JPH09304082A - 光干渉角速度計 - Google Patents
光干渉角速度計Info
- Publication number
- JPH09304082A JPH09304082A JP11991496A JP11991496A JPH09304082A JP H09304082 A JPH09304082 A JP H09304082A JP 11991496 A JP11991496 A JP 11991496A JP 11991496 A JP11991496 A JP 11991496A JP H09304082 A JPH09304082 A JP H09304082A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- amplitude
- signal
- light
- operating point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Gyroscopes (AREA)
Abstract
(57)【要約】
【課題】 光干渉角速度計に用いる光の位相を変調する
ための位相変調器の動作点或は光学路の状態が変化して
も、常に位相変調信号のレベルを一定に保ち、安定性の
高い光干渉角速度計を提供する。 【解決手段】 この発明では位相変調信号に振幅変調を
施し、この振幅変調信号を理想動作点付近では、第1種
ベッセル関数の正及び負の傾斜特性によりこの振幅変調
信号を偶数次の高調波成分に変換し、非検出状態に維持
させると共に、位相変調器の動作点が理想点から離れる
に従って第1種ベッセル関数の単一傾斜特性により振幅
変調信号成分が発生する現象を利用して位相変調器の動
作点の変化を検出し、位相変調信号のレベルを常に一定
値に維持させる。
ための位相変調器の動作点或は光学路の状態が変化して
も、常に位相変調信号のレベルを一定に保ち、安定性の
高い光干渉角速度計を提供する。 【解決手段】 この発明では位相変調信号に振幅変調を
施し、この振幅変調信号を理想動作点付近では、第1種
ベッセル関数の正及び負の傾斜特性によりこの振幅変調
信号を偶数次の高調波成分に変換し、非検出状態に維持
させると共に、位相変調器の動作点が理想点から離れる
に従って第1種ベッセル関数の単一傾斜特性により振幅
変調信号成分が発生する現象を利用して位相変調器の動
作点の変化を検出し、位相変調信号のレベルを常に一定
値に維持させる。
Description
【0001】
【発明の属する技術分野】この発明は例えば各種移動体
の姿勢の変化を検出すること等に利用することができる
光干渉角速度計に関する。
の姿勢の変化を検出すること等に利用することができる
光干渉角速度計に関する。
【0002】
【従来の技術】図4に示すようにレーザなどの光源11
からの光12が光分配結合器13により右回り光14と
左回り光15とに分配され、これらの光14,15は少
くとも一周する光学路16の両端に入射され、光学路1
6をそれぞれ右回り、左回りに通って光学路16より出
射光17,18として出射され、これら出射光17,1
8は、光分配結合器13により結合されて互に干渉し、
干渉光19として受光器21に受光される。
からの光12が光分配結合器13により右回り光14と
左回り光15とに分配され、これらの光14,15は少
くとも一周する光学路16の両端に入射され、光学路1
6をそれぞれ右回り、左回りに通って光学路16より出
射光17,18として出射され、これら出射光17,1
8は、光分配結合器13により結合されて互に干渉し、
干渉光19として受光器21に受光される。
【0003】光学路16は例えば光ファイバを複数回ル
ープ状に巻いたもので構成される。光学路16にその周
方向の角速度が印加されない状態においては出射光17
および18の位相差はほぼゼロであるが、光学路16の
軸心回りに角速度Ωが印加されるとこの角速度Ωによっ
ていわゆるサニアック(sagnac)効果が生じ、光
学路16を伝搬した出射光17,18の間に位相差Δφ
Ωが生じる。この位相差ΔφΩは、 ΔφΩ=4πRL/cλ・Ω …(1) で表わされる。ここでRはループ状に構成された光学路
16の半径、Lはループ状に構成された光学路16の長
さ、λは光源11の光の波長、cは光の速度を示す。さ
らに干渉光19の光源強度I0 は、 I0 ∝1− cosΔφΩ …(2) となる。従って干渉光19の強度I0 を測定することに
よって角速度Ωを検出することができる。
ープ状に巻いたもので構成される。光学路16にその周
方向の角速度が印加されない状態においては出射光17
および18の位相差はほぼゼロであるが、光学路16の
軸心回りに角速度Ωが印加されるとこの角速度Ωによっ
ていわゆるサニアック(sagnac)効果が生じ、光
学路16を伝搬した出射光17,18の間に位相差Δφ
Ωが生じる。この位相差ΔφΩは、 ΔφΩ=4πRL/cλ・Ω …(1) で表わされる。ここでRはループ状に構成された光学路
16の半径、Lはループ状に構成された光学路16の長
さ、λは光源11の光の波長、cは光の速度を示す。さ
らに干渉光19の光源強度I0 は、 I0 ∝1− cosΔφΩ …(2) となる。従って干渉光19の強度I0 を測定することに
よって角速度Ωを検出することができる。
【0004】しかしこの場合、入力角速度が小さな場合
においては位相差ΔφΩが小さく、cosΔφΩの変化
が僅かであり、感度が極端に低くなる。このような点か
ら従来より入力感度を最適化するため図5に示すように
光学路16の一端と光分配結合器26との間に例えば電
歪振動子に光ファイバを巻回して構成した位相変調器2
2を直列に挿入し、位相変調器駆動回路23からの駆動
信号により互に逆方向に伝搬する光28,29を位相変
調する方法がとられている。
においては位相差ΔφΩが小さく、cosΔφΩの変化
が僅かであり、感度が極端に低くなる。このような点か
ら従来より入力感度を最適化するため図5に示すように
光学路16の一端と光分配結合器26との間に例えば電
歪振動子に光ファイバを巻回して構成した位相変調器2
2を直列に挿入し、位相変調器駆動回路23からの駆動
信号により互に逆方向に伝搬する光28,29を位相変
調する方法がとられている。
【0005】図5では、(1)式で述べたサニアック位
相差ΔφΩを精度よく検出するために、光源11と光分
配結合器26の間に光分配結合器27と偏光子25を挿
入し、光分配結合器27のA′ポートに受光器21を配
置している。この場合の受光器21に到達する干渉光I
0 ′は、 I0 ′=(P0 /2){1+ cosΔφΩ(Jo(x)−2J2(x)cos2ωJ ′+ …+2J2m(x)cos2mωt ′+…)−sin ΔφΩ(2J1(x)sinωt ′ −2J3(x)sin3ωt ′+…+2J2m+1(x)sin(2m+1)ωt ′+…)}…(3) となる。mは0,1,2,3…の整数。
相差ΔφΩを精度よく検出するために、光源11と光分
配結合器26の間に光分配結合器27と偏光子25を挿
入し、光分配結合器27のA′ポートに受光器21を配
置している。この場合の受光器21に到達する干渉光I
