JP4130730B2 - 光ファイバジャイロスコープ - Google Patents

光ファイバジャイロスコープ Download PDF

Info

Publication number
JP4130730B2
JP4130730B2 JP2000527806A JP2000527806A JP4130730B2 JP 4130730 B2 JP4130730 B2 JP 4130730B2 JP 2000527806 A JP2000527806 A JP 2000527806A JP 2000527806 A JP2000527806 A JP 2000527806A JP 4130730 B2 JP4130730 B2 JP 4130730B2
Authority
JP
Japan
Prior art keywords
port
output
signal
modulation
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000527806A
Other languages
English (en)
Other versions
JP2002500376A (ja
JP2002500376A5 (ja
Inventor
エイ. サンダース,グレン
シー. ダンクウオルト,ルドルフ
エイ. ベルグ,ラルフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Publication of JP2002500376A publication Critical patent/JP2002500376A/ja
Publication of JP2002500376A5 publication Critical patent/JP2002500376A5/ja
Application granted granted Critical
Publication of JP4130730B2 publication Critical patent/JP4130730B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
    • G01C19/721Details

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は振動誤差低減装置を有する光ファイバジャイロスコープ、特にジャイロスコープ動作の振動周波数での振動の修正による回転速度の誤った表示の除去に関する。
【0002】
【従来の技術】
光ファイバジャイロスコープはこのようなジャイロスコープを支承する物体の回転を検出する特徴のある手段である。このジャイロスコープは極めて小さく作られ、その構造は相当の機械的衝撃、温度変化及び他の極端な環境変化に耐えるよう構成される。可動部品が存在しないのでほぼ保守が不要であり、経済的になる可能性がある。また可動部品は他の種類の光学ジャイロスコープで問題となる低い回転速度に対して好感度で検出可能である。
【0003】
図1に示すように光ファイバジャイロスコープはコアの周囲にその軸を中心にして巻かれ、その回転を検出する光ファイバコイルを有している。光ファイバの一般的な長さが50〜2000メータ程度であり、光ファイバは閉光路の一部をなし、光路内には電磁波あるいは光波が導入されて一対の波に分割され、光ファイバコイルで時計方向(CW方向)及び反時計方向(CCW方向)に伝播され最終的には共に光検出器に突き当たる。コア、即ち光ファイバコイルの検出軸を中心とする回転Ωにより、分割された波の一方の一方の回転方向の有効光路長が増加され、他方の回転方向の光路長が減少される。他方向の回転に対し反対の結果が生じる。これらの波間の光路長差により、両方向の波間に位相シフトが生じる、即ち周知なサグナグ効果が生じる。このジャイロスコープは干渉光ファイバジャイロスコープ(IFOG)として知られている。回転による位相差シフト量、従って出力信号は互いに反対方向に移動する2電磁波により横断されるコイルを経た全光路の長さに左右され、従って長い光ファイバでは大きな位相差が得られるがコイル状に巻かれてその容積が比較的小さいので、光ファイバコイルを使用することは望ましい。
【0004】
