JPH0950811A - Production of lithium battery active material - Google Patents

Production of lithium battery active material

Info

Publication number
JPH0950811A
JPH0950811A JP8056541A JP5654196A JPH0950811A JP H0950811 A JPH0950811 A JP H0950811A JP 8056541 A JP8056541 A JP 8056541A JP 5654196 A JP5654196 A JP 5654196A JP H0950811 A JPH0950811 A JP H0950811A
Authority
JP
Japan
Prior art keywords
active material
lithium
solution
lithium battery
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8056541A
Other languages
Japanese (ja)
Inventor
Norikazu Adachi
安達  紀和
Hisanao Kojima
小島  久尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP8056541A priority Critical patent/JPH0950811A/en
Priority to US08/657,183 priority patent/US5742070A/en
Publication of JPH0950811A publication Critical patent/JPH0950811A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To produce an active material with narrow particle size distribution and excellent crystallinity by using an aqueous solution in which a lithium compound, a transition metal compound, and an organic acid are mixed. SOLUTION: Production of a lithium battery's active material involves a dissolving process to produce a solution by mixing and dissolving A lithium compound and a transition metal compound with an organic acid represented by citric acid simultaneously having carboxyl group (-COOH) and hydroxyl group (-OH) in one molecule or an organic acid having at least two carboxyl groups or hydroxyl groups and a firing process to give an electrode active material for a battery by heating dew drops produced by spraying the solution. A cathode active material produced in this production method has excellent crystallinity, excellent battery properties, and thus a lithium battery having high power can be produced. It is preferable that the mole ion concentration ratio of Li and Mn as starting raw materials to synthesize the cathode active material is controlled to be 0.5<Li/Mn<=0.62.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム電池の製
造に用いられるリチウムと遷移金属化合物とからなる正
極活物質の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a positive electrode active material composed of lithium and a transition metal compound used for producing a lithium battery.

【0002】[0002]

【従来の技術】正極活物質に遷移金属の酸化物を使用し
たリチウム電池は高エネルギ密度を有する電池として研
究されているが、従来の正極活物質の粉体を混合し焼成
する固相法による合成技術では、電池の容量性能および
サイクル特性が悪いという問題がある。この問題を解決
する案として溶媒にリチウム化合物、遷移金属化合物、
クエン酸を溶解した後、溶媒を蒸発させ、有機物のクエ
ン酸を燃焼させ、残るリチウム化合物と遷移金属化合物
の熱分解反応を行って、活物質を合成する液相法が知ら
れている(特開平2−74505号公報)。
2. Description of the Related Art A lithium battery using a transition metal oxide as a positive electrode active material has been studied as a battery having a high energy density. The synthesis technology has a problem that the capacity performance and cycle characteristics of the battery are poor. As a solution to this problem, a solvent containing a lithium compound, a transition metal compound,
A liquid phase method is known in which, after citric acid is dissolved, the solvent is evaporated, the organic citric acid is burned, and the remaining lithium compound and transition metal compound are pyrolyzed to synthesize the active material. (Kaihei 2-74505).

【0003】しかし、このような液相法によって活物質
を大量に合成する場合、溶液段階、溶媒蒸発段階におい
てリチウムと遷移金属が溶解度の差から偏析を起こし、
均一な活物質を合成する事が難しい。又、クエン酸が燃
焼する際に、酸素を消費するために大量に合成する場合
酸素不足となり目的とする活物質の遷移金属の価数が得
られなくなる。
However, when a large amount of active material is synthesized by such a liquid phase method, lithium and a transition metal cause segregation due to a difference in solubility between a solution stage and a solvent evaporation stage,
It is difficult to synthesize a uniform active material. Further, when citric acid burns, it consumes oxygen, so that a large amount is synthesized, oxygen becomes insufficient, and the desired valence of the transition metal of the active material cannot be obtained.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記の事情
に鑑みてなされたものでリチウム化合物、遷移金属化合
物、有機酸を混合した水溶液を用いて、粒度分布が狭く
結晶性の良い活物質を製造することを目的とする。
The present invention has been made in view of the above circumstances, and an active material having a narrow particle size distribution and good crystallinity is obtained by using an aqueous solution obtained by mixing a lithium compound, a transition metal compound and an organic acid. Is intended to be manufactured.

【0005】[0005]

【課題を解決するための手段】本発明のリチウム電池活
物質の製造方法は、リチウム化合物、遷移金属化合物、
クエン酸に代表される分子内にカルボキシル基(−CO
OH)と水酸基(−OH)を同時に持つ有機酸又は、カ
ルボキシル基と水酸基のいずれかを2個以上有する有機
酸を混合して溶解溶液とする溶解工程と、該溶液を噴霧
して形成した液滴を加熱して電池用の電極活物質とする
焼成工程とからなることを特徴とする。
The method for producing a lithium battery active material according to the present invention comprises a lithium compound, a transition metal compound,
Carboxyl group (-CO
OH) and a hydroxyl group (-OH) at the same time, or a dissolving step of mixing an organic acid having two or more of any one of a carboxyl group and a hydroxyl group into a dissolving solution, and a liquid formed by spraying the solution. And a firing step of heating the droplets into an electrode active material for a battery.

【0006】本発明の製造方法では、溶解工程でリチウ
ム塩と遷移金属塩とを均一に混合するために分子内にカ
ルボキシル基(−COOH)と水酸基(−OH)を同時
に持つ有機酸又は、カルボキシル基と水酸基のいずれか
を2個以上有する有機酸を加えてリチウム塩と遷移金属
塩とを溶解し、焼成工程で該溶液を噴霧して、その液滴
を加熱することで連続的かつ組成が均一の活物質を製造
する方法である。
In the production method of the present invention, in order to uniformly mix the lithium salt and the transition metal salt in the dissolution step, an organic acid having a carboxyl group (-COOH) and a hydroxyl group (-OH) in the molecule at the same time, or a carboxyl group A lithium salt and a transition metal salt are dissolved by adding an organic acid having two or more groups or hydroxyl groups, the solution is sprayed in the firing step, and the droplets are heated to obtain a continuous composition. It is a method for producing a uniform active material.

【0007】この方法では、焼成工程で微細な液滴とし
たものを溶液から瞬時に熱分解して電極活物質を合成す
るため、リチウム塩と遷移金属塩の偏析が妨げられ、ま
た、有機酸の存在により液滴中のリチウム塩と遷移金属
塩の組成が常時安定するため、均一な特性の活物質を得
ることができる。更に、噴霧する際に酸素を混入したガ
スを利用して液滴化すれば、熱分解時に酸素不足になら
ず特性の良い活物質を合成することができる。
In this method, fine droplets formed in the firing step are instantly pyrolyzed from the solution to synthesize the electrode active material, so that segregation of the lithium salt and the transition metal salt is hindered and the organic acid Since the composition of the lithium salt and the transition metal salt in the droplets is always stable due to the presence of, the active material having uniform properties can be obtained. Further, when atomized gas is used to form droplets by using a gas containing oxygen, it is possible to synthesize an active material having good characteristics without causing oxygen shortage during thermal decomposition.