0 ′は、 I0 ′=(P0 /2){1+ cosΔφΩ(Jo(x)−2J2(x)cos2ωJ ′+ …+2J2m(x)cos2mωt ′+…)−sin ΔφΩ(2J1(x)sinωt ′ −2J3(x)sin3ωt ′+…+2J2m+1(x)sin(2m+1)ωt ′+…)}…(3) となる。mは0,1,2,3…の整数。
【0006】ここでP0 :受光器21に到達する最大光
量 Jn :n次のベッセル関数(n=0,1,2,3…) x :2A sinπf0 τ A :位相変調の振幅 τ :光学路16を通る光の伝搬時間 f0 :位相変調器22の駆動周波数 t′:t−τ/2 (3)式から明らかなように干渉光の強度I0 ′には、
cosΔφΩに比例する項と、sinΔφΩに比例する
項とが含まれている。
量 Jn :n次のベッセル関数(n=0,1,2,3…) x :2A sinπf0 τ A :位相変調の振幅 τ :光学路16を通る光の伝搬時間 f0 :位相変調器22の駆動周波数 t′:t−τ/2 (3)式から明らかなように干渉光の強度I0 ′には、
cosΔφΩに比例する項と、sinΔφΩに比例する
項とが含まれている。
【0007】図5において受光器21によって光電変換
された電気信号の内、位相変調周波数の3倍波成分を同
期検波する同期検波回路31の出力V3 は、増幅器33
でK m 倍され、位相変調周波数の基本波成分を同期検波
する同期検波器30の出力V 1 と加算器36において加
算される。この時の出力VSIN は、 VSIN =V1 +Km ・V3 =K1 ・P0 ・J1(x)・ sinΔφΩ +Km ・K3 ・P0 ・J3(x)・ sinΔφΩ …(4) ここで、K1 ,K3 :定数 となる。増幅器33の利得を調整し、K1 =K3 =K
SIN とすると(4)式は、 VSIN =KSIN ・P0 ・(J1(x)+Km ・J3(x))・ sinΔφΩ …(5) となる。Km 〜2.2に設定すると(J1(x)+Km ・J
3(x))は、図6に示すようにx〜3.05で最大値とな
り、その近辺では、xに対し安定な特性を示すようにな
る。又そのポイントではJ2(x)も最大値を示しxに対し
安定な特性を示している。
された電気信号の内、位相変調周波数の3倍波成分を同
期検波する同期検波回路31の出力V3 は、増幅器33
でK m 倍され、位相変調周波数の基本波成分を同期検波
する同期検波器30の出力V 1 と加算器36において加
算される。この時の出力VSIN は、 VSIN =V1 +Km ・V3 =K1 ・P0 ・J1(x)・ sinΔφΩ +Km ・K3 ・P0 ・J3(x)・ sinΔφΩ …(4) ここで、K1 ,K3 :定数 となる。増幅器33の利得を調整し、K1 =K3 =K
SIN とすると(4)式は、 VSIN =KSIN ・P0 ・(J1(x)+Km ・J3(x))・ sinΔφΩ …(5) となる。Km 〜2.2に設定すると(J1(x)+Km ・J
3(x))は、図6に示すようにx〜3.05で最大値とな
り、その近辺では、xに対し安定な特性を示すようにな
る。又そのポイントではJ2(x)も最大値を示しxに対し
安定な特性を示している。
【0008】出力Vout の振幅KSIN ・P0 ・(J1(x)
+Km ・J3(x))を一定に保つため従来次の方法が提案
されている。受光器21によって光電変換された電気信
号の内、位相変調周波数の2倍波を同期検波する同期検
波回路51の出力V2 と上記VSIN をそれぞれ2乗回路
40,41において2乗し加算器42で加算するとその
出力Vは、 V=VSIN 2 +V2 2 =(KSIN ・P0 ・(J1(x)+Km ・J3(x))2・sin2ΔφΩ +(K2 ・P0 ・J2(x))2・cos2ΔφΩ …(6) ここでK2 :定数(アンプゲイン、光電変換利得及び同
期検波利得など)となる。KSIN ・P0 ・(J1(x)+K
m ・J3(x))=K2 ・P0 ・J2(x)=Kとなるようにア
ンプゲインを調整すると出力電圧Vは、 V=K2 ・(sin2ΔφΩ+cos2ΔφΩ) =K2 …(7) となる。
+Km ・J3(x))を一定に保つため従来次の方法が提案
されている。受光器21によって光電変換された電気信
号の内、位相変調周波数の2倍波を同期検波する同期検
波回路51の出力V2 と上記VSIN をそれぞれ2乗回路
40,41において2乗し加算器42で加算するとその
出力Vは、 V=VSIN 2 +V2 2 =(KSIN ・P0 ・(J1(x)+Km ・J3(x))2・sin2ΔφΩ +(K2 ・P0 ・J2(x))2・cos2ΔφΩ …(6) ここでK2 :定数(アンプゲイン、光電変換利得及び同
期検波利得など)となる。KSIN ・P0 ・(J1(x)+K
m ・J3(x))=K2 ・P0 ・J2(x)=Kとなるようにア
ンプゲインを調整すると出力電圧Vは、 V=K2 ・(sin2ΔφΩ+cos2ΔφΩ) =K2 …(7) となる。
【0009】出力電圧Vの初期値すなわち基準値をKR
2 とし、出力電圧Vと差動増幅器43で比較してやりそ
の差分を積分器45を通して光源光量調整回路47に負
帰還し、光源11の出射光量を制御すると、光源11の
出射効率、光源11からの出射光が光学路16を経て受
光器21に到達するまでの間の光伝送損失及び光学系に
おける光の偏波状態が環境条件の変化で変わっても、出
力電圧Vを常に基準値KR2 に保つことができる。すな
わちVout の振幅を一定に保つことができる。
2 とし、出力電圧Vと差動増幅器43で比較してやりそ
の差分を積分器45を通して光源光量調整回路47に負
帰還し、光源11の出射光量を制御すると、光源11の
出射効率、光源11からの出射光が光学路16を経て受
光器21に到達するまでの間の光伝送損失及び光学系に
おける光の偏波状態が環境条件の変化で変わっても、出
力電圧Vを常に基準値KR2 に保つことができる。すな
わちVout の振幅を一定に保つことができる。
【0010】(3)式で示したように第1種ベッセル関
数の変数xは、位相変調の振幅Aと比例関係にある。
(5)式から解かれるように入力感度はx(=2Asi
nπf0 τ)の値に左右される。xの値は位相変調の振
幅A、位相変調器22の駆動周波数f0 および光学路1
6を通る光の伝搬時間τによって決まる。駆動周波数f
0 および伝搬時間τは温度による影響が比較的小さい
が、位相変調の振幅Aは温度による影響を受けやすい。
数の変数xは、位相変調の振幅Aと比例関係にある。
(5)式から解かれるように入力感度はx(=2Asi
nπf0 τ)の値に左右される。xの値は位相変調の振
幅A、位相変調器22の駆動周波数f0 および光学路1
6を通る光の伝搬時間τによって決まる。駆動周波数f
0 および伝搬時間τは温度による影響が比較的小さい
が、位相変調の振幅Aは温度による影響を受けやすい。
【0011】つまり位相変調器22は、例えば電歪振動
子に光学路16を構成する光ファイバを巻きつけ、その
電歪振動子に周波数f0 の駆動電圧を印加して振動さ
せ、光学路16を伸縮させ、そこを通る右回り光と左回
り光とを位相変調させるようにしたものである。駆動周
波数f0 はその電歪振動子を効率よく伸縮させるため電
歪振動子の共振点に合わせるのが一般的である。この共