光検出器コイルを通過した後反対方向に移動して入射する電磁波に応答して、光検出器に入射する光出力の強度、加えて光検出器システムの光ダイオード(PD)からの電流は累乗コサイン関数に従う。即ち出力電流は図2に示すように2電波間の位相差φ(Ω)のコサインに左右される。コサイン関数は偶数関数であるので、この出力関数は位相差シフトの相対方向を示さず、従ってコイル軸を中心とする回転の方向を示していない。更にゼロ位相の近傍におけるコサイン関数の変化率が極めて小さく、従ってこの出力関数により低い回転速度に対し極めて低い感度が得られる。
【0005】
このような不満足な特性のため、反対方向に移動する2電磁波間の位相差は通常、光路内で光位相変調器時々バイアス変調器とも呼ばれる変調器を光ファイバコイルの片側あるいはその近傍に配置することにより変調される。回転を検出するため、サグナク干渉計は通常干渉計ループ内の正弦波あるいは方形波により周波数fでバイアスされる。この結果反対方向に伝播する電磁波の一方は、途中変調器を通りコイル内に入り、一方反対方向に伝播する他方の電磁波はコイルを出るとき変調器を通過する。
【0006】
更に復調器システムの一部をなす位相に敏感な検出器(PSD)あるいはディジタル復調器は光検出器の出力電流を示す信号を入力するように設けられる。位相変調器及び位相に敏感な検出器は共に、変調信号発生器あるいはいわゆる「固有の」の周波数で同期化されたものにより動作可能である。
【0007】
図3a、図3b、図4a、図4bは累乗コサイン関数に対する変調及び復調の降下を示している。図3a、図3bでは、ジャイロスコープの光波の位相差ΔφがそれぞれΩ=0及びΩ≠0の場合サイン波バイアス変調で変調される。この結果変調された光検出器の強度出力と時間の関係は累乗コサイン関数の右側に示される。図3a及び図3bに示すように、Ω=0の場合位相変調が累乗コサイン関数の中心に対称的に与えられ、一方Ω≠0の場合位相変調は非対称的に与えられる。第1の場合出力は検出器が点Bでバイアスされるときのように検出器が点Aでバイアスされるときと同じであり、光検出器の出力にfの変調波のみが与えられる。第2の場合点A、Bでの出力は等しくなく、このため著しい光検出器信号にfを与え、回転速度を検出している。位相に敏感な復調器(PSD)により復活されるFの信号内容は回転速度Ωに比例する。この信号はまた反対方向の回転速度に対し符号が変化する。
【0008】
図4a及び図4bはそれぞれΩ=0及びΩ≠0の場合を示す。実際には方形波変調により、累乗コサイン関数の点AからBへΔφを切り替える値により一時変調電流が発生される。この電流はその結果が変調された光検出器電流対時間で垂直線により示され、理想的な光検出器で光検出器に当たる光の強度に比例する。また、回転がない場合、点A、Bでの出力は等しく、一方回転がある場合Aの半周期及びB半周期に対し出力は等しくない。図5a、図5b、図5cに示す方形波復調工程では、バイアス変調周波数fで同期する信号成分は、バイアス変調に同期されたゼロ平均の保護弁復調器基準波形を乗算することにより、光検出器信号から復活される。この結果復調された出力の平均即直流成分は回転速度に比例する。
【0009】
図6に示す回転速度を復活させる他の方法はディジタル復調方式であり、この場合方形波変調システムの光検出器の出力が第1の半周期中点Aでサンプリングされ、また第2の半周期中点Bでサンプリングされる。サンプルリングは印により示される。各サンプルはアナログ信号からディジタル信号に変換され、点Aのディジタル和及び点Bのディジタル和間の差がΩに比例する。
【0010】
これらのすべての場合、PSD・ディジタル復調器出力はゼロ位相シフトで大きな変化率を有する奇数関数であり、従ってゼロ位相シフトの両側の数学符号を変更する。従ってPSD・ディジタル復調器信号により、コイルの軸を中心とする回転の回転方向が示され、ゼロ回転速度の近傍で回転速度関数として大きな信号変化率が与えらる、即ち検出器はゼロ近傍での位相シフトに対し高い感度を示し、従ってその出力信号が低い回転速度に対し感度が高い。これは無論、他の原因による、例えば誤差による位相シフトが十分に小さいの場合にのみ可能である。更にこの環境における出力信号が比較的低い回転速度では線形に近い。復調器・PSDの出力信号のこのような特性は光位相変調なしに光検出器の出力電流の特性に比べ大幅に改良されていることを示している。
【0011】
従来のシステムの一例が図1に示されている。このシステムの光学部分は、光路に沿って幾つかの特徴部を有し、このためこのシステムが確実に相反則的である、即ち非反復の位相差シフトが導入される以外、反対方向に伝播する各電磁波に対し実質的に同じ光路をとる。この点については以下に説明する。光ファイバはコアあるいはスプールの軸を中心に巻かれ、その回転を検出する単一モードの光ファイバを用いるであり、コイル10をなす単一モードの光ファイバを使用すると電磁波あるいは光波の通路が固有に定義され、更にこの案内された電磁波の位相フロントも固有に定義される。このため相反則値を大きく維持できる。