【0008】溶解工程では、たとえば、純水に水酸化リ
チウムを0.8モル/リットル、酢酸マンガンを1.6
モル/リットル、クエン酸を1.3モル/リットルの濃
度に溶解混合して調合する。この時溶解溶液にアンモニ
ア水を加えて溶液のPHを4〜7の範囲に保と溶液が安
定するので好ましい。焼成工程では、たとえば、上記の
溶液を空気の圧力を用いて霧状にできる噴霧ノズルを用
いて100μm以下の液滴ができる様に噴霧する。そし
て、この液滴を噴霧に用いた空気又は別のキャリヤガス
により炉の中に導入して、熱分解反応を起こさる。液滴
の加熱温度としては250〜1100℃の範囲で合成が
可能で、最適な温度は400℃〜900℃の範囲であ
る。ここで得られた活物質を更に400〜1100℃の
範囲で焼成してさらに結晶性の高いLiMn2 4 を得
る事ができる。
In the dissolving step, for example, pure water contains 0.8 mol / liter of lithium hydroxide and 1.6 manganese acetate.
Mol / liter and citric acid are dissolved and mixed at a concentration of 1.3 mol / liter to prepare. At this time, ammonia water is added to the dissolution solution to keep the pH of the solution within the range of 4 to 7, which is preferable because the solution becomes stable. In the firing step, for example, the above solution is sprayed using a spray nozzle capable of atomizing using the pressure of air so as to form droplets of 100 μm or less. Then, the droplets are introduced into the furnace by the air used for spraying or another carrier gas to cause a thermal decomposition reaction. The heating temperature of the liquid droplets can be synthesized in the range of 250 to 1100 ° C, and the optimum temperature is in the range of 400 ° C to 900 ° C. The active material obtained here can be further baked in the range of 400 to 1100 ° C. to obtain LiMn 2 O 4 having higher crystallinity.

【0009】リチウム化合物は、たとえば、水酸化リチ
ウム、酢酸リチウム、炭酸リチウム、硝酸リチウムの少
なくとも1種を用いる。遷移金属化合物は、マンガン、
コバルト、ニッケル、バナジウム、鉄、銅、チタニウ
ム、クロムの水酸化塩、炭酸塩、酢酸塩、硝酸塩の少な
くとも1種を用いる。
As the lithium compound, for example, at least one of lithium hydroxide, lithium acetate, lithium carbonate and lithium nitrate is used. The transition metal compound is manganese,
At least one of hydroxides, carbonates, acetates and nitrates of cobalt, nickel, vanadium, iron, copper, titanium and chromium is used.

【0010】遷移金属化合物としてマンガン化合物を用
いた場合、溶解溶液中のリチウムとマンガンのモルイオ
ン濃度の比が0.5<Li/Mn≦0.62となるよう
にするのが好ましい。すなわち、溶解溶液中のリチウム
とマンガンのモルイオン濃度の比がLi/Mn=0.5
の溶解溶液でストイッキョメトリックなLiMn2 4
を製造するよりリチウムの多いLi1+x Mn2-x
4 (ここでx>0)を合成することにより容量特性、サ
イクル特性の優れた活物質を製造することができる。な
お、溶解溶液中のリチウムとマンガンのモルイオン濃度
の比が0.54<Li/Mn≦0.62とすることによ
りより一層容量特性、サイクル特性の優れた活物質を製
造することができる。
Manganese compound is used as the transition metal compound
If the lithium ion and the manganese ion
So that the ratio of the gas concentrations is 0.5 <Li / Mn ≦ 0.62
It is preferred that That is, lithium in the dissolution solution
And the molar ion concentration of manganese are Li / Mn = 0.5
Stykometric LiMn solution of2O Four
Li containing more lithium than1 + xMn2-xO
FourBy combining (where x> 0), the capacitance characteristics and
An active material having excellent cycle characteristics can be manufactured. What
The molar ion concentrations of lithium and manganese in the solution
The ratio of 0.54 <Li / Mn ≦ 0.62
Manufacturing active materials with even better capacity and cycle characteristics
Can be built.

【0011】遷移金属化合物としてマンガン化合物とマ
ンガン以外の遷移金属(Me)の化合物を採用する場
合、溶解溶液中のリチウムとマンガン以外の遷移金属
(Me)およびマンガンのモルイオン濃度の比が0.5
<Li/Mn≦0.62であり、かつ0.5<(Li+
Me)/Mn≦0.67とすることにより容量特性、サ
イクル特性の優れた活物質を製造することができる。こ
の場合溶解溶液中のマンガンとマンガン以外の他の遷移
金属(Me)のモルイオン濃度の比がMe/Mn≦0.
06であるのが好ましい。
When a manganese compound and a compound of a transition metal (Me) other than manganese are adopted as the transition metal compound, the ratio of the molar ion concentration of lithium to the transition metal (Me) other than manganese and manganese in the solution is 0.5.
<Li / Mn ≦ 0.62 and 0.5 <(Li +
By setting Me) /Mn≦0.67, an active material having excellent capacity characteristics and cycle characteristics can be manufactured. In this case, the ratio of the molar ion concentrations of manganese and other transition metal (Me) other than manganese in the dissolution solution is Me / Mn ≦ 0.
It is preferably 06.

【0012】有機酸としては、分子内にカルボキシル基
(−COOH)と水酸基(−OH)を同時に持つもの、
または、カルボキシル基と水酸基のいずれかを2個以上
有するものが使用される。かかる有機酸としては、たと
えば、クエン酸、酒石酸、グリコール酸、乳酸などを使
用できる。これらの有機酸は、リチウムや遷移金属を1
分子中に1個より多く配位して保持することができ、リ
チウム塩と遷移金属塩の組成が常時安定し、熱分解反応
の効率を高めることができる。
As the organic acid, those having a carboxyl group (-COOH) and a hydroxyl group (-OH) in the molecule at the same time,
Alternatively, one having two or more of either a carboxyl group or a hydroxyl group is used. As such an organic acid, for example, citric acid, tartaric acid, glycolic acid, lactic acid or the like can be used. These organic acids include lithium and transition metal 1
More than one molecule can be coordinated and held in the molecule, the composition of the lithium salt and the transition metal salt is always stable, and the efficiency of the thermal decomposition reaction can be increased.

【0013】溶解溶液は、たとえば、アンモニア水を用
いてPHを4〜7の範囲とすることで溶解溶液および液
滴の熱処理時の安定性が増すので好ましい。溶解溶液の
噴霧液滴の径は、たとえば、100μm以下であること
が微細な粉末状の生成物となるので好ましい。溶解溶液
を噴霧、加熱して得られた活物質は、さらに400〜1
100℃で熱処理するか、造粒、圧粉して400〜11
00℃で熱処理してより結晶性を高めて密度の高い活物
質を製造することができる。
The dissolution solution is preferable, for example, by using aqueous ammonia so that the pH is in the range of 4 to 7 because the stability of the dissolution solution and the droplets during heat treatment is increased. The diameter of the sprayed droplets of the dissolved solution is preferably 100 μm or less, since a fine powdery product is obtained. The active material obtained by spraying and heating the solution is 400 to 1
400 ~ 11 by heat treatment at 100 ℃ or by granulating and compacting
By heat treatment at 00 ° C., the crystallinity can be further increased to produce an active material having a high density.

【0014】[0014]

【作用】本発明の製造方法では、溶解工程でリチウム塩
と遷移金属塩が有機酸の存在により均一に溶解してリチ
ウム化合物、遷移金属化合物が原子レベルで混入分散し
ている。また、有機酸は、溶液中のリチウム塩と遷移金
属塩が熱分解中に偏りが起きない様に、リチウムイオ
ン、遷移金属イオンを一分子中に一個より多く、配位し
て錯体を形成できる。
In the production method of the present invention, the lithium salt and the transition metal salt are uniformly dissolved in the dissolution step due to the presence of the organic acid, and the lithium compound and the transition metal compound are mixed and dispersed at the atomic level. Further, the organic acid can form a complex by coordinating more than one lithium ion and transition metal ion in one molecule so that the lithium salt and the transition metal salt in the solution do not become biased during thermal decomposition. .

【0015】この混合溶解液を霧状に噴霧してその液滴
を加熱することで、短時間で熱分解反応してリチウムと
遷移金属の化合物が合成できる。したがって、この方法
によれば得られる化合物は結晶性が良く、不純物が少な
く、球形状で粒径を揃えることができる。このため、生
成した物質をリチウム電池用正極活物質として使用する
と、電池の容量特性、サイクル特性、保存特性が良く、
電池内への充填率も上がるため、更にエネルギ密度の高
い電池を製造することができる。
By spraying this mixed solution in the form of mist and heating the droplets, the compound of lithium and the transition metal can be synthesized by a thermal decomposition reaction in a short time. Therefore, the compound obtained by this method has good crystallinity, a small amount of impurities, and a spherical particle size. Therefore, when the produced substance is used as a positive electrode active material for a lithium battery, the battery has good capacity characteristics, cycle characteristics, and storage characteristics,
Since the filling rate into the battery is also increased, it is possible to manufacture a battery having a higher energy density.