振周波数は、温度によって変化するため位相変調の振幅
Aは、電歪振動子の機械的Q(共振周波数における機械
的振動の“するどさ”をさす)の高い程温度の影響を受
ける。その結果x値が変化し、入力感度が変動する不都
合が生じる。
子に光学路16を構成する光ファイバを巻きつけ、その
電歪振動子に周波数f0 の駆動電圧を印加して振動さ
せ、光学路16を伸縮させ、そこを通る右回り光と左回
り光とを位相変調させるようにしたものである。駆動周
波数f0 はその電歪振動子を効率よく伸縮させるため電
歪振動子の共振点に合わせるのが一般的である。この共
振周波数は、温度によって変化するため位相変調の振幅
Aは、電歪振動子の機械的Q(共振周波数における機械
的振動の“するどさ”をさす)の高い程温度の影響を受
ける。その結果x値が変化し、入力感度が変動する不都
合が生じる。
【0012】又光ファイバは、最適動作を行なうため適
切なテンションで巻かれている。しかしこのテンション
は、周囲温度が変わると電歪振動子と光ファイバの熱膨
張係数の差で初期設定値からずれてしまう。また光ファ
イバの緩衝層(シリコーン又はウレタンなど)によるダ
ンパ効果も温度によって変わり結果として受光器21に
得られる位相変調の振幅Aが変化し入力感度が変動す
る。
切なテンションで巻かれている。しかしこのテンション
は、周囲温度が変わると電歪振動子と光ファイバの熱膨
張係数の差で初期設定値からずれてしまう。また光ファ
イバの緩衝層(シリコーン又はウレタンなど)によるダ
ンパ効果も温度によって変わり結果として受光器21に
得られる位相変調の振幅Aが変化し入力感度が変動す
る。
【0013】また、位相変調器22をニオブ酸リチュー
ム(LiNbO3 )にプロトン変換法或はチタン拡散法
によって光導波路を構成し、その光導波路のまわりに電
極を配置した構造の位相変調器も存在する。このような
構造の位相変調器を使用し、更に、位相変調信号の振幅
Aを一定に保ったとしても光導波路の電気光学係数等の
温度係数によって受光器21に入射される光量I0 ′は
変動する。
ム(LiNbO3 )にプロトン変換法或はチタン拡散法
によって光導波路を構成し、その光導波路のまわりに電
極を配置した構造の位相変調器も存在する。このような
構造の位相変調器を使用し、更に、位相変調信号の振幅
Aを一定に保ったとしても光導波路の電気光学係数等の
温度係数によって受光器21に入射される光量I0 ′は
変動する。
【0014】そこで従来次に示す方法がとられていた。
図5において同期検波回路51,52は、それぞれ
V2 ,V4 の信号を出力する。このV2 とV4 は、 V2 =K2 ・P0 ・J2(x)・ cosΔφΩ …(8) V4 =K4 ・P0 ・J4(x)・ cosΔφΩ …(9) で表わされる。
図5において同期検波回路51,52は、それぞれ
V2 ,V4 の信号を出力する。このV2 とV4 は、 V2 =K2 ・P0 ・J2(x)・ cosΔφΩ …(8) V4 =K4 ・P0 ・J4(x)・ cosΔφΩ …(9) で表わされる。
【0015】つぎに除算器53において信号V4 を信号
V2 で割ってやると Vd =V4 /V2 ={K4 ・J4(x)}/{K2 ・J2(x)} アンプゲインを調整しK2 =K4 としてやると Vd =J4(x)/J2(x) …(10) となり、J2(x)とJ4(x)との間には、入力角速度に関係
しない一定の関係ができあがる。
V2 で割ってやると Vd =V4 /V2 ={K4 ・J4(x)}/{K2 ・J2(x)} アンプゲインを調整しK2 =K4 としてやると Vd =J4(x)/J2(x) …(10) となり、J2(x)とJ4(x)との間には、入力角速度に関係
しない一定の関係ができあがる。
【0016】図7は、xに対するVd =J4(x)/J2(x)
の関係を示したグラフで動作点(x=3.05)におけ
るVd の値は約0.285になる。基準値を0.285
に設定しVd と差動増幅器54で比較してやりその差分
を積分器55を通し、位相変調器駆動回路23に負帰還
し位相変調器に印加する電圧を制御してやるとVd の値
を常に0.285に設定することができる。即ちxの値
を3.05に保つことができる。
の関係を示したグラフで動作点(x=3.05)におけ
るVd の値は約0.285になる。基準値を0.285
に設定しVd と差動増幅器54で比較してやりその差分
を積分器55を通し、位相変調器駆動回路23に負帰還
し位相変調器に印加する電圧を制御してやるとVd の値
を常に0.285に設定することができる。即ちxの値
を3.05に保つことができる。
【0017】位相変調器駆動回路23は、差動増幅器5
4の正の信号によって位相変調器22に印加する駆動周
波数f0 の信号の電圧を増加させ、差動増幅器54の負
の信号によって位相変調器22に印加する駆動周波数f
0 の電圧を小さくするように構成し自動制御回路を構成
している。今たとえば何らかの原因で、例えば位相変調
の振幅Aが増加しその結果xの値が増加したとすると図
7に示すグラフよりV d の値は、増加する。その結果と
して差動増幅器54は、負の信号を積分器55に印加す
る。積分器55の出力は減少しその結果、位相変調器駆
動回路23は、位相変調器22への印加電圧を減少させ
位相変調の振幅Aの値を減少させる。一方位相変調の振
幅Aが減少しその結果としてxの値が減少したとすると
図7に示すグラフよりVd の値は、減少する。その結
果、差動増幅器54は、正の信号を積分器55に印加す
る。積分器55の出力は、増加しその結果、位相変調器
駆動回路23は、位相変調器22への印加電圧を増加さ
せ位相変調の振幅Aを増加させる。
4の正の信号によって位相変調器22に印加する駆動周
波数f0 の信号の電圧を増加させ、差動増幅器54の負
の信号によって位相変調器22に印加する駆動周波数f
0 の電圧を小さくするように構成し自動制御回路を構成
している。今たとえば何らかの原因で、例えば位相変調
の振幅Aが増加しその結果xの値が増加したとすると図
7に示すグラフよりV d の値は、増加する。その結果と
して差動増幅器54は、負の信号を積分器55に印加す
る。積分器55の出力は減少しその結果、位相変調器駆
動回路23は、位相変調器22への印加電圧を減少させ
位相変調の振幅Aの値を減少させる。一方位相変調の振
幅Aが減少しその結果としてxの値が減少したとすると
図7に示すグラフよりVd の値は、減少する。その結
果、差動増幅器54は、正の信号を積分器55に印加す
る。積分器55の出力は、増加しその結果、位相変調器
駆動回路23は、位相変調器22への印加電圧を増加さ
せ位相変調の振幅Aを増加させる。
【0018】このようにして、位相変調の振幅Aの値を
変えるような外部作用(例えば温度・振動・衝撃など)
が働いてもxの値を常に一定に保つことができジャイロ
出力としての感度を一定に保つことができる。この従来
例では、信号V4 を信号V2で割算したが、信号V2 を
信号Vd で割算しても同様にできる。この場合、動作点
(x=3.05)におけるVd の値は、約3.5とな
る。この場合、基準信号発生器56における基準値は、
3.5となる。
変えるような外部作用(例えば温度・振動・衝撃など)
が働いてもxの値を常に一定に保つことができジャイロ