【0012】
更に光ファイバはファイバ内には極めて大きな複屈折が形勢され、偏波変動が磁界のファラデー効果あるいは他の供給源からの避けがたい機械的応力により導入され、これにより変動される反対方向に伝播する電磁波間の位相差シフトが比較的小さく押さえられる点において、いわゆる偏波面保存ファイバにできる。従って高い屈折率軸、即ち低い伝播軸かあるいは低い屈折率軸かはシステム内の他の光学素子により電磁波を伝播するため選択される。
【0013】
コイル10を反対方向に伝播する電磁波は図1の電磁波供給源である光源11から与えられる。この供給源は広い帯域の光源であり、通常半導体スーパルミナスダイオードあるいは希土類を添加した光ファイバ光源であり、通常830nm〜1550nm間の範囲に渡り近赤外部のスペクトル部の電磁波を与える。光源11は発生した光に対し短いコヒーレンス長を有し、コイル10内の分散箇所で分散するレイリーあるいはフレネル現象のため電磁波間の位相シフト差を減少する必要がある。広い帯域の光源はまた、偏波の悪い上体での光伝播による誤差を減少するよう機能する。
【0014】
光源11及びコイル10の間には図1に示すように、光ファイバのコイル10の端部を光学的に連結する素子まで延長し、更にそこから複数の光路に分割することにより形成される光路構成が示されている。光ファイバの一部は光源11に対しそこからの最適発光位置に配置され、そこから光線カプラあるいは電波結合器あるいは分割器とも呼ばれる第1の方向光カプラ12へ延びている。
【0015】
図1に示すように方向光カプラ12は内部に透光性媒体を有しており、4ポート間を延び、そのうちの2ポートは媒体の各端部に配置され、カプラ12の各端部に示される。これらのポートの内の一は光源11から延びる光ファイバを有している。カプラ12の検出端部の他のポートには、光ダイオード13に対し配置されるよう延びる別の光ファイバが示され、光ダイオード13自体は光検出システム14と電気的に接続されている。
【0016】
光ダイオード13は光ファイバの位置から当たる電磁波あるいは光波を検出し、信号成分選択手段35に応答して光電流を与える。上述したように近くの2のコヒレントな電磁波が当たる場合、一対の実験例にコヒーレントな光波間の位相差のコサインに追従する光電流出力を与る際、この光電流は累乗コサイン関数に従う。この光検出器は極めて低いインピーダンスで動作し、照射した光の線形関数である光電流を与える。この光検出器は通常ピン形の光ダイオードにできる。
【0017】
方向光カプラ12は他端部が偏光子15へ延びる別の光ファイバを有している。カプラ12の同じ側の他方のポートには光ファイバの別の部分を含む非反射終端構成部16が設けられる。
【0018】
カプラ12は端部で電磁波あるいは光波を受信すると、この光波を発信し、その約半分は入力ポートを有しその端部と対向する端部でカプラ12の2ポートのそれぞれで現れる。一方このような光波は入力光ポートとしてカプラ12の同じ端部にあるポートには伝達されない。
【0019】
単一の空間モードファイバでは光は2偏光モードでファイバを伝播し、偏光子15が使用される。従って偏光子15は一方の偏光モードで伝播する光を通過させ、同じ偏光の時計方向(CW)及び反時計(CCW)方向の電波を検出ループであるコイル10内に導入し、また時計方向及び反時計方向の電波に対し同じ偏光の検出ループからの光のみをを検出器で干渉させる目的で設けられる。一方偏光子15は阻止目的の偏光の一方の上体では光を全部が全阻止するわけではない。またこれにより通過し反対方向に伝播する2電磁波間の非相反則が小さいので、電磁波間の非相反則位相シフト差は小さく、偏光子15を配置する環境の条件により変化可能である。この場合使用する光ファイバあるいは広いバンド幅の光源の複屈折が高いので、上述したように位相差が減少されることになる。
【0020】
偏光子15はその両端部にポートを有し、電磁波透過媒体はその間及び中に保持される。光カプラ12と連結される両端部のポートには、別の双方向カプラ17へ延びる、更に別の光ファイバが配置され、カプラ17は光カプラ12と同じ電波通過特性を有している。
【0021】