【0016】また、溶解工程で溶解溶液のリチウムとマ
ンガンのモルイオン濃度の比が0.5<Li/Mn≦
0.62なる様に形成し、この溶解溶液を熱分解焼成し
てリチウムマンガン酸化物を合成することにより優れた
リチウム電池用正極活物質が得られる。これはリチウム
とマンガンのモルイオン濃度の比、Li/Mnを0.5
より多くする事でスピネル構造のLiMn2 4 のMn
の16dをLiで置換した構造になっていると考えられ
る。この置換によりMnの平均価数が上がる事、充放電
時のLiの出入りに伴う格子の伸縮が抑えられるため、
電池特性が向上するものと考えられる。
In the melting step, the ratio of the molar ion concentrations of lithium and manganese in the melting solution is 0.5 <Li / Mn ≦.
An excellent positive electrode active material for a lithium battery can be obtained by forming a solution having a thickness of 0.62 and pyrolyzing and firing this dissolved solution to synthesize lithium manganese oxide. This is the ratio of the molar ion concentration of lithium and manganese, Li / Mn is 0.5.
By increasing the amount, Mn of LiMn 2 O 4 with spinel structure
It is considered that the structure has 16d replaced by Li. This substitution increases the average valence of Mn and suppresses the expansion and contraction of the lattice due to the inflow and outflow of Li during charge and discharge.
It is considered that the battery characteristics are improved.

【0017】更に、リチウムとマンガンのモルイオン濃
度の比が0.5<Li/Mn≦0.62かつリチウムと
マンガンおよびマンガン以外の遷移金属(Me)のモル
イオン濃度の比が0.5<(Li+Me)/Mn≦0.
67になる様に、溶解溶液を形成し、その後、熱分解焼
成を行って活物質を合成する事より一層優れたリチウム
電池用正極活物質が得られる。これにより、同様に、ス
ピネル構造のLiMn 2 4 のMnの16dをLiで置
換し、かつMnの16dをMn以外の遷移金属で置換し
た構造となり、Mnの平均価数が上がる事、充放電時の
Liの出入りに伴う格子の伸縮が抑えられるため、より
一層電池特性が向上するものと考えられる。
Furthermore, the molar ion concentration of lithium and manganese is high.
The degree ratio is 0.5 <Li / Mn ≦ 0.62 and lithium
Moles of manganese and transition metals (Me) other than manganese
The ion concentration ratio is 0.5 <(Li + Me) / Mn ≦ 0.
67, a dissolution solution is formed, and then pyrolysis baking is performed.
Lithium, which is superior to that obtained by synthesizing active materials
A positive electrode active material for batteries is obtained. This allows you to
LiMn with pinel structure 2OFourPlace 16d of Mn of with Li
And replace 16d of Mn with a transition metal other than Mn
Structure, the average valence of Mn increases,
Since the expansion and contraction of the lattice due to the entry and exit of Li is suppressed,
It is considered that the battery characteristics will be further improved.

【0018】更に、この合成反応を従来多く用いられて
いるリチウム原料粉末とマンガン原料粉末を固相で混
合、焼成反応を行う固相法では無く、液相中で原子レベ
ルで混合した後、溶液を霧状に噴霧してその液滴を加熱
する事で、LiとMn、他元素の置換をより均一に行う
事ができる。
Further, this synthetic reaction is not a solid phase method in which a lithium raw material powder and a manganese raw material powder, which have been widely used in the past, are mixed in a solid phase and then a firing reaction is performed. It is possible to more uniformly replace Li with Mn and other elements by spraying mist and heating the droplets.

【0019】[0019]

【実施例】以下、実施例により具体的に説明する。本実
施例では、Li化合物としてLiOH・H2 O、Mn化
合物にはMn(CH3 COO)2 ・4H2 O、有機酸と
してクエン酸H2 6 5 7 ・H2 Oを使用した。こ
れらを3:6:5モル比になる様に秤量し、各々を脱イ
オン水に溶解し、0.8モル/リットルの水酸化リチウ
ム水溶液、1.6モル/リットルの酢酸マンガン水溶
液、1.33モル/リットルのクエン酸水溶液を調整し
た。
EXAMPLES The present invention will be specifically described below with reference to examples. In this embodiment, the LiOH · H 2 O, Mn compound as a Li compound using Mn (CH 3 COO) 2 · 4H 2 O, citric acid as organic acid H 2 C 6 H 5 O 7 · H 2 O . These were weighed in a 3: 6: 5 molar ratio, and each was dissolved in deionized water to prepare a 0.8 mol / liter lithium hydroxide aqueous solution, a 1.6 mol / liter manganese acetate aqueous solution. A 33 mol / liter citric acid aqueous solution was prepared.

【0020】次に、水酸化リチウム水溶液とクエン酸水
溶液を混合した。更に、この混合溶液に酢酸マンガン水
溶液を混合し原料となる混合溶液を得た。この混合溶液
には、安定化を増すためにアンモニア水を加えてPH調
整しても良い。アンモニア水を加えないと溶液のPH=
4であるがアンモニアを加えてPHを上げるに従って溶
解溶液の安定度は増す。
Next, an aqueous lithium hydroxide solution and an aqueous citric acid solution were mixed. Further, an aqueous solution of manganese acetate was mixed with this mixed solution to obtain a mixed solution as a raw material. Ammonia water may be added to the mixed solution to adjust the pH for increasing the stability. If ammonia water is not added, the pH of the solution =
4, the stability of the dissolution solution increases as the pH is increased by adding ammonia.

【0021】焼成工程は図1の装置の構成図に示すよう
に、混合溶液の原料タンク1より、ポンプ2により加圧
して噴霧ノズルから液滴として噴霧し、熱分解炉3に導
入する。熱分解炉3中で高温にさらされた液滴は、瞬時
に乾燥、熱分解反応して正極活物質の粉末とし、集塵機
4で粉末が分離され気体はブロア5から系外に排出され
る。
In the firing step, as shown in the block diagram of the apparatus in FIG. 1, a mixed solution material tank 1 is pressurized by a pump 2 to be sprayed as droplets from a spray nozzle, and then introduced into a thermal decomposition furnace 3. The droplets exposed to high temperature in the thermal decomposition furnace 3 are instantly dried and pyrolyzed into powder of the positive electrode active material, and the powder is separated by the dust collector 4 and the gas is discharged from the blower 5 to the outside of the system.

【0022】更に、有機酸を加えた溶解溶液の状態では
有機酸と遷移金属あるいはLiとの結合力が強いため、
これらの化合物が析出しやすく、溶液の組成ずれ、配管
の目づまりが起きやすい。そのため、有機酸を加えるの
は、溶解溶液を噴霧する直前で行う方が良い。具体的に
は図8に示すように、原料タンク1−(1)に0.8モ
ル/リットルの水酸化リチウム水溶液、原料タンク1−
(2)に1.6モル/リットルの酢酸マンガン水溶液、
原料タンク1−(3)に1.33モル/リットルのクエ
ン酸水溶液を調整し、各々単独で保存する。そして各々
の原料タンクから一定同一の流量でポンプ2−(1)、
2−(2)、2−(3)でくみ上げ3首種類の溶液を配
管途中の混合槽6において、一旦混合する。この溶解混
合溶液を噴霧ノズルにポンプにより圧送し以降同様に噴
霧、熱分解反応を行い、活物質を製造する。
Further, in the state of the dissolved solution containing the organic acid, the binding force between the organic acid and the transition metal or Li is strong,
These compounds are likely to precipitate, the composition of the solution is displaced, and the piping is easily clogged. Therefore, it is better to add the organic acid immediately before spraying the solution. Specifically, as shown in FIG. 8, the raw material tank 1- (1) contains 0.8 mol / liter of an aqueous lithium hydroxide solution, and the raw material tank 1-
1.6 mol / liter of manganese acetate aqueous solution in (2),
A 1.33 mol / liter citric acid aqueous solution is prepared in the raw material tank 1- (3), and each is stored alone. Then, pumps 2- (1) are pumped from each raw material tank at a constant flow rate.
2- (2) and 2- (3) are used to draw up the three types of solutions and once mix them in the mixing tank 6 in the middle of the piping. This dissolved mixed solution is pressure-fed to the spray nozzle by a pump, and thereafter sprayed and pyrolyzed in the same manner to produce an active material.