出力としての感度を一定に保つことができる。この従来
例では、信号V4 を信号V2で割算したが、信号V2 を
信号Vd で割算しても同様にできる。この場合、動作点
(x=3.05)におけるVd の値は、約3.5とな
る。この場合、基準信号発生器56における基準値は、
3.5となる。
【0019】
【発明が解決しようとする課題】図5に示したように、
従来は位相変調器22の動作点の変動に起因して発生す
る干渉光強度I0 ′の変動を除去するために、第1同期
検波回路30の他に3台の同期検波回路31,51,5
2を設け、それぞれの同期検波出力V3 ,V2 ,V4 を
利用して左右両光の位相変調の安定性を改善し、入出力
スケールファクタの安定性を改善している。
従来は位相変調器22の動作点の変動に起因して発生す
る干渉光強度I0 ′の変動を除去するために、第1同期
検波回路30の他に3台の同期検波回路31,51,5
2を設け、それぞれの同期検波出力V3 ,V2 ,V4 を
利用して左右両光の位相変調の安定性を改善し、入出力
スケールファクタの安定性を改善している。
【0020】然し乍ら回路規模は大きく、複雑な構成で
あるため製造に手間が掛りコスト高になる欠点がある。
また、上述したように従来の安定化制御方法によれば位
相変調信号の高次の高調波を検出して制御信号として利
用するから、高次の高調波はわずかなレベルしか発生し
ないから、高次の高調波を検出するためには位相変調器
22に与える位相変調信号の振幅Aを大きく採らなけれ
ばならない。位相変調器22に与える位相変調信号の振
幅Aを大きくすると、位相変調器22では位相変調の他
に、光量に振幅変化を与えてしまい、この振幅変化が、
入力角速度によるものか否かを判別できないため、誤差
信号として取り残される欠点もある。
あるため製造に手間が掛りコスト高になる欠点がある。
また、上述したように従来の安定化制御方法によれば位
相変調信号の高次の高調波を検出して制御信号として利
用するから、高次の高調波はわずかなレベルしか発生し
ないから、高次の高調波を検出するためには位相変調器
22に与える位相変調信号の振幅Aを大きく採らなけれ
ばならない。位相変調器22に与える位相変調信号の振
幅Aを大きくすると、位相変調器22では位相変調の他
に、光量に振幅変化を与えてしまい、この振幅変化が、
入力角速度によるものか否かを判別できないため、誤差
信号として取り残される欠点もある。
【0021】また、高次の高調波を取扱うためには回路
素子は高い周波数に応答する素子を用いる必要があり、
この点でもコスト高となり、消費電流の増加をまねく。
また高い周波数の回路は正常に動作させるための調整に
も手間が掛り、この点でもコスト高となる欠点がある。
この発明の第1の目的は、回路規模が小さく、従って簡
素な構造によって構成することができる光干渉角速度計
を提供しようとするものである。
素子は高い周波数に応答する素子を用いる必要があり、
この点でもコスト高となり、消費電流の増加をまねく。
また高い周波数の回路は正常に動作させるための調整に
も手間が掛り、この点でもコスト高となる欠点がある。
この発明の第1の目的は、回路規模が小さく、従って簡
素な構造によって構成することができる光干渉角速度計
を提供しようとするものである。
【0022】この発明の第2の目的は、位相変調信号の
基本波成分を利用して位相変調器の動作点の移動を検出
できる構成とし、これにより位相変調器に与える位相変
調信号の振幅をことさら大きくしなくとも安定に動作さ
せることができ、従って位相変調器において、光量に振
幅変化を与えることがない光干渉角速度計を提供しよう
とするものである。
基本波成分を利用して位相変調器の動作点の移動を検出
できる構成とし、これにより位相変調器に与える位相変
調信号の振幅をことさら大きくしなくとも安定に動作さ
せることができ、従って位相変調器において、光量に振
幅変化を与えることがない光干渉角速度計を提供しよう
とするものである。
【0023】
【課題を解決するための手段】この発明では少なくとも
一周する光学路と、その光学路に対し光源からの光を右
回光及び左回光として入射する光分岐手段と、その光学
路を伝搬して来た左右両光を干渉させる光干渉手段と、
光分岐手段と光学路の一端との間にこれらと継続的に配
置されて左右両光に位相変化を与える位相変調手段と、
干渉光の光強度を電気信号として検出する受光器と、そ
の受光器からの出力の内、位相変調手段の変調周波数又
は、その高調波成分を同期検波し、角速度情報を含む信
号を出力する第1同期検波手段を有する光干渉角速度計
において、位相変調手段に与えられる位相変調信号の振
幅を変調させる振幅変調手段を設け、この振幅変調手段
によって変調された振幅変調信号の有無を検出して位相
変調手段の動作点のずれを検出する動作点検出手段と、
この動作点検出手段の検出信号を利用して位相変調手段
の動作点のずれを修正制御し、位相変調信号のレベルが
常に一定となるように制御する位相変調制御手段を設け
て構成したことを特徴とする光干渉角速度計を提案する
ものである。
一周する光学路と、その光学路に対し光源からの光を右
回光及び左回光として入射する光分岐手段と、その光学
路を伝搬して来た左右両光を干渉させる光干渉手段と、
光分岐手段と光学路の一端との間にこれらと継続的に配
置されて左右両光に位相変化を与える位相変調手段と、
干渉光の光強度を電気信号として検出する受光器と、そ
の受光器からの出力の内、位相変調手段の変調周波数又
は、その高調波成分を同期検波し、角速度情報を含む信
号を出力する第1同期検波手段を有する光干渉角速度計
において、位相変調手段に与えられる位相変調信号の振
幅を変調させる振幅変調手段を設け、この振幅変調手段
によって変調された振幅変調信号の有無を検出して位相
変調手段の動作点のずれを検出する動作点検出手段と、
この動作点検出手段の検出信号を利用して位相変調手段
の動作点のずれを修正制御し、位相変調信号のレベルが
常に一定となるように制御する位相変調制御手段を設け
て構成したことを特徴とする光干渉角速度計を提案する
ものである。
【0024】位相変調手段の動作点のずれを検出する動
作点検出手段としては振幅変調周波数成分を抽出する第
2同期検波手段によって構成することができる。この発
明の構成によれば、左回光及び右回光に位相変化を与え
る位相変調信号にこの位相変調信号の周波数より低い周
波数で振幅変調を施こす。この振幅変調信号は位相変調
手段の動作点が予め設定した値(x≒1.84)に合致
している状態では第1種ベッセル関数J1(x)の特性曲線
の頂点の特性(正の傾斜と負の傾斜の双極傾斜特性)に
より2倍の高調波に変換される。このため振幅変調信号
成分を検出する動作点検出手段の検出出力信号はゼロで
ある。
作点検出手段としては振幅変調周波数成分を抽出する第
2同期検波手段によって構成することができる。この発
明の構成によれば、左回光及び右回光に位相変化を与え
る位相変調信号にこの位相変調信号の周波数より低い周
波数で振幅変調を施こす。この振幅変調信号は位相変調
手段の動作点が予め設定した値(x≒1.84)に合致
している状態では第1種ベッセル関数J1(x)の特性曲線
の頂点の特性(正の傾斜と負の傾斜の双極傾斜特性)に