偏光子15と連結されたカプラ17の同一の端部のポートは別の光ファイバを用いて非反射終端構成部18と接続されている。カプラ17の他端部のポートを考慮するに、その一方のポートはコイル10の一端部から延びる光路の別の光素子と接続される。カプラ17の他方のポートはコイル10の残りの端部と直結される。直結側と対向するコイル10の側でコイル10とカプラ17との間には、光位相変調器19が設けられる。光位相変調器19は図1に示されるようにその一方の端部あるいは両端部に2ポートを有し、その内部に伝達媒体が含まれる。コイル10からの光ファイバは光位相変調器19に対し配置される。カプラ17から延びる光ファイバは光位相変調器19に対し配置される。
【0022】
光位相変調器19は電気信号を入力し、屈折率あるいは伝達媒体の物理的長さを変えることにより通過する電磁波に位相差を与え、光路長を変更する。この電気信号はバイアス変調信号発生器20により光位相変調器19へ供給され、バイアス変調信号発生器20はCsin(ωt)に等しくする変調周波数fの正弦電圧出力信号、あるいはfの方形波変調信号を与え、ここにωは変調周波数fと等価なラジアン周波数でありCは変調の増幅である。あるいは他の好適な周期的波形を使用できよう。
【0023】
光路に沿いその後光源11から放出された電磁波または光波の図1のシステムの光学部について上述した。この電磁波は光源11から光ファイバ部を経て光カプラ12へ連結される。光源11から光カプラ12に入る電磁波の位置部は対向する端部のポートと連結される非反射終端構成部16で終結するが、残りの電磁波が偏光子15を経てカプラ17へ伝達される。
【0024】
カプラ17は偏光子15からそのポートに電磁波を入力し、そのほぼ半分に分割し、その一方が両端部の2ポートのそれぞれから通過する。カプラ17の対向端部の一方のポートから電磁波はコイル10及び光位相変調器19を通過して再びカプラ17へ送られる。ここで、戻された電磁波の部位がカプラ17の偏光子15の連結端部の他方のポートと接続される非反射終端構成部18内に位置するが、残りの電磁波は光ダイオード13へ送られる。偏光子15からコイル10へ通過される電磁波の残りはカプラ17のコイル10端部の他方のポートを離れ、光位相変調器19及びコイル10を通過しカプラ17へ送られ、他方の部分と同じ通路に沿う部分が最終的には光ダイオード13に入射される。
【0025】
上述したように、光ダイオード13は入射した2電磁波あるいは光波の強さに比例する光出力電流を与え、従って入射するこれら2電磁波間の位相差のコサインに従うと予想される。正弦バイアス変調の場合、光ダイオードの信号は以下の式により与えられる。
【0026】
Figure 0004130730
ここに、Iは反対方向に伝播する電波間に位相差が存在しない場合の光ダイオード13における光の強さの大きさであり、ηが応答速度係数である。これは電流が光ダイオード13に入射する実質的にコヒレントな2電磁波は光波の強さに左右され、その強さは2電磁波間に生じる構造的あるいは破壊的干渉の程度によりIのピーク値からより小さな値へ変化することによる。この電磁波干渉は軸を中心とするコイル10の作用により電磁波間に位相差シフトφ生じるこの作用により変化する。更にこの光ダイオードに光位相変調器19により可変位相差が生じ、振幅値φはcos(ωt)として変化する。
【0027】
方形波変調の場合、光ダイオードの電量は以下の式により表現される。
Figure 0004130730
ここに、位相差変調の振幅は以下のとおりである。
Figure 0004130730
ここに、n=0、1、2、3...であり、Tはバイアス変調周期である。光位相変調器19は上述下種類のものであり、上述したようなコサイン関数に従う光検出システム14の出力信号を信号関数へ変換する全体の検出システムの一部としてのPSDあるいはディジタル復調器23と関連して使用され、この信号関数は上述したようにコイル10の軸を中心とする回転速度及びこの回転方向(回転表示器26により示されるように)の両方に関する情報をこの出力信号に与える。
【0028】
従って光ダイオード13を含む光検出システム14からの出力信号は電圧に変換され増幅器21を経て与えられ、ここで電圧は増幅されディジタル復調器23へ送られる。光検出システム14、増幅器21及びPSD・ディジタル復調器23が信号成分選択手段35を構成している。位相復調システムの一部として機能するPSD・ディジタル復調器23は周知な装置である。このPSD・ディジタル復調器23は光ダイオード13の出力信号の基本周波数fの振幅をあるいはバイアス変調信号発生器20の基本周波数の振幅プラスより高い奇数高調波を取出し、光ダイオード13に入射する電磁波の相対位相を示す。この情報はPSD・ディジタル復調器23により与えられる。