【0023】この混合方法を用いれば、初期から有機酸
を混合した溶液では約2時間毎に溶液の交換が必要であ
るのに対して24時間以上の連続供給が可能となった。
尚、リチウム化合物の溶液と遷移金属化合物の溶液とは
図8では単独の原料タンク1−1、1−2に入れたが、
これら化合物の溶液は混合したものでもよい。噴霧方法
は溶液を噴霧ノズルにポンプにより圧送し、そこで空気
を吹き付け溶液を霧状にする。液滴の大きさはポンプに
よる噴霧量、空気の圧力、溶液の濃度によって制御でき
る。熱分解の温度は炉の温度によって制御する。
By using this mixing method, it was possible to continuously supply the solution containing the organic acid for 24 hours or more, whereas it was necessary to change the solution every about 2 hours from the beginning.
In addition, the solution of the lithium compound and the solution of the transition metal compound were put in the individual raw material tanks 1-1 and 1-2 in FIG.
The solutions of these compounds may be mixed. The nebulization method pumps the solution to a nebulizing nozzle where air is blown to atomize the solution. The size of the liquid droplets can be controlled by the spray amount of the pump, the air pressure, and the concentration of the solution. The temperature of pyrolysis is controlled by the temperature of the furnace.

【0024】本実施例では、混合溶液をポンプにより3
0cc/minで加圧し流体ノズルに導入した。そこで
0.4MPaの空気によって霧状に噴霧した。ここで得
られる液滴は約10μmであった。噴霧された液滴は、
炉内温度が880℃に保たれた炉内に導入された。ここ
で瞬時に溶媒が蒸発した後クエン酸の燃焼リチウムマン
ガン酸化物の熱分解合成が行われた。更に、炉内に滞留
する事で、結晶性が高められた。
In this embodiment, the mixed solution is pumped by a pump 3
It was pressurized at 0 cc / min and introduced into the fluid nozzle. Therefore, it was atomized with 0.4 MPa air. The droplets obtained here were about 10 μm. The sprayed droplets are
It was introduced into a furnace whose temperature was maintained at 880 ° C. Here, after the solvent was instantly evaporated, the pyrolysis synthesis of the burning lithium manganese oxide of citric acid was performed. Further, the crystallinity was enhanced by staying in the furnace.

【0025】ここで得られた活物質のLiMn2 4
不純物が無く、球状に粒度が揃っていた。また、噴霧液
滴の加熱により形成しているのでポーラス形状となり比
表面積が20m2 /gと高いものであった。得られた活
物質を使用し、電池を次のようにして製造した。正極活
物質を導電剤であるケッチェンブラック、結着剤である
PTFEと90:6:4で混練後、ステンレスメッシュ
上に加圧成型して正極を作成した。負極には金属リチウ
ム、セパレ−タにはポリプロピレン不織布を用いた。電
解液には1モルLiPF6 /PC(50)+DME(5
0)を用いた。
The active material LiMn 2 O 4 obtained here had no impurities and had a spherical particle size. Further, since the spray droplets are formed by heating, they have a porous shape and a high specific surface area of 20 m 2 / g. A battery was manufactured as follows using the obtained active material. The positive electrode active material was kneaded with Ketjen Black as a conductive agent and PTFE as a binder at 90: 6: 4, and then pressure-molded on a stainless mesh to prepare a positive electrode. Metal lithium was used for the negative electrode, and polypropylene nonwoven fabric was used for the separator. 1 mol LiPF 6 / PC (50) + DME (5
0) was used.

【0026】電池の充放電評価は、充電は2mA/cm
2 の定電流で4.1Vに達するまで行い、その後、4.
1Vの定電圧で合計5時間行った。放電は2mA/cm
2 で2.0Vに達するまで行った。本実施例で得られた
正極活物質の初期の放電容量は210mAh/gと高い
ものであった。また、サイクル毎の正極活物質の電気容
量を図2の符号1の線図に示す。
The charge and discharge of the battery was evaluated by charging at 2 mA / cm.
It is carried out at a constant current of 2 until it reaches 4.1 V, and then 4.
It was carried out at a constant voltage of 1 V for a total of 5 hours. Discharge is 2mA / cm
2 until 2.0V is reached. The initial discharge capacity of the positive electrode active material obtained in this example was as high as 210 mAh / g. Further, the electric capacity of the positive electrode active material for each cycle is shown in the diagram of reference numeral 1 in FIG.

【0027】なお、参考までに熱分解温度の影響を調べ
るため、熱分解温度を除き他は全く同様にして、液滴を
加熱して熱分解する熱分解温度を450℃、580℃、
730℃の各温度で実施し、それぞれ正極活物質を合成
した。得られた各熱分解温度毎の各正極活物質のピーク
半値幅と熱分解温度との関係を示す線図を図3に示す。
For reference, in order to investigate the influence of the thermal decomposition temperature, the thermal decomposition temperature at which the liquid droplets are heated and thermally decomposed is 450 ° C., 580 ° C.
It carried out at each temperature of 730 degreeC, and each synthesize | combined the positive electrode active material. FIG. 3 shows a diagram showing the relationship between the half-value widths of the peaks of the respective positive electrode active materials and the thermal decomposition temperatures obtained for each thermal decomposition temperature.

【0028】図3、に示すように高温の880℃で熱分
解した場合が、生成物の結晶のピーク半値幅(111)
が小さく結晶性が良いものが得られた。これは、高温処
理により結晶性が上がったことを示している。この88
0℃で熱分解して得られた活物質を使用した電池では初
期容量、サイクル特性とも優れた特性を示した。しか
し、1100℃以上で熱分解すると、Liが昇華するた
めに特性が悪くなる。このため、熱分解温度は580℃
〜1100℃の範囲が良い。特に730〜950℃の範
囲が特性の良い活物質となる。
As shown in FIG. 3, when the product was pyrolyzed at a high temperature of 880 ° C., the peak half width (111) of the crystal of the product was obtained.
And the crystallinity was small. This indicates that the high temperature treatment increased the crystallinity. This 88
The battery using the active material obtained by thermal decomposition at 0 ° C. exhibited excellent initial capacity and cycle characteristics. However, when thermally decomposed at 1100 ° C. or higher, Li sublimes and the characteristics deteriorate. Therefore, the thermal decomposition temperature is 580 ℃
The range of ˜1100 ° C. is preferable. Particularly, the range of 730 to 950 ° C. is an active material having good characteristics.

【0029】上記の噴霧熱分解で得られた正極活物質を
更に、結晶性を上げるために900℃で8時間熱処理を
実施した。そして実施例と同様に電池特性の評価を行っ
た。この熱処理を行った正極活物質の放電容量は215
mAh/gであった。また各サイクル毎の電池容量を図
2の符号2の線図で示す。図2より明らかなように、熱
処理をすることにより正極活物質の放電容量およびサイ
クル毎の放電容量も高くなっている。
The positive electrode active material obtained by the above-mentioned spray pyrolysis was further heat-treated at 900 ° C. for 8 hours in order to improve the crystallinity. Then, the battery characteristics were evaluated in the same manner as in the example. The discharge capacity of the positive electrode active material subjected to this heat treatment is 215.
mAh / g. Further, the battery capacity for each cycle is shown by the diagram of reference numeral 2 in FIG. As is clear from FIG. 2, the heat treatment increases the discharge capacity of the positive electrode active material and the discharge capacity of each cycle.