より2倍の高調波に変換される。このため振幅変調信号
成分を検出する動作点検出手段の検出出力信号はゼロで
ある。
【0025】これに対し、位相変調手段の動作点が温度
変化等によって移動すると、振幅変調信号はJ1(x)特性
曲線の片側の単極傾斜特性に掛り、これにより光強度信
号には振幅変調の周波数成分が現われる。位相変調手段
の動作点がx≒1.84を中心に増加方向に変化した場
合は、例えば動作点検出手段は例えば正極性の検出信号
を出力し、xの値が減少方向に変化した場合は動作点検
出手段は負極性の検出信号を出力する。従ってこの検出
信号を位相変調手段の振幅制御端子に供給することによ
り、位相変調信号の振幅を常に一定となるように制御す
ることができる。
変化等によって移動すると、振幅変調信号はJ1(x)特性
曲線の片側の単極傾斜特性に掛り、これにより光強度信
号には振幅変調の周波数成分が現われる。位相変調手段
の動作点がx≒1.84を中心に増加方向に変化した場
合は、例えば動作点検出手段は例えば正極性の検出信号
を出力し、xの値が減少方向に変化した場合は動作点検
出手段は負極性の検出信号を出力する。従ってこの検出
信号を位相変調手段の振幅制御端子に供給することによ
り、位相変調信号の振幅を常に一定となるように制御す
ることができる。
【0026】この発明の特徴としては角速度情報を検出
するための第1同期検波回路の他に位相変調手段の動作
点のずれを検出するための第2同期検波回路を一台設け
れば済むため、回路規模は従来のものと比較して大幅に
縮小することができる。よって大幅なコストダウンが期
待できる。更に、第2同期検波回路は位相変調信号を振
幅変調した振幅変調信号成分を取り出せばよいから、位
相変調信号の周波数より低い周波数の信号を取扱うこと
になる。よって特別に高い周波数の信号を取扱うもので
ないから低消費電力の回路素子を使用できる。また安価
な素子を用いることができるため、この点でもコストダ
ウンが期待できる。また、位相変調信号の高次の高調波
を制御信号として検出するものでないから、位相変調信
号の振幅Aを大きく採らなくてよい。このために位相変
調器では光の位相を変調するだけで、位相変調動作に伴
なう振幅変調成分を低減できることから、誤差信号の少
ない精度の高い角速度検出信号を得ることができる利点
が得られる。
するための第1同期検波回路の他に位相変調手段の動作
点のずれを検出するための第2同期検波回路を一台設け
れば済むため、回路規模は従来のものと比較して大幅に
縮小することができる。よって大幅なコストダウンが期
待できる。更に、第2同期検波回路は位相変調信号を振
幅変調した振幅変調信号成分を取り出せばよいから、位
相変調信号の周波数より低い周波数の信号を取扱うこと
になる。よって特別に高い周波数の信号を取扱うもので
ないから低消費電力の回路素子を使用できる。また安価
な素子を用いることができるため、この点でもコストダ
ウンが期待できる。また、位相変調信号の高次の高調波
を制御信号として検出するものでないから、位相変調信
号の振幅Aを大きく採らなくてよい。このために位相変
調器では光の位相を変調するだけで、位相変調動作に伴
なう振幅変調成分を低減できることから、誤差信号の少
ない精度の高い角速度検出信号を得ることができる利点
が得られる。
【0027】
【発明の実施の形態】図1にこの発明の一実施例を示
す。図4と対応する部分には同一符号を付して示す。受
光器21の出力Vp は第1同期検波回路18によって位
相変調信号の一次成分が同期検波され、ローパスフィル
タ60で交流成分が濾波されて直流の角速度検出信号V
0 を出力端子48に出力する。この角速度検出信号V0
は、 V0 =K1 ・J1(x)・ sinΔφΩ …(11) K1 =I/2・Kop・Kpsd1 Kpsd1:第1同期検波回路30及びローパスフィルタ6
0の総合利得 次に、この発明で提案する位相変調の安定化について説
明する。
す。図4と対応する部分には同一符号を付して示す。受
光器21の出力Vp は第1同期検波回路18によって位
相変調信号の一次成分が同期検波され、ローパスフィル
タ60で交流成分が濾波されて直流の角速度検出信号V
0 を出力端子48に出力する。この角速度検出信号V0
は、 V0 =K1 ・J1(x)・ sinΔφΩ …(11) K1 =I/2・Kop・Kpsd1 Kpsd1:第1同期検波回路30及びローパスフィルタ6
0の総合利得 次に、この発明で提案する位相変調の安定化について説
明する。
【0028】位相変調器駆動回路23は、発振器58か
ら出力されるクロックVc1b によって周波数をfm とす
る正弦波の位相変調信号SQを生成する。更に、この位
相変調器駆動回路23は振幅制御端子23Aを具備し、
この振幅制御端子23Aに与えられる直流の制御電圧に
よって位相変調信号の振幅を制御できるように構成され
る。
ら出力されるクロックVc1b によって周波数をfm とす
る正弦波の位相変調信号SQを生成する。更に、この位
相変調器駆動回路23は振幅制御端子23Aを具備し、
この振幅制御端子23Aに与えられる直流の制御電圧に
よって位相変調信号の振幅を制御できるように構成され
る。
【0029】振幅制御端子23Aに対し、振幅変調用信
号発生回路69が設けられる。この振幅変調用信号発生
回路69は位相変調信号の周波数fm より低い周波数f
AMの例えば正弦波信号AMを発生し、この正弦波信号A
Mを加算器68を通じて振幅制御端子23Aに与える。
従って位相変調信号SQは振幅変調用信号AMによって
振幅変調されて位相変調器22に供給される。
号発生回路69が設けられる。この振幅変調用信号発生
回路69は位相変調信号の周波数fm より低い周波数f
AMの例えば正弦波信号AMを発生し、この正弦波信号A
Mを加算器68を通じて振幅制御端子23Aに与える。
従って位相変調信号SQは振幅変調用信号AMによって
振幅変調されて位相変調器22に供給される。
【0030】位相変調レベル設定回路67は位相変調器
22の動作点を設定する基準電圧VRを発生する。この
実施例では位相変調器22の動作点を第1種ベッセル関
数J 1(x)を対象とし、xの値をx≒1.84の付近に設
定する場合について説明する。基準電圧VRにより、位
相変調器駆動回路23が出力する位相変調信号の振幅を
調整し、位相変調器22の動作点をx≒1.84の付近
に設定する。振幅変調周波数fAMで振幅変調された位相
変調信号SQを位相変調器22に印加すると、xの値は
x≒1.84を中心に周波数fAMで振幅変調される。図
2は振幅変調した場合に現われる第1種ベッセル関数J
1(x)の変動を示したもので、Iの領域はxの値がx≒
1.84の位置に設定されている状態を示す。IIの領域
はx≒1.84の理想値から+Δxだけずれた場合、II
I の領域は理想値から−Δxだけずれた場合を示す。
22の動作点を設定する基準電圧VRを発生する。この
実施例では位相変調器22の動作点を第1種ベッセル関
数J 1(x)を対象とし、xの値をx≒1.84の付近に設
定する場合について説明する。基準電圧VRにより、位
相変調器駆動回路23が出力する位相変調信号の振幅を
調整し、位相変調器22の動作点をx≒1.84の付近