【0029】
上述した周波数fでの光路内の光を変調する際、バイアス変調信号発生器20が光検出システム14内の再結合された電磁波により発生される変調波成分となる。
【0030】
動作を説明するに回転することにより、光路内のコイル10を通過し反対方向に伝播する2電磁波の位相差変化は光位相変調器19による位相差変化に比べ比較的緩徐に変化する。回転による位相差即ちサグナグ効果により、2電磁波間の位相差が単にシフトされるのみである。光検出システム14の出力信号の変調周波数成分の振幅はこの位相差の大きさにより設定され、この位相差は更に(a)光位相変調器19及びバイアス変調信号発生器20による電磁波の位相変調の振幅値と(b)システムを介する各種利得を示す定数との要素のみにより変更されると予想される。次に信号成分内のバイアス変調信号発生器20及び光位相変調器19によるこの正弦変調の周期の効果は振幅倍率のみによる復調器システム(検出器)の出力信号を離れるPSD・ディジタル復調器23を含むシステム内の復調により除去できるものと考えられる。
【0031】
従って正弦波変調の場合、増幅器21の出力には以下のような電圧が現れる。
Figure 0004130730
定数kは増幅器21の出力に対するシステムでの定数を示す。記号θは光電流のωでの信号の位相に対しωでの増幅器21の出力信号での付加の位相遅れを示す。従ってこの位相シフトは光検出システム14内に導入される。上記式に使用される他の記号は上述した第1の式のものと同一の意味を有している。
【0032】
上記式はベッセル級数展開で次のように展開できる。
Figure 0004130730
Figure 0004130730
増幅器21の出力でのこの信号はバイアス変調信号発生器20からの信号のようにPSD・ディジタル復調器23の入力部に印加され、後者は再びCsin(ωt)に等しくされる。ここにωは変調周波数fのラディアン周波数である。PSD・ディジタル復調器23がωで対象の信号のみを拾うものとすると、バイアス変調信号発生器20の出力信号での検出器の出力が以下のようになる。
Figure 0004130730
定数k′はPSD・ディジタル復調器23を経て光ダイオード13の出力電流からのシステムの利得を示す。
【0033】
光電流が以下の式で表される場合、同様の結果が方形波バイアス変調に対し得られる。
Figure 0004130730
ここに、t=nT,t=(n+1/2)T、、t=(n+1)T,及びn=0,1,2,...であり、PSD・ディジタル復調器23の出力は以下のようになる。
Figure 0004130730
ここにK″は光検出システム14の電流出力とPSD・ディジタル復調器23の出力との間の増幅器利得を含む比例定数である。
【0034】
これらの式から解るように、PSD・ディジタル復調器23の出力が回転速度に左右される。
【0035】
一方装置が図1のシステムでの予期する結果を得ることを防止する誤差項が存在する。予期する結果が得られない理由のは、上述したように光位相変調器19を経て周波数fでの光路内の光を変調する際バイアス変調信号発生器20により、高調波成分が再結合された電磁波により光検出システム14に発生されるばかりでなく、バイアス変調信号発生器20はバイアス変調信号発生器20及び光位相変調器19の両方に非線形が生じるので、変化する光路位相の一部変調波成分を供給することにある。
【0036】
即ち第1の可能性として、バイアス変調信号発生器20の出力部から供給される出力信号は周波数fにおける基本信号のみならずその高調波も多く含んでいる。例えこのような高調波の無い信号が与えられるとしても、光位相変調器19の非線形成分特性及びヒステリシスによりこのような高調波が光路の変化する位相に導入される。このような高調波の結果、光ファイバジャイロスコープの出力信号に大きな速度バイアス誤差が生じる。従って変調システムによるこのような誤差を低減あるいは除去する干渉計光ファイバジャイロスコープが望ましい。
【0037】