【0030】参考までに熱処理を実施した場合、熱分解
温度の影響を調べるために熱分解温度を450℃、58
0℃、730℃、880℃の各温度で実施した後、更に
熱処理を加えた正極活物質を合成した。得られた各熱分
解温度毎の各正極活物質の粒度分布の関係を図4に示
す。図4に示すように、450℃〜730℃の低い熱分
解温度で分解合成を行った後、900℃で熱処理を行う
ことで粒度分布の狭い正極活物質が得られた。この理由
は、低温で結晶の骨格を形成して、結晶を成長させた方
が均一に成長するからだと考えられる。このため熱分解
温度は、LiMn2 4 が形成できる250℃〜110
0℃の範囲が良く、特に上記の理由により450℃〜7
50℃のはんいが特性の良い正極活物質となる。
When the heat treatment is carried out for reference, the thermal decomposition temperature is set at 450 ° C.
After carrying out at each temperature of 0 ° C., 730 ° C. and 880 ° C., heat treatment was further performed to synthesize a positive electrode active material. The relationship of the particle size distribution of each positive electrode active material obtained for each thermal decomposition temperature is shown in FIG. As shown in FIG. 4, a positive electrode active material having a narrow particle size distribution was obtained by performing decomposition synthesis at a low thermal decomposition temperature of 450 ° C. to 730 ° C. and then performing heat treatment at 900 ° C. It is considered that this is because the crystal skeleton is formed at a low temperature to grow the crystal uniformly. Therefore, the thermal decomposition temperature is 250 ° C. to 110 ° C. at which LiMn 2 O 4 can be formed.
The range of 0 ° C is good, and especially 450 ° C to 7 ° C for the above reason.
The 50 ° C. starch becomes a positive electrode active material with good characteristics.

【0031】参考までに、混合溶液の調製に有機酸を使
用せず、その他は実施例と同様にしかつ同様に熱処理し
た活物質、および、噴霧熱分解以外は実施例と同様に
し、噴霧熱分解に代えて、混合溶液を80〜150℃で
蒸発乾燥し、その後、400〜900℃で焼成を行って
活物質を合成し、同様に熱処理した活物質について同様
に電池の特性を調べた。結果を図2に合わせて示す。符
号3で示す線図が、噴霧熱分解せずに蒸発乾燥し、その
後焼成、熱処理した正極活物質の放電容量、符号4で示
す線図が、有機酸を使用せず、噴霧熱分解して熱処理し
た正極活物質の放電容量を示す。
For reference, the active acid was prepared by the same procedure as in Example 1 except that an organic acid was not used in the preparation of the mixed solution, and the same thermal treatment as in Example 1 was performed. Instead, the mixed solution was evaporated to dryness at 80 to 150 ° C., then baked at 400 to 900 ° C. to synthesize an active material, and the heat-treated active material was similarly examined for battery characteristics. The results are shown in FIG. The diagram indicated by the reference numeral 3 is the discharge capacity of the positive electrode active material which is evaporated and dried without being spray-pyrolyzed, and then calcined and heat-treated. The discharge capacity of the heat-treated positive electrode active material is shown.

【0032】噴霧熱分解法を用しないで混合溶液を80
〜150℃で加熱して、溶媒を徐々に蒸発させた場合、
正極活物質の放電容量は200mAh/gとなり、本実
施例のものに比較し、放電容量の低下したものであっ
た。これは、噴霧熱分解法に比較し、溶液が蒸発する時
間が長くなるために、蒸発途中に組成がずれるため生成
物に不純物が混じってしまうためと考えられる。因み
に、より多くの溶液から蒸発、焼成した場合、正極活物
質の放電容量はさらに悪くなり120mAh/gと悪く
なった。
80% of the mixed solution was prepared without using the spray pyrolysis method.
When heated at ~ 150 ° C to slowly evaporate the solvent,
The discharge capacity of the positive electrode active material was 200 mAh / g, which was lower than that of this example. It is considered that this is because, compared with the spray pyrolysis method, the time required for the solution to evaporate is longer, and the composition shifts during the evaporation, so that impurities are mixed in the product. Incidentally, the discharge capacity of the positive electrode active material was further deteriorated to 120 mAh / g when it was evaporated and baked from a larger amount of solution.

【0033】また、有機酸を入れない混合溶液を噴霧熱
分解して得られる正極活物質の特性も180mAh/g
と放電電池容量は本実施例のものより劣るものであっ
た。次に、Li化合物としてはLi2 CO3 、Mn化合
物にはMnCO3 、有機酸としてはクエン酸H2 6
5 7 ・H2 Oを使用して同様の試験を行った。溶液の
溶解はLiの濃度が0.07モル/リットル、Mnの濃
度が0.14モル/リットル、クエン酸の濃度が0.3
5モル/リットルになるように蒸留純水に、これらの3
種類を混合して溶解する。この時、溶解する順序として
クエン酸、MnCO3 、Li2 CO3 の順に溶解を行
う。
The characteristics of the positive electrode active material obtained by spray pyrolysis of a mixed solution containing no organic acid are also 180 mAh / g.
The discharge battery capacity was inferior to that of this example. Next, Li 2 CO 3 as the Li compound, MnCO 3 as the Mn compound, and citric acid H 2 C 6 H as the organic acid.
A similar test was conducted using 5 O 7 .H 2 O. The dissolution of the solution is such that the Li concentration is 0.07 mol / liter, the Mn concentration is 0.14 mol / liter, and the citric acid concentration is 0.3.
Dilute these with 3 parts of distilled pure water so that the concentration becomes 5 mol / liter.
Mix and dissolve types. At this time, as the order of dissolution, citric acid, MnCO 3 , and Li 2 CO 3 are dissolved in this order.

【0034】この様にして得られた溶解溶液を同様に
0.4MPaの空気によって霧状に噴霧し、更にその液
滴を、炉内温度が880℃に保たれた炉内に導入し、リ
チウムマンガン酸化物を合成した。この様にして得られ
たリチウムマンガン酸化物を900℃で8時間の熱処理
を行い正極活物質を得た。
The dissolved solution thus obtained was atomized in the same manner with 0.4 MPa air, and its droplets were introduced into a furnace in which the temperature inside the furnace was maintained at 880 ° C. Manganese oxide was synthesized. The lithium manganese oxide thus obtained was heat-treated at 900 ° C. for 8 hours to obtain a positive electrode active material.

【0035】この正極活物質の放電容量は215mAh
/gと、Li化合物としてLiOH・H2 O、Mn化合
物としてMn(CH3 COO)2 ・4H2 Oを使用した
時の特性と同等であり、原料費として安価なMnCO3
を使用できる事がわかった。次に、リチウムマンガン酸
化物の材料組成による電池特性を評価するために、前記
した実施例で用いたLi原料およびMn原料と同じ物を
用い、溶解工程で形成される溶解溶液中のLiとMnの
モルイオン濃度の比が、Li/Mn=0.43、0.5
0、0.54、0.58、0.62および0.67にな
るようにそれぞれLi原料とMn原料の配合比を調整し
た。その後、得られた各溶解溶液を730℃の炉内に噴
霧して熱分解合成を行い、更に900℃での本焼成を行
い各リチウムマンガン酸化物を合成した。この時得られ
た各リチウムマンガン酸化物はLi1+x Mn2-x
4 (Li/Mnが上記の比各々に対応して、x=−0.
1、0、005、0.1、0.15および0.2)の組
成になっていると考えられる。
The discharge capacity of this positive electrode active material is 215 mAh.
/ G and the characteristics when LiOH.H 2 O is used as the Li compound and Mn (CH 3 COO) 2 .4H 2 O is used as the Mn compound, and MnCO 3 is inexpensive as a raw material cost.
I found that you can use. Next, in order to evaluate the battery characteristics depending on the material composition of the lithium manganese oxide, the same Li raw material and Mn raw material used in the above-described examples were used, and Li and Mn in the dissolution solution formed in the dissolution step were used. Molar ion concentration ratio of Li / Mn = 0.43, 0.5
The mixing ratios of the Li raw material and the Mn raw material were adjusted so as to be 0, 0.54, 0.58, 0.62 and 0.67, respectively. After that, each of the obtained dissolved solutions was sprayed into a furnace at 730 ° C. for pyrolysis synthesis, and then main firing was performed at 900 ° C. to synthesize each lithium manganese oxide. The respective lithium manganese oxides obtained at this time were Li 1 + x Mn 2-x O
4 (Li / Mn corresponds to each of the above ratios, x = -0.
It is considered that the composition is 1, 0, 005, 0.1, 0.15 and 0.2).