に設定する。振幅変調周波数fAMで振幅変調された位相
変調信号SQを位相変調器22に印加すると、xの値は
x≒1.84を中心に周波数fAMで振幅変調される。図
2は振幅変調した場合に現われる第1種ベッセル関数J
1(x)の変動を示したもので、Iの領域はxの値がx≒
1.84の位置に設定されている状態を示す。IIの領域
はx≒1.84の理想値から+Δxだけずれた場合、II
I の領域は理想値から−Δxだけずれた場合を示す。
【0031】Iの領域では第1種ベッセル関数J1(x)の
頂点を中心に正の傾斜と、負の傾斜を持つ双極傾斜特性
で振幅変調信号が振幅変調されるから、xの振幅変調の
一周期TAMの間にJ1(x)の変化は図2にA′,B′,
C′,D′,E′に示すように、周期TAMの間に2周期
含まれ、振幅変調周波数fAM(=1/TAM)の成分は含
まれていない。詳しくは2倍波が最も大きく現われる
が、厳密には2倍波を含む偶数次の高調波成分が含まれ
ている。
頂点を中心に正の傾斜と、負の傾斜を持つ双極傾斜特性
で振幅変調信号が振幅変調されるから、xの振幅変調の
一周期TAMの間にJ1(x)の変化は図2にA′,B′,
C′,D′,E′に示すように、周期TAMの間に2周期
含まれ、振幅変調周波数fAM(=1/TAM)の成分は含
まれていない。詳しくは2倍波が最も大きく現われる
が、厳密には2倍波を含む偶数次の高調波成分が含まれ
ている。
【0032】一方、IIの領域では、J1(x)特性曲線の
負の傾斜特性で振幅変調信号が振幅変調されるからxの
振幅変調の一周期TAMの間にJ1(x)の変化は図2に
F′,G′,H′,I′,J′に示すように、周期TAM
の間に振幅変調周波数fAM成分がそのまま現われる。こ
の振幅変調周波数fAM成分は第1同期検波回路18の出
力側に位相変調信号の振幅変動成分として現われる。こ
の振幅変動成分はローパスフィルタ60で濾波されて角
速度検出信号V0 から除去される。
負の傾斜特性で振幅変調信号が振幅変調されるからxの
振幅変調の一周期TAMの間にJ1(x)の変化は図2に
F′,G′,H′,I′,J′に示すように、周期TAM
の間に振幅変調周波数fAM成分がそのまま現われる。こ
の振幅変調周波数fAM成分は第1同期検波回路18の出
力側に位相変調信号の振幅変動成分として現われる。こ
の振幅変動成分はローパスフィルタ60で濾波されて角
速度検出信号V0 から除去される。
【0033】これに対し、第2同期検波回路62では第
1同期検波回路30の出力信号を振幅変調信号AMと同
じ周波数fAMの信号VC3を同期検波の参照信号として同
期検波を行なう。従って第2同期検波回路62は領域I
では同期検波出力が“0”であるが領域IIでは位相変調
器22の動作点のずれに対応した例えば負極性の同期検
波出力−EDを出力する。領域III では第1同期検波回
路18の出力側に現われる振幅変調信号成分が領域IIの
場合の逆位相で現われるため、第2同期検波回路62の
同期検波出力は動作点のずれ量に対応した正極性の+E
Dが出力される。第2同期検波回路62の検波出力は例
えば積分器のようなローパス特性を持つ電気フィルタ6
3を通して取り出される。このように、第2同期検波回
路62は位相変調器22の動作点が正規の位置から移動
した場合に、そのずれ量に対応した量と、ずれの向に対
応した極性の検出信号を出力するから、主に第2同期検
波回路62によって動作点検出手段を構成しているもの
と見ることができる。
1同期検波回路30の出力信号を振幅変調信号AMと同
じ周波数fAMの信号VC3を同期検波の参照信号として同
期検波を行なう。従って第2同期検波回路62は領域I
では同期検波出力が“0”であるが領域IIでは位相変調
器22の動作点のずれに対応した例えば負極性の同期検
波出力−EDを出力する。領域III では第1同期検波回
路18の出力側に現われる振幅変調信号成分が領域IIの
場合の逆位相で現われるため、第2同期検波回路62の
同期検波出力は動作点のずれ量に対応した正極性の+E
Dが出力される。第2同期検波回路62の検波出力は例
えば積分器のようなローパス特性を持つ電気フィルタ6
3を通して取り出される。このように、第2同期検波回
路62は位相変調器22の動作点が正規の位置から移動
した場合に、そのずれ量に対応した量と、ずれの向に対
応した極性の検出信号を出力するから、主に第2同期検
波回路62によって動作点検出手段を構成しているもの
と見ることができる。
【0034】第2同期検波回路62の同期検波出力は電
気フィルタ63を通じて加算器64に供給され、加算器
64において位相変調レベル設定回路67から与えられ
る基準電圧VRに加算され、位相変調器駆動回路23の
振幅制御端子23Aに供給される。位相変調器22の動
作点がx≒1.84の位置に合致している場合には第2
同期検波回路62の同期検波出力は“0”であるから、
加算器64には“0”が供給される。よってこの状態で
は位相変調器駆動回路23の制御端子23Aには基準電
圧VRと振幅変調信号AMだけが供給される。一方、位
相変調器22の動作点がx≒1.84の位置から例えば
xが増加する方向に変化したとすると、位相変調器22
の動作点が変化し、位相変調信号のレベルが増加方向に
変動する。xが増加する方向に変化した場合には、上記
したように第2同期検波回路62はそのずれ量に対応し
た負極性の同期検波出力信号−EDを出力する。
気フィルタ63を通じて加算器64に供給され、加算器
64において位相変調レベル設定回路67から与えられ
る基準電圧VRに加算され、位相変調器駆動回路23の
振幅制御端子23Aに供給される。位相変調器22の動
作点がx≒1.84の位置に合致している場合には第2
同期検波回路62の同期検波出力は“0”であるから、
加算器64には“0”が供給される。よってこの状態で
は位相変調器駆動回路23の制御端子23Aには基準電
圧VRと振幅変調信号AMだけが供給される。一方、位
相変調器22の動作点がx≒1.84の位置から例えば
xが増加する方向に変化したとすると、位相変調器22
の動作点が変化し、位相変調信号のレベルが増加方向に
変動する。xが増加する方向に変化した場合には、上記
したように第2同期検波回路62はそのずれ量に対応し
た負極性の同期検波出力信号−EDを出力する。
【0035】この同期検波出力信号−EDが出力される
と、基準電圧VRからこの同期検波出力信号−EDが減
算され、位相変調器駆動回路23の制御端子23Aに供
給される制御電圧が減少方向に制御される。これにより
位相変調器駆動回路23が出力する位相変調信号の振幅
は減少方向に制御され、位相変調器22の動作点の移動
に伴なって受光器21に検出される位相変調信号の振幅
の増加は修正されx≒1.84の動作点に戻される。
と、基準電圧VRからこの同期検波出力信号−EDが減
算され、位相変調器駆動回路23の制御端子23Aに供
給される制御電圧が減少方向に制御される。これにより
位相変調器駆動回路23が出力する位相変調信号の振幅
は減少方向に制御され、位相変調器22の動作点の移動
に伴なって受光器21に検出される位相変調信号の振幅
の増加は修正されx≒1.84の動作点に戻される。
【0036】位相変調器22の動作点xがx≒1.84
より減少方向に変動し、受光器21に検出される位相変