「固有」の周波数は、一方の電磁波の変調に対し180度位相がずれている他方の電磁波となるように選択される。2電磁波間に180度の位相差を与えるこの変調は、結果としての光検出器の信号の変調器誘導増幅変調を除去する効果がある。「固有」周波数の値は光ファイバの長さ及びその等価屈折率から決定される。PSD・ディジタル復調器23の出力信号は光ダイオード13に当たる2電磁波ηの間の位相差の、主にコイル10の軸を中心とする回転による位相差のサインに左右される。サイン関数はゼロでの最大変化率を有する奇数関数であり、従ってゼロの両側の代数符号を変化する。従って位相に敏感な復調器の信号はコイル10を中心とする回転の方向と、ゼロ回転速度の近傍の回転速度の関数として信号値の最大変化率との両方を与えることができる、即ちゼロ位相シフトの近傍での最大感度を有し、その出力信号は低い回転速度に対し極めて敏感である。これは無論他の原因による位相シフト即ち誤差が十分に小さい場合にのみに可能である。更にこの環境でのこの出力信号は比較的低い回転速度での線形に極めて近い。PSD・ディジタル復調器23の出力信号のこのような特性は光検出システム14の出力電流の特性より大幅に改良される。
【0038】
一方サイン関数に従うPSD・ディジタル復調器23の出力は、ゼロから更に離れた回転速度で段々線形から遠ざかる出力となる。この出力は十分な大きな回転速度に会いφ=±mπ(ここにmは整数)の位相シフトを与えるまで再び線形になることはない。実際PSD・ディジタル復調器23の出力はφ=0あるいはφ=±mπでゼロであり、これらの値に近い範囲では線形である。ゼロ出力でジャイロスコープを動作させ出力信号のサイズ、電子回路の利得に無関係なジャイロスコープ倍率を得、PSD・ディジタル復調器23をそのゼロ近傍でその線形動作範囲内に止どめることが強く要求される。
【0039】
これは別の光位相変調器19あるいは周波数シフタをコイル10を反対方向に伝播する2電磁波が使用する光路部分のコイル10の端部付近に加え、光ダイオード13に達するようにすることにより達成可能である。この光位相変調器19あるいは周波数シフタは光検出システム14からのフィードバックループ即ちいわゆる速度ループ内で動作され、十分な負のフィードバックを与えて、光位相変調器19に誘導された位相変化φはコイル10の軸を中心とする回転による反対方向に伝播する2電磁波ηだの位相シフト差を無効にするに十分である、即ち、φ=−φ±mπであるのに十分である。
【0040】
サイン波変調システムではこのような閉ループ内の光ダイオード13の電流は以下のように表現できる。
Figure 0004130730
従って、φ=−φ±mπならV23−out=0と示すことができる。同様に方形波復調の場合、電流は次のように表現でき、V23−out=0である。
Figure 0004130730
閉ループシステムが調整すると、φ=−φ±mπである。
【0041】
速度ループの結果、一時的な回転速度変化以外光ダイオード13では0±mπから正味の平均位相シフトφ=φ+φが殆ど生じず、従ってPSD・ディジタル復調器23により正味の平均位相シフトが殆ど検出されない。従ってPSD・ディジタル復調器23の直流平均出力信号は常にゼロ近傍あるいはゼロである。これは代表的なサーボループのフィードバック利得がゼロ近傍の周波数では極めて高くれ且つ正しい。PSD・ディジタル復調器23と接続されるバイアス変調信号発生器20からの信号は付加した光位相変調器19を動作させ信号を変調器へ送り、特定の位相シフトを与えて回転による位相シフトを十分に無効にする、あるいはφ=−φ±mπにし、このような信号は内部にあるいは関連信号内に回転速度の大きさ及び方向、更にはmの値に関する情報を含んでいる。
【0042】
速度フィードバックループ内のPSD・ディジタル復調器23に接続されたバイアス変調信号発生器20からの出力信号に対する幾つかの形態が付加した光位相変調器19の動作を説明するために開示された。通常の良好な選択はノコギリ波状信号を光位相変調器19へ供給するセロダインジェネレータを使用することである。ノコギリ波あるいはノコギリ波状の信号は、単一側波帯変調器に与え、2π位相振幅の理想的なノコギリ波が変調された電磁波に対し純粋な周波数変位を与えるようで、選択される。この結果このようなノコギリ波信号で動作されている位相変調器を通過する光は光位相変調器19を離れ、その周波数はノコギリ波信号の周波数に等しい量だけ変位される。非理想的なノコギリ波信号では純粋な周波数変位にならず、代わりに高調波が加えられるが、高調波は2π振幅の極めて理想的なノコギリ波波形を与えるか変調器を正確に設計することにより小さく維持できる。
【0043】
