, wherein the metal is Mn,
Ni, Co, Ti, V, Al, Zn, Mo, Cu, F
e, Cr, which is one or more metal elements, and the metal compound is one of the metal oxides, hydroxides, carbonates, nitrates, sulfates, acetates, and oxalates of the above metal elements. 1. A method for producing a powdery active material for a lithium secondary battery, comprising:
【請求項5】 請求項1〜4のいずれか一項において,
上記溶媒は,水,酸水溶液,アルカリ水溶液,有機溶媒
のうちの一種以上であることを特徴とするリチウム二次
電池用粉末状活物質の製造方法。
5. The method according to claim 1, wherein:
The method for producing a powdery active material for a lithium secondary battery, wherein the solvent is one or more of water, an acid aqueous solution, an alkaline aqueous solution, and an organic solvent.
JP9087689A 1996-03-28 1997-03-21 Manufacture of pulverized active material for lithium secondary battery Pending JPH09320603A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9087689A JPH09320603A (en) 1996-03-28 1997-03-21 Manufacture of pulverized active material for lithium secondary battery
US08/824,967 US5958362A (en) 1996-03-28 1997-03-27 Method of producing active material powder for lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10360396 1996-03-28
JP8-103603 1996-03-28
JP9087689A JPH09320603A (en) 1996-03-28 1997-03-21 Manufacture of pulverized active material for lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH09320603A true JPH09320603A (en) 1997-12-12

Family

ID=26428940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9087689A Pending JPH09320603A (en) 1996-03-28 1997-03-21 Manufacture of pulverized active material for lithium secondary battery

Country Status (2)

Country Link
US (1) US5958362A (en)
JP (1) JPH09320603A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058221A1 (en) * 1999-03-29 2000-10-05 Japan Energy Corporation Particulate manganese compound and method for preparation thereof, and secondary cell using the same
JP2006525623A (en) * 2003-04-30 2006-11-09 インダストリー−ユニバーシティー コオペレーション ファウンデーション ハンヤン ユニバーシティー A method for producing a lithium composite oxide for an anode active material of a lithium secondary battery.
JP2011113924A (en) * 2009-11-30 2011-06-09 Univ Of Fukui Method of manufacturing lithium titanate negative electrode material
WO2012017811A1 (en) * 2010-08-06 2012-02-09 Tdk株式会社 Precursor, process for production of precursor, process for production of active material, and lithium ion secondary battery
JP2014517461A (en) * 2011-05-12 2014-07-17 アプライド マテリアルズ インコーポレイテッド Precursor formulations for battery active material synthesis
WO2015054585A1 (en) * 2013-10-11 2015-04-16 Hestia Tec Llc Apparatus and process for high throughput powder production
JP2018500722A (en) * 2014-10-31 2018-01-11 シーエスアイアールCsir Manufacture of spinel materials

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3221352B2 (en) * 1996-06-17 2001-10-22 株式会社村田製作所 Method for producing spinel-type lithium manganese composite oxide
US6706445B2 (en) * 2001-10-02 2004-03-16 Valence Technology, Inc. Synthesis of lithiated transition metal titanates for lithium cells
JP4186529B2 (en) * 2002-07-09 2008-11-26 昭栄化学工業株式会社 Method for producing highly crystalline double oxide powder
KR100485093B1 (en) * 2002-10-28 2005-04-22 삼성에스디아이 주식회사 Positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising same
DE102004044266A1 (en) * 2004-09-10 2006-03-30 Umicore Ag & Co. Kg Process for the preparation of alkali metal-containing, multi-component metal oxide compounds and metal oxide compounds prepared therewith
US20060073091A1 (en) * 2004-10-01 2006-04-06 Feng Zou Process for producing lithium transition metal oxides
DE102005002659A1 (en) * 2005-01-19 2006-07-27 Merck Patent Gmbh Process for the preparation of mixed oxides by spray pyrolysis
WO2006078826A2 (en) * 2005-01-21 2006-07-27 Cabot Corporation Processes for forming nanoparticles in a flame spray system
US8449950B2 (en) * 2009-08-24 2013-05-28 Applied Materials, Inc. In-situ deposition of battery active lithium materials by plasma spraying
CN103109396A (en) * 2010-08-24 2013-05-15 应用材料公司 In-situ synthesis and deposition of battery active lithium materials by spraying
US9159999B2 (en) * 2013-03-15 2015-10-13 Nano One Materials Corp. Complexometric precursor formulation methodology for industrial production of fine and ultrafine powders and nanopowders for lithium metal oxides for battery applications
US20180237314A1 (en) * 2015-08-07 2018-08-23 Yangchuan Xing Synthesis of deep eutectic solvent chemical precursors and their use in the production of metal oxides