【0036】得られた各リチウムマンガン酸化物の正極
活物質としての充放電の特性を次の条件で調べた。充電
は2mA/cm2 の定電流で4.3Vに達する迄行い、
その後、4.3Vの定電圧で合計3時間行った。放電は
2mA/cm2 で2.0Vに達する迄行った。充電と充
電の間は各々10分間の放置時間を設けた。図5および
図6に上記Li原料とMn原料の比で合成したリチウム
マンガン酸化物の容量特性、初期効率の効果を示す。こ
れらの結果より、Li/Mn=0.5のLiMn2 4
よりも、Li/Mn=0.54、0,58、0.62、
0.67で合成したLi1+x Mn2-x 4 (Li/Mn
が上記の比各々に対応して、x=005、0.1、0.
15、0.2)のリチウムマンガン酸化物を活物質に用
いた電池の方が初期容量、サイクル特性ともに向上でき
る事がわかる。特に、Li/Mn=0.58の組成のリ
チウムマンガン酸化物を正極活物質とする電池は正極容
量および初期効率共に高く、極大値を示す。
Charging / discharging characteristics of each of the obtained lithium manganese oxides as a positive electrode active material were examined under the following conditions. Charging is performed at a constant current of 2 mA / cm 2 until it reaches 4.3 V,
After that, the operation was performed at a constant voltage of 4.3 V for 3 hours in total. The discharge was performed at 2 mA / cm 2 until 2.0 V was reached. A 10-minute standing time was provided between each charge. FIG. 5 and FIG. 6 show the effects of the capacity characteristics and the initial efficiency of the lithium manganese oxide synthesized at the ratio of the Li raw material and the Mn raw material. From these results, LiMn 2 O 4 with Li / Mn = 0.5
Than Li / Mn = 0.54, 0.58, 0.62,
Li 1 + x Mn 2-x O 4 (Li / Mn synthesized at 0.67)
For each of the above ratios, x = 005, 0.1, 0.
It is understood that the battery using the lithium manganese oxide (15, 0.2) as the active material can improve both the initial capacity and the cycle characteristics. In particular, a battery using a lithium manganese oxide having a composition of Li / Mn = 0.58 as a positive electrode active material has high positive electrode capacity and initial efficiency, and exhibits a maximum value.

【0037】また、図7に各リチウムマンガン酸化物を
活物質に用いた電池のサイクル特性を示す。図7中に示
す0.43、0.5、0.54、0.58、0.62お
よび0.67の数字はLi/Mnのモル比を示しそれぞ
れ合成された各リチウムマンガン酸化物を活物質とする
電池の正極容量のサイクル特性を示している。この結果
からもLiMn2 4 よりもLi/Mn=0.54、
0.58、0.62、0.67で合成したリチウムマン
ガン酸化物の方がサイクル特性が向上できる事がわかっ
た。
FIG. 7 shows the cycle characteristics of a battery using each lithium manganese oxide as an active material. The numbers 0.43, 0.5, 0.54, 0.58, 0.62, and 0.67 shown in FIG. 7 indicate the Li / Mn molar ratios and indicate that each synthesized lithium manganese oxide is active. The cycle characteristic of the positive electrode capacity of the battery used as a substance is shown. Also from this result, Li / Mn = 0.54 than LiMn 2 O 4 ,
It was found that the lithium manganese oxides synthesized with 0.58, 0.62, and 0.67 can improve the cycle characteristics.

【0038】以上の結果から、Li原料とMn原料のL
iとMnのモルイオン濃度の比Li/Mnを0.5より
Li量を増やしたLi/Mn比が0.54、0.58、
0.62、0.67で合成する事で電池特性が向上でき
る事がわかった。次に、MnをLiだけでなく、Mn以
外の遷移金属で置換する検討を行った。遷移金属として
Cuを用いて検討した。
From the above results, the L of the Li raw material and the Mn raw material are
The ratio Li / Mn of the molar ion concentration of i and Mn is increased from 0.5 to 0.5 to obtain Li / Mn ratios of 0.54, 0.58,
It was found that the battery characteristics can be improved by synthesizing at 0.62 and 0.67. Next, studies were conducted to replace Mn with not only Li but transition metals other than Mn. Cu was used as the transition metal.

【0039】Cu原料としては酢酸銅、Li原料、Mn
原料は上記と同じ原料を用いた。LiとCuとMnのモ
ルイオン濃度の比がLi/Cu/Mn=1/0.05/
1.95、1.05/0.05/1.9、1.1/0.
05/1.85、1/0.1/1.9、1.05/0.
1/1.85、1.1/0.1/1.8になるように調
整した溶液を用いて、以下同様にして活物質を合成し
た。この活物質の組成は、Li1+x Cuy Mn
2-x-y (x=0、0.005、0.1、y=0.05、
0.1)になっていると考えられる。
As the Cu raw material, copper acetate, Li raw material, Mn
As the raw material, the same raw material as above was used. The molar ion ratio of Li, Cu, and Mn is Li / Cu / Mn = 1 / 0.05 /
1.95, 1.05 / 0.05 / 1.9, 1.1 / 0.
05 / 1.85, 1 / 0.1 / 1.9, 1.05 / 0.
Using the solutions adjusted to be 1 / 1.85 and 1.1 / 0.1 / 1.8, active materials were synthesized in the same manner as described below. The composition of this active material is Li 1 + x Cu y Mn
2-xy (x = 0, 0.005, 0.1, y = 0.05,
0.1).

【0040】表1に上記原料比で合成して得られた活物
質の容量特性、50サイクル後の容量特性を示す。この
結果より、Cuで置換したLi/Cu/Mn=1.05
/0.05、1.9、1.1/0.05/1.85でC
uを置換しない物よりもサイクル特性が向上できる事が
わかった。なお、Cuの置換量を多くしたLi/Cu/
Mn=1/0.1/1.9、1.1/0.1/1.85
では初期容量は表1に示す様に低下するため、CuとM
nのモルイオン濃度の比Cu/Mnは0.06以下で特
性が向上する事がわかった。
Table 1 shows the capacity characteristics of the active material obtained by synthesizing at the above raw material ratio, and the capacity characteristics after 50 cycles. From this result, Li / Cu / Mn substituted with Cu = 1.05
/0.05, 1.9, 1.1 / 0.05 / 1.85 C
It was found that the cycle characteristics can be improved as compared with the case where u is not substituted. In addition, Li / Cu / in which the substitution amount of Cu is increased
Mn = 1 / 0.1 / 1.9, 1.1 / 0.1 / 1.85
Since the initial capacity decreases as shown in Table 1, Cu and M
It was found that the characteristics are improved when the ratio Cu / Mn of the molar ion concentration of n is 0.06 or less.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【発明の効果】本発明の製造方法で得られる正極活物質
は結晶のピーク半値幅(111)が小さく結晶性が良
い。このため放電特性が高く、より高性能のリチウム電
池を得ることができる。
EFFECT OF THE INVENTION The positive electrode active material obtained by the production method of the present invention has a small peak half-value width (111) of crystals and good crystallinity. Therefore, a lithium battery having high discharge characteristics and higher performance can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の焼成工程の概略構成を示す。FIG. 1 shows a schematic configuration of a firing process of an example of the present invention.