別の種類の変調波形はデュアルランプ波形とされ正の勾配の線形ランプとその後に続く負の勾配のランプからなる。この場合フィードバックループはφ=−π及びφ=+πに、より一般的にはφ=mπ及びφ=(m+2)πに交互にロックする。回転がない場合、アップランプとダウンランプの勾配の大きさは等しい。回転が存在する場合、勾配の大きさが異り、2ランプ間の勾配差の大きさは回転速度の大きさに比例する。アップランプで及びダウンランプのどちらのランプがより大きな勾配を有するかは回転方向を示す。この技術はセロダイン波形の場合のように位相シフタ電圧に早いフライバックは要求されないという性能利点を有している。
【0044】
以下の説明は図面の都合上セロダインフィードバック変調の使用を仮定しているが、デュアルランプあるいは他の変調方式も使用できよう。更にバイアス変調及びフィードバックランプを共に加えて単一あるいは複数の位相変調器へ与えることができることが理解されよう。
【0045】
このように動作する光位相変調器19はコイル10の片側にあるので、2電磁波の一方はコイル10に入る際変位された周波数を有し、一方他方の電磁波はコイルを出るまでその周波数を有してはいない。従って、一方の電磁波は他方の電磁波より高い周波数を有してループを横断し(共に光検出器に達する際には同じ周波数を有しているが)、この結果変調器(あるいはセロダインジジェネレータ)の周波数が固定の場合、一方の電磁波は光ダイオード13で、ノコギリ波の周波数と2πτΔfの光ファイバとにより設定される量だけ他方の電磁波に対し位相シフトを有している。従ってΔfはバイアス変調信号発生器20あるいはジェネレータの周波数であり、τはコイルを通過する光波の一時的な時間である。変調器を含む負のフィードバックループのため、この位相シフトは回転により生じる光波間の位相シフトと対向するよう作用する。従ってジェネレータのノコギリ波あるいはノコギリ波状の出力信号の周波数は回転速度を示しており、ノコギリ波の極性は回転方向を示している。
【0046】
速度フィードバックループの一例が図7に示されている。PSD・ディジタル復調器23からの信号は図1の回転速度表示器へではなく、図7に含まれるサーボ電子回路24へ送られる。この位相差に応動してサーボ電子回路24はループ閉鎖波形ジェネレータ29に位相ランプ信号25を与え、ループ閉鎖波形ジェネレータ29はこの位相ランプ信号を光位相変調器19に信号28として供給し、一方の電磁波に対し他方の電磁波を位相シフトし互いの位相を同一にする。サーボ電子回路24あるいはループ閉鎖波形ジェネレータ29からのいずれかの信号は2電磁波ηだの位相差の大きさ及び符号を含む。加算増幅器27はまた信号28としてバイアス変調信号を光位相変調器19に供給する。2電磁波を同相に戻すに必要なフィードバック信号、例えばセロダイン変調の場合のノコギリ波の周波数は検出ループの回転速度を示す。この閉ループの場合、所望の位相ランプ信号(ノコギリ波あるいはデュアルランプ形三角波にできる)の必要な高周波数成分を吸収するため、選択した変調器は通常図7に示す積分光チップ(IOC)30上の光位相変調器19である。回転を示す位相ランプ信号25は次に回転速度表示器26へ送られ、回転速度表示器26はループの回転速度を好適、容易かつ有用さを示す。積分光チップ30上に光位相変調器19を採用する場合、このIOCチップ上のY接合部31のように図1のカプラ17機能を実行し、このチップ上の偏光子15を実行する、あるいは単一偏光設計を用いてIOC導波管を構成することが好ましい。Y接合部31は光カプラ12の場合のように光波あるいはビームの分割器・合成器として見なすことができる。
【0047】
一般に光ファイバジャイロスコープはなぜ期待した回転検出精度が得られないのかという問題が存在する。この理由の一は振動が存在するからである。光波が2電磁波に分割されコイル10の周囲を反対方向に移動した後干渉計ループ内の光ファイバの振動により誘起される周期的な伸びあるいは周期的な歪が存在し、振動に応動する歪が検出ループ内で対称的に配置されるすべてのファイバ点に対し、即ちループの中心から対称的に配置される点に対し均等に与えられなければ、2電磁波に対し周期的に位相差変調が与えられる。振幅Δφの振動周波数fでのこの時間と共に変化する位相シフトδは以下のように表現できる。
δ=Δφνcos(ωνt+ε) (11)