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1461176A (en) * 1974-04-11 1977-01-13 Plessey Inc Method of producing powdered materials
US4713233A (en) * 1985-03-29 1987-12-15 Allied Corporation Spray-dried inorganic oxides from non-aqueous gels or solutions
US4649037A (en) * 1985-03-29 1987-03-10 Allied Corporation Spray-dried inorganic oxides from non-aqueous gels or solutions
JPH0821431B2 (en) * 1986-10-29 1996-03-04 ソニー株式会社 Organic electrolyte secondary battery
JPH029722A (en) * 1988-06-29 1990-01-12 Mitsui Mining & Smelting Co Ltd Production of manganese oxide powder
US5358695A (en) * 1993-01-21 1994-10-25 Physical Sciences, Inc. Process for producing nanoscale ceramic powders
US5447708A (en) * 1993-01-21 1995-09-05 Physical Sciences, Inc. Apparatus for producing nanoscale ceramic powders
JP2729176B2 (en) * 1993-04-01 1998-03-18 富士化学工業株式会社 Method for producing LiM3 + O2 or LiMn2O4 and LiNi3 + O2 for cathode material of secondary battery
JP2704485B2 (en) * 1993-09-09 1998-01-26 株式会社豊田中央研究所 Method for producing oxide powder

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058221A1 (en) * 1999-03-29 2000-10-05 Japan Energy Corporation Particulate manganese compound and method for preparation thereof, and secondary cell using the same
JP2006525623A (en) * 2003-04-30 2006-11-09 インダストリー−ユニバーシティー コオペレーション ファウンデーション ハンヤン ユニバーシティー A method for producing a lithium composite oxide for an anode active material of a lithium secondary battery.
JP2011113924A (en) * 2009-11-30 2011-06-09 Univ Of Fukui Method of manufacturing lithium titanate negative electrode material
WO2012017811A1 (en) * 2010-08-06 2012-02-09 Tdk株式会社 Precursor, process for production of precursor, process for production of active material, and lithium ion secondary battery
CN103053051A (en) * 2010-08-06 2013-04-17 Tdk株式会社 Precursor, process for production of precursor, process for production of active material, and lithium ion secondary battery
JP2014517461A (en) * 2011-05-12 2014-07-17 アプライド マテリアルズ インコーポレイテッド Precursor formulations for battery active material synthesis
WO2015054585A1 (en) * 2013-10-11 2015-04-16 Hestia Tec Llc Apparatus and process for high throughput powder production
JP2018500722A (en) * 2014-10-31 2018-01-11 シーエスアイアールCsir Manufacture of spinel materials

Also Published As

Publication number Publication date
US5958362A (en) 1999-09-28

Similar Documents

Publication Publication Date Title
JPH09320603A (en) Manufacture of pulverized active material for lithium secondary battery
JP4954451B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
Zhu et al. Solution combustion synthesis of LiMn2O4 fine powders for lithium ion batteries
JP7131056B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
Zhu et al. Optimized conditions for glycine-nitrate-based solution combustion synthesis of LiNi0. 5Mn1. 5O4 as a high-voltage cathode material for lithium-ion batteries
JP4051771B2 (en) Nickel hydroxide particles, production method thereof, lithium / nickel composite oxide particles using the same, and production method thereof
WO1999064355A1 (en) Nickel hydroxide particles and production and use thereof
KR20110044936A (en) Process for the production of lithium-manganese double oxide for lithium ion batteries and lithium-manganese double oxide for lithium ion batteries made by the same, and lithium ion batteries cotaining the same
US5980786A (en) Method for producing a complex oxide used as a cathode active material of a lithium secondary battery
JP2004006277A (en) Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof
JP2005050582A (en) Positive pole for lithium secondary battery and lithium secondary battery using it
JP2009064585A (en) Manufacturing method of transition metal based compound for lithium secondary battery
KR20040049811A (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2002104826A (en) Method of manufacturing lithium transition metal composite oxide
JPH11121006A (en) Positive electrode active material for lithium secondary battery
TWI552959B (en) A method for producing a microparticle, a method for producing a positive electrode active material for a lithium ion secondary battery, a positive electrode active material, a lithium ion secondary battery using the same, and a raw material emulsion for producing fine particles
JP2009215143A (en) Manufacturing method of planar lithium nickel composite oxide and planar lithium nickel composite oxide using the same
JP5972206B2 (en) Fine particle production method, production method of positive electrode active material for lithium ion secondary battery, positive electrode active material, lithium ion secondary battery using the same, and raw material emulsion for fine particle production
JPH0950811A (en) Production of lithium battery active material
JP2004158443A (en) Manufacturing method of lithium-manganese-nickel complex oxide for lithium secondary battery
JP2000044206A (en) Production of oxide powder
JP3407594B2 (en) Method for producing lithium nickel composite oxide
JP4654488B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode and battery using the same
JPH1149502A (en) Production of oxide powder
JP2003002663A (en) Layered lithium nickel manganese composite oxide