【図2】本実施例および比較例の正極活物質の電池特性
を示す線図である。
FIG. 2 is a diagram showing battery characteristics of positive electrode active materials of this example and a comparative example.

【図3】本発明の熱分解温度と噴霧後の活性物質の結晶
性を示す線図である。
FIG. 3 is a diagram showing the thermal decomposition temperature of the present invention and the crystallinity of the active substance after spraying.

【図4】本発明の熱分解温度と得られた活物質の粒度分
布の関係を示す線図である。
FIG. 4 is a diagram showing the relationship between the thermal decomposition temperature of the present invention and the particle size distribution of the obtained active material.

【図5】実施例で活物質として使用したリチウムマンガ
ン酸化物を合成する出発原料のLi/Mnモルイオン濃
度比と正極容量の関係を示す線図である。
FIG. 5 is a diagram showing a relationship between a Li / Mn molar ion concentration ratio of a starting material for synthesizing a lithium manganese oxide used as an active material in Examples and a positive electrode capacity.

【図6】実施例で活物質として使用したリチウムマンガ
ン酸化物を合成する出発原料のLi/Mnモルイオン濃
度比と初期効率の関係を示す線図である。
FIG. 6 is a diagram showing a relationship between a Li / Mn molar ion concentration ratio of a starting material for synthesizing a lithium manganese oxide used as an active material in Examples and an initial efficiency.

【図7】実施例で活物質として使用したリチウムマンガ
ン酸化物を合成する出発原料のLi/Mnモルイオン濃
度比と電池の正極容量のサイクル特性を示す線図であ
る。
FIG. 7 is a diagram showing cycle characteristics of a Li / Mn molar ion concentration ratio of a starting material for synthesizing a lithium manganese oxide used as an active material in Examples and a positive electrode capacity of a battery.

【図8】本発明の溶液混合工程を加えた製造工程の概略
構成を示す。
FIG. 8 shows a schematic configuration of a manufacturing process including a solution mixing process of the present invention.

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 リチウム化合物、遷移金属化合物、クエ
ン酸に代表される分子内にカルボキシル基(−COO
H)と水酸基(−OH)を同時に持つ有機酸又は、カル
ボキシル基と水酸基のいずれかを2個以上有する有機酸
を混合して溶解溶液とする溶解工程と、 該溶液を噴霧して形成した液滴を加熱して電池用の電極
活物質とする焼成工程とからなることを特徴とするリチ
ウム電池活物質の製造方法。
1. A carboxyl group (—COO) in a molecule represented by a lithium compound, a transition metal compound, and citric acid.
H) and an organic acid having a hydroxyl group (-OH) at the same time, or a dissolving step of mixing an organic acid having two or more of any one of a carboxyl group and a hydroxyl group to obtain a dissolving solution, and a liquid formed by spraying the solution. A method for producing a lithium battery active material, comprising: a step of heating the droplet to obtain an electrode active material for a battery.
【請求項2】 リチウム化合物は水酸化リチウム、酢酸
リチウム、炭酸リチウム、硝酸リチウムの1種又は2種
以上であることを特徴とする請求項1に記載のリチウム
電池活物質の製造方法。
2. The method for producing a lithium battery active material according to claim 1, wherein the lithium compound is one kind or two or more kinds of lithium hydroxide, lithium acetate, lithium carbonate and lithium nitrate.
【請求項3】 遷移金属化合物は、マンガン、コバル
ト、ニッケル、バナジウム、鉄、銅、チタニウム、クロ
ムの水酸化塩、炭酸塩、酢酸塩、硝酸塩の少なくとも1
種である請求項1に記載のリチウム電池活物質の製造方
法。
3. The transition metal compound is at least one of manganese, cobalt, nickel, vanadium, iron, copper, titanium and chromium hydroxides, carbonates, acetates and nitrates.
The method for producing a lithium battery active material according to claim 1, which is a seed.
【請求項4】 遷移金属化合物は、マンガン化合物であ
り、溶解溶液中のリチウムとマンガンのモルイオン濃度
の比が0.5<Li/Mn≦0.62である請求項1に
記載のリチウム電池活物質の製造方法。
4. The lithium battery activity according to claim 1, wherein the transition metal compound is a manganese compound, and a ratio of molar ion concentrations of lithium and manganese in the solution is 0.5 <Li / Mn ≦ 0.62. Method of manufacturing substance.
【請求項5】 溶解溶液中のリチウムとマンガンのモル
イオン濃度の比が0.54≦Li/Mn≦0.62であ
る請求項4に記載のリチウム電池活物質の製造方法。
5. The method for producing a lithium battery active material according to claim 4, wherein a ratio of molar ion concentrations of lithium and manganese in the solution is 0.54 ≦ Li / Mn ≦ 0.62.
【請求項6】 遷移金属化合物の一種はマンガン化合物
であり、溶解溶液中のリチウムとマンガンのモルイオン
濃度の比が0.5<Li/Mn≦0.62であり、かつ
該溶解溶液中のマンガン以外の他の遷移金属(Me)と
リチウムおよびマンガンのモルイオン濃度の比が0.5
<(Li+Me)/Mn≦0.67である請求項1に記
載のリチウム電池活物質の製造方法。
6. One of the transition metal compounds is a manganese compound, the ratio of the molar ion concentration of lithium to manganese in the solution is 0.5 <Li / Mn ≦ 0.62, and the manganese in the solution is Other transition metals (Me) other than lithium and manganese having a molar ion concentration ratio of 0.5
The method for producing a lithium battery active material according to claim 1, wherein <(Li + Me) /Mn≦0.67.
【請求項7】 溶解溶液中のマンガンとマンガン以外の
他の遷移金属(Me)のモルイオン濃度の比がMe/M
n≦0.06である請求項6に記載のリチウム電池活物
質の製造方法。
7. The ratio of the molar ion concentrations of manganese and a transition metal (Me) other than manganese in the dissolution solution is Me / M.
The method for producing a lithium battery active material according to claim 6, wherein n ≦ 0.06.
【請求項8】 有機酸としては、クエン酸、酒石酸、グ
リコール酸、乳酸のの1種又は2種以上である請求項1
に記載のリチウム電池活物質の製造方法。
8. The organic acid is one or more of citric acid, tartaric acid, glycolic acid and lactic acid.
The method for producing the lithium battery active material according to.
【請求項9】 リチウム化合物は水酸化リチウム、遷移
金属化合物は酢酸マンガン、有機酸はクエン酸である請
求項1に記載のリチウム電池活物質の製造方法。
9. The method for producing a lithium battery active material according to claim 1, wherein the lithium compound is lithium hydroxide, the transition metal compound is manganese acetate, and the organic acid is citric acid.
【請求項10】 液滴の加熱温度は、250〜1100
℃の範囲である請求項1に記載のリチウム電池活物質の
製造方法。
10. The heating temperature of the droplet is 250 to 1100.
The method for producing a lithium battery active material according to claim 1, wherein the temperature is in the range of ° C.
【請求項11】 噴霧液滴の径は、100μm以下であ
る請求項1に記載のリチウム電池活物質の製造方法。
11. The method for producing a lithium battery active material according to claim 1, wherein the diameter of the sprayed droplets is 100 μm or less.
【請求項12】 溶解溶液のPHは4〜7の範囲である
請求項1に記載のリチウム電池活物質の製造方法。
12. The method for producing a lithium battery active material according to claim 1, wherein the pH of the dissolution solution is in the range of 4 to 7.
【請求項13】 該溶解溶液のPH調整は、アンモニア
を使用する請求項12に記載のリチウム電池活物質の製
造方法。
13. The method for producing a lithium battery active material according to claim 12, wherein ammonia is used to adjust the pH of the solution.
【請求項14】 噴霧、加熱して得られた活物質を更に
400〜1100℃で熱処理して活物質を合成する請求
項1に記載のリチウム電池活物質の製造方法。
14. The method for producing a lithium battery active material according to claim 1, wherein the active material obtained by spraying and heating is further heat-treated at 400 to 1100 ° C. to synthesize the active material.
【請求項15】 焼成工程によって得られた活物質を造
粒、圧粉して更に400〜950℃で焼成して密度の高
い活物質を合成する請求項1に記載のリチウム電池活物
質の製造方法。
15. The production of a lithium battery active material according to claim 1, wherein the active material obtained by the firing step is granulated, pressed and further fired at 400 to 950 ° C. to synthesize a high density active material. Method.
【請求項16】 リチウム化合物の溶液、遷移金属化合
物の溶液を単独、又は、混合溶解した溶液と、有機酸を
溶解した溶液を各々独立して調整した後、各々の溶液を
噴霧する前に所定の割合で混合して、該溶解溶液を得る
溶解工程を特徴とする請求項1に記載のリチウム電池活
物質の製造方法。
16. A solution of a lithium compound and a solution of a transition metal compound, or a solution prepared by mixing and dissolving them independently and a solution prepared by dissolving an organic acid are prepared independently of each other, and then prescribed before spraying each solution. The method for producing a lithium battery active material according to claim 1, further comprising a dissolution step of mixing the above components to obtain the dissolution solution.
JP8056541A 1993-09-22 1996-03-13 Production of lithium battery active material Pending JPH0950811A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8056541A JPH0950811A (en) 1995-06-02 1996-03-13 Production of lithium battery active material
US08/657,183 US5742070A (en) 1993-09-22 1996-06-03 Method for preparing an active substance of chemical cells

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP13694295 1995-06-02
JP7-136942 1995-06-02
JP8056541A JPH0950811A (en) 1995-06-02 1996-03-13 Production of lithium battery active material

Publications (1)

Publication Number Publication Date
JPH0950811A true JPH0950811A (en) 1997-02-18

Family

ID=26397500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8056541A Pending JPH0950811A (en) 1993-09-22 1996-03-13 Production of lithium battery active material

Country Status (1)

Country Link
JP (1) JPH0950811A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116393A (en) * 2003-10-09 2005-04-28 Sumitomo Osaka Cement Co Ltd Method of manufacturing electrode material powder, electrode material powder, electrode, and lithium battery
WO2006123711A1 (en) * 2005-05-17 2006-11-23 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide for positive electrode in lithium rechargeable battery
WO2006123710A1 (en) * 2005-05-17 2006-11-23 Agc Seimi Chemical., Ltd. Method for producing lithium-containing complex oxide for positive electrode of lithium secondary battery
JP2007173096A (en) * 2005-12-22 2007-07-05 Samsung Sdi Co Ltd Method of manufacturing cathode active substance for lithium secondary battery
JP2008153045A (en) * 2006-12-18 2008-07-03 Samsung Sdi Co Ltd Anode material for nonaqueous secondary battery and nonaqueous secondary battery using it
JP2011113924A (en) * 2009-11-30 2011-06-09 Univ Of Fukui Method of manufacturing lithium titanate negative electrode material
JP2013206749A (en) * 2012-03-28 2013-10-07 Nippon Chemicon Corp Production method of electrode material for secondary battery
US9932242B2 (en) 2011-12-06 2018-04-03 Sk Innovation Co., Ltd. Method for manufacturing cathode active material for lithium secondary battery
JP2020033203A (en) * 2018-08-27 2020-03-05 一般財団法人ファインセラミックスセンター Producing method of lithium ion conductive oxide

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116393A (en) * 2003-10-09 2005-04-28 Sumitomo Osaka Cement Co Ltd Method of manufacturing electrode material powder, electrode material powder, electrode, and lithium battery
JP4522683B2 (en) * 2003-10-09 2010-08-11 住友大阪セメント株式会社 Method for producing electrode material powder, electrode material powder and electrode, and lithium battery
WO2006123711A1 (en) * 2005-05-17 2006-11-23 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide for positive electrode in lithium rechargeable battery
WO2006123710A1 (en) * 2005-05-17 2006-11-23 Agc Seimi Chemical., Ltd. Method for producing lithium-containing complex oxide for positive electrode of lithium secondary battery
US8163198B2 (en) 2005-05-17 2012-04-24 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP2007173096A (en) * 2005-12-22 2007-07-05 Samsung Sdi Co Ltd Method of manufacturing cathode active substance for lithium secondary battery
JP2008153045A (en) * 2006-12-18 2008-07-03 Samsung Sdi Co Ltd Anode material for nonaqueous secondary battery and nonaqueous secondary battery using it
JP2011113924A (en) * 2009-11-30 2011-06-09 Univ Of Fukui Method of manufacturing lithium titanate negative electrode material
US9932242B2 (en) 2011-12-06 2018-04-03 Sk Innovation Co., Ltd. Method for manufacturing cathode active material for lithium secondary battery
JP2013206749A (en) * 2012-03-28 2013-10-07 Nippon Chemicon Corp Production method of electrode material for secondary battery
JP2020033203A (en) * 2018-08-27 2020-03-05 一般財団法人ファインセラミックスセンター Producing method of lithium ion conductive oxide

Similar Documents

Publication Publication Date Title
US5742070A (en) Method for preparing an active substance of chemical cells
FI123808B (en) Process for preparing a composite oxide containing lithium
US6306787B1 (en) Nickel hydroxide particles and production and use thereof
JP2009062256A (en) Method for producing inorganic particle
JP2009302044A (en) Method for manufacturing inorganic particles, positive electrode of secondary battery using the same, and secondary battery
KR101568122B1 (en) Preparation method of yolkshell structured material by spray drying and yolkshell structured materials prepared thereby
JP2005116393A (en) Method of manufacturing electrode material powder, electrode material powder, electrode, and lithium battery
JP2005347134A (en) Manufacturing method of positive electrode active material for lithium ion secondary battery
JP4051771B2 (en) Nickel hydroxide particles, production method thereof, lithium / nickel composite oxide particles using the same, and production method thereof
KR20150132375A (en) Method for the use of slurries in spray pyrolysis for the production of non-hollow, porous particles
EP0824087B1 (en) Manufacturing method of lithium complex oxide comprising cobalt or nickel
JP4735617B2 (en) Method for producing lithium transition metal composite oxide
KR20110044936A (en) Process for the production of lithium-manganese double oxide for lithium ion batteries and lithium-manganese double oxide for lithium ion batteries made by the same, and lithium ion batteries cotaining the same
JP4760805B2 (en) Lithium nickel cobalt composite oxide, production method thereof, and positive electrode active material for secondary battery
JPH09320603A (en) Manufacture of pulverized active material for lithium secondary battery
JP2024020291A (en) System with power jet module and method thereof
JPH0950811A (en) Production of lithium battery active material
JP2002506560A (en) Method for producing lithium manganese mixed oxide and use thereof
CN100429809C (en) Method for preparing lithium - nickel - manganese - cobalt - oxygen anode material of lithium ion battery
JP4144317B2 (en) Method for producing lithium transition metal composite oxide
JP4032624B2 (en) Method for producing lithium transition metal composite oxide
KR100774263B1 (en) Preparation method of cathode materials with spherical shape
JP3407594B2 (en) Method for producing lithium nickel composite oxide
JP2008010434A (en) Lithium/nickel/cobalt composite oxide, manufacturing method therefor, and cathode active material for secondary battery
KR100528455B1 (en) Method for preparing high performance cathode active materials for lithium secondary batteries and lithium secondary batteries comprising the same