ここにω=2πfであり、εは任意の位相である。この場合δ自体による誤差はゼロ平均で迅速に変化する関数であり、平均はゼロとなり時間平均誤差を引き起こさない。Δφが小さい限り、殆どの場合この誤差自体により大きな問題を起こすことはない。振動のため角周波数ωでの位相シフトδの別の原因は真の交流回転速度を誘起する実際の角度あるいはひねり振動である。この効果は振動誘起の位相差変調δ=Δφ(cos(ωt+ε)に対し同じ関数形態を取り、ジャイロスコープの出力はωでその出力を変化させることにより実際の回転速度環境を正しく示す。また入力速度がこの場合交流現象であるものと想定するとジャイロスコープの動作は直流あるいは平均の回転速度を示していないことは理解されよう。一方上述した2つの場合のいずれにおいても、(位相差変調δと組み合わされて)ジャイロスコープ内に別に同期誘起された振動効果が存在すると、定常状態の角周波数を示しているとして誤って現れる非ゼロ平均値で調整された誤差が発生される。この二次的効果の1は振動により光回路内に強度変調が生じることである。これは干渉計ループの内側及び外側の両方でファイバ内のマイクロベンド損失の変調、あるいは光源11のピグテールためである。強度変調の別の原因はジャイロスコープ通路内で光を望ましくない偏光状態に変換するファイバ応力点の変調であり、この光は光検出器に達する前に偏光子15により除去される。後者の効果により信号強度変調が生じ、この効果は光源11内、光源のピグテール内、積分光チップ30へのIOCファイバピグテール内あるいはコイル10内での偏光の変調により生じる。この効果はまた積分光チップ30、カプラ17あるいは光源11のパッケージの内側の応力を変調することにより生じる。
【0048】
これらのいずれの場合でも強度変調は次の式で表される。
Figure 0004130730
ここにIはバイアス変調なしの振動中光ダイオード13に入射する平均強さである。定常状態あるいは直流の角周波数を無視して機械的分析を簡素化するため、振動による誤差はサイン波バイアス変調システムに対する光ダイオード13の出力電流が次の式により与えられることに留意することが好適である。
Figure 0004130730
での信号成分を選択するPSD・ディジタル復調器23の出力は以下のように示される。
Figure 0004130730
ここにΔφ及びφは小さくcos[Δφcos(ωt+ε)]=1であり、cosφ=1であるものとする。この式は次のように簡単にできることを示している。
Figure 0004130730
Δφ<<1ラジアンの近似がなされ、2ωtより高い周波数での項を削除した。上記式の最初の項は「直流」即ち整流される項であり、ゼロに平均化せず、間違った回転速度を示す。他の項はωに比べ長期間にわたりゼロに平均化する。
整流された誤差あるいはバイアスは振幅αの強度変調と振幅Δφのfでの位相差変調との積である。整流された誤差は、強度変調と位相変調との位相がずれている、即ちε=0のとき消滅し、同相のとき、即ちε=90度のときにはピーク値となる。代表的なジャイロスコープ用途では、装置の約数百ヘルツのバンド幅が要求されることに留意すべきである。出力をローパスフィルタにかけることにより、キロヘルツの範囲にある項は減衰される。一方キロヘルツあるいはそれより高い範囲にある振動による整流誤差は除去されず、誤差を生じる。
【0049】
同様に方形波バイアス変調システムに対し同じ整流誤差が生じることが示される。ここに光ダイオードの信号は次の式で表される。
Figure 0004130730
簡潔化のため|φ|=π/2の代表的な場合には以下のようになる。
Figure 0004130730
ここに、n=0,1,2,3....である。これにより光ダイオードの電流信号は次のようになる。
Figure 0004130730
方形波復調器の平均出力は以下のようになる。
Figure 0004130730
ここにk″は復調器を経た一連の電子回路の利得を示す定数であり、記号<>はバイアス変調サイクルにわたる信号の時間平均を示す。
及びδを置換すると次のようになる、
Figure 0004130730
ここにφ及びΔφは<<1であると仮定される。これによりJ(φ)→1及びk′→k″なら正弦波の場合と同じ結果が得られる。
【0050】
従来のものはこの整流誤差は次の手段により振幅が減少されることを指摘している。最初の方法はコイル10の巻き選パターンを使用し、コイルの中心から同一の距離にしたコイルの内側のファイバセグメントが振動されるとき同じ歪を受けさせることにより、Δφを減少することにある。第2の方法はコイル10にワニスを含浸させ振動を受けるコイルファイバの機械的運動を防止することによりΔφを減少させることである。第3の方法は供給源モジュール、積分光チップ30パッケージ及び素子パッケージの機械的堅牢