調信号の振幅が減少方向に変動した場合には領域III に
示すように振幅変調成分が第1同期検波回路30の出力
側に現われる。この振幅変調成分を第2同期検波回路6
2で同期検波することにより、第2同期検波回路62は
正極性の同期検波出力信号+EDを出力する。
より減少方向に変動し、受光器21に検出される位相変
調信号の振幅が減少方向に変動した場合には領域III に
示すように振幅変調成分が第1同期検波回路30の出力
側に現われる。この振幅変調成分を第2同期検波回路6
2で同期検波することにより、第2同期検波回路62は
正極性の同期検波出力信号+EDを出力する。
【0037】この同期検波出力信号+EDが加算器64
で基準電圧VRに加算されて位相変調器駆動回路23の
制御端子23Aに供給されるから、位相変調器駆動回路
23から位相変調器22に供給される位相変調信号の振
幅は増加方向に制御される。この制御動作によって受光
器21に検出される位相変調信号の振幅は増加方向に修
正され、x≒1.84の動作点に戻される。
で基準電圧VRに加算されて位相変調器駆動回路23の
制御端子23Aに供給されるから、位相変調器駆動回路
23から位相変調器22に供給される位相変調信号の振
幅は増加方向に制御される。この制御動作によって受光
器21に検出される位相変調信号の振幅は増加方向に修
正され、x≒1.84の動作点に戻される。
【0038】尚、第2同期検波回路62に与える同期検
波のための参照信号VC3は出力端子48に出力される角
速度検出信号V0 の極性に対応した極性が切替られる。
このために、振幅変調用信号発生回路69と第2同期検
波回路62との間に極性切替回路70を設け、この極性
切替回路70を出力端子48に出力される角速度検出信
号V0 の極性を判別する電圧比較器71の出力によって
切替制御する。
波のための参照信号VC3は出力端子48に出力される角
速度検出信号V0 の極性に対応した極性が切替られる。
このために、振幅変調用信号発生回路69と第2同期検
波回路62との間に極性切替回路70を設け、この極性
切替回路70を出力端子48に出力される角速度検出信
号V0 の極性を判別する電圧比較器71の出力によって
切替制御する。
【0039】また、上述の実施例では位相変調器22の
動作点を第1種ベッセル関数J1(x)のx≒1.84付近
に選定した場合を説明したが、図3に示した第1種ベッ
セル関数J2(x),J3(x),J4(x)等の頂点B,C,Dの
位置を利用することもできる。また、第2同期検波回路
62の同期検波出力信号を積分器によって構成した電気
フィルタ63で濾波して取出すと説明したが、単なる増
幅器で構成することも可能である。また、振幅変調用信
号AMは正弦波であるものとして説明したが、三角波、
矩形波又は周期関数を持つものであれば特に正弦波にこ
だわるものでない。
動作点を第1種ベッセル関数J1(x)のx≒1.84付近
に選定した場合を説明したが、図3に示した第1種ベッ
セル関数J2(x),J3(x),J4(x)等の頂点B,C,Dの
位置を利用することもできる。また、第2同期検波回路
62の同期検波出力信号を積分器によって構成した電気
フィルタ63で濾波して取出すと説明したが、単なる増
幅器で構成することも可能である。また、振幅変調用信
号AMは正弦波であるものとして説明したが、三角波、
矩形波又は周期関数を持つものであれば特に正弦波にこ
だわるものでない。
【0040】
【発明の効果】以上説明したようにこの発明では第1種
ベッセル関数J1(x)又はJ2(x),J3(x)の各頂点A又は
B,C(図3参照)の正及び負の傾斜を持つ双極傾斜特
性を利用して振幅変調信号の成分が理想動作点付近に存
在する場合には偶数次の高調波成分に変換され、理想動
作点からずれるに従って単極傾斜特性により振幅変調信
号の基本波成分が発生する現象を利用して位相変調器2
2の動作点のずれを検出する方式を採ったから、第1同
期検波回路30の他に、振幅変調信号成分を検出するた
めの第2同期検波回路62及び振幅変調用信号発生器6
9等を設けるだけでよい。従って図5に示した構成と比
較して構成を大幅に簡素化することができ、この点でコ
ストダウンが期待できる。また、第1同期検波回路30
及び第2同期検波回路62は位相変調信号の高調波のよ
うに高い周波数の信号を取扱うものでないから、特別に
高速動作する素子を用いる必要がない。よって低消費電
力化がはかられ、かつ安価な部品を用いることができる
ためこの点でもコストダウンが期待できる。
ベッセル関数J1(x)又はJ2(x),J3(x)の各頂点A又は
B,C(図3参照)の正及び負の傾斜を持つ双極傾斜特
性を利用して振幅変調信号の成分が理想動作点付近に存
在する場合には偶数次の高調波成分に変換され、理想動
作点からずれるに従って単極傾斜特性により振幅変調信
号の基本波成分が発生する現象を利用して位相変調器2
2の動作点のずれを検出する方式を採ったから、第1同
期検波回路30の他に、振幅変調信号成分を検出するた
めの第2同期検波回路62及び振幅変調用信号発生器6
9等を設けるだけでよい。従って図5に示した構成と比
較して構成を大幅に簡素化することができ、この点でコ
ストダウンが期待できる。また、第1同期検波回路30
及び第2同期検波回路62は位相変調信号の高調波のよ
うに高い周波数の信号を取扱うものでないから、特別に
高速動作する素子を用いる必要がない。よって低消費電
力化がはかられ、かつ安価な部品を用いることができる
ためこの点でもコストダウンが期待できる。
【0041】更に、受光器21から出力される光電変換
信号から位相変調信号とこの位相変調信号を振幅変調し
て光学路16に与えられた振幅変調信号とを取り出せば
よいから、これらの信号は周波数が低いため位相変調器
22には特別に振幅が大きい位相変調信号を供給しなく
ても、これらの信号を充分に取り出すことができる。従
って位相変調器22において位相変調動作に伴って光に
振幅変調を与えてしまうことを阻止することができる。
従って誤差信号の発生を抑えることができる。よって精
度の高い光干渉角速度計を提供できる利点も得られる。
信号から位相変調信号とこの位相変調信号を振幅変調し
て光学路16に与えられた振幅変調信号とを取り出せば
よいから、これらの信号は周波数が低いため位相変調器
22には特別に振幅が大きい位相変調信号を供給しなく
ても、これらの信号を充分に取り出すことができる。従
って位相変調器22において位相変調動作に伴って光に
振幅変調を与えてしまうことを阻止することができる。
従って誤差信号の発生を抑えることができる。よって精
度の高い光干渉角速度計を提供できる利点も得られる。
【図1】この発明の一実施例を示すブロック図。
【図2】この発明の動作を説明するための波形図。
【図3】この発明の動作を説明するためのグラフ。
【図4】従来の技術を説明するための略線図。
【図5】従来の技術を説明するためのブロック図。
【図6】従来の技術で用いるベッセル関数の関係を説明
するためのグラフ。
するためのグラフ。
【図7】図6と同様のグラフ。
11 光源 16 光学路 21 受光器 22 位相変調器 23 位相変調器駆動回路 30 第1同期検波器 61 動作点検出手段 62 第2同期検波回路 63 電気フィルタ 69 振幅変調用信号発生回路
Claims (2)
- 【請求項1】 少なくとも一周する光学路と、その光学
路に対し光源からの光を右回光及び左回光として入射す
る光分岐手段と、その光学路を伝搬して来た左右両光を
干渉させる光干渉手段と、上記光分岐手段と上記光学路
の一端との間にこれらと継続的に配置されて左右両光に
位相変化を与える位相変調手段と、上記干渉光の光強度
を電気信号として検出する受光器と、その受光器からの
出力の内上記位相変調手段の変調周波数又は、その高調
波成分を同期検波し、角速度情報を含む信号を出力する
第1同期検波手段を有する光干渉角速度計において、上
記位相変調手段によって与えられる位相変調の振幅を変
調させる振幅変調手段を設け、この振幅変調手段によっ
て変調されて振幅変調信号の有無を検出して上記位相変
調手段の動作点のずれを検出する動作点検出手段と、こ
の動作点検出手段の検出信号を利用して上記位相変調手
段の動作点のずれを修正制御し、上記位相変調信号のレ
ベルが常に一定となるように制御する位相変調制御手段
を設けたことを特徴とする光干渉角速度計。 - 【請求項2】 上記請求項1記載の動作点検出手段は上
記振幅変調信号成分を抽出する第2同期検波手段によっ
て構成したことを特徴とする光干渉角速度計。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11991496A JPH09304082A (ja) | 1996-05-15 | 1996-05-15 | 光干渉角速度計 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11991496A JPH09304082A (ja) | 1996-05-15 | 1996-05-15 | 光干渉角速度計 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09304082A true JPH09304082A (ja) | 1997-11-28 |
Family
ID=14773321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11991496A Withdrawn JPH09304082A (ja) | 1996-05-15 | 1996-05-15 | 光干渉角速度計 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09304082A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007500362A (ja) * | 2003-05-23 | 2007-01-11 | ハネウェル・インターナショナル・インコーポレーテッド | サニャック干渉計用固有振動数検出器 |
-
1996
- 1996-05-15 JP JP11991496A patent/JPH09304082A/ja not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007500362A (ja) * | 2003-05-23 | 2007-01-11 | ハネウェル・インターナショナル・インコーポレーテッド | サニャック干渉計用固有振動数検出器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5362180B2 (ja) | 光ファイバ・ジャイロスコープの非同期復調 | |
JP4130730B2 (ja) | 光ファイバジャイロスコープ | |
CN110319828B (zh) | 一种双环腔结构的谐振式光纤陀螺系统及其信号检测方法 | |
JPS6129715A (ja) | 閉ル−プ干渉計において生じる非可逆的位相シフトを測定するための装置 | |
FR2618545A1 (fr) | Gyroscope a fibre optique | |
JPH1018U (ja) | 光ファイバジャイロスコープの位相制御フィードバック装置 | |
US5116129A (en) | Digital phase ramp type fiber optic gyro | |
US5009480A (en) | Fiber optic gyro | |
US5031988A (en) | Fiber optic gyro | |
JP2819434B2 (ja) | 光フアイバジヤイロスコープが組合わせた信号の位相差制御装置 | |
US7187448B2 (en) | Nonreciprocal phase shift fiber-optic gyrometer | |
JP4306843B2 (ja) | 共振点追従システムおよびこのシステムを用いたリング共振方式光ファイバジャイロ | |
JPH09304082A (ja) | 光干渉角速度計 | |
RU2441202C2 (ru) | Способ устранения зоны нечувствительности в волоконно-оптическом гироскопе | |
JPS6212811A (ja) | 光干渉角速度計 | |
RU2246097C2 (ru) | Способ фазовой модуляции в кольцевом интерферометре волоконно-оптического гироскопа | |
RU2160885C1 (ru) | Способ стабилизации масштабного коэффициента волоконно-оптического гироскопа | |
JPH10132578A (ja) | 光ファイバジャイロ | |
JPH04270914A (ja) | 同期検波装置 | |
JPH06103187B2 (ja) | 光干渉角速度計 | |
RU2234680C2 (ru) | Способ стабилизации масштабного коэффициента волоконно-оптического гироскопа | |
RU2157962C2 (ru) | Способ вспомогательной фазовой модуляции кольцевого интерферометра волоконно-оптического гироскопа | |
JP2695018B2 (ja) | 位相変調光ファイバジャイロ補正方式 | |
RU2527141C1 (ru) | Способ расширения диапазона измерения угловых скоростей волоконно-оптического гироскопа с закрытыми контурами обратной связи | |
RU2130587C1 (ru) | Способ обработки сигнала кольцевого интерферометра волоконно-оптического гироскопа (варианты) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20030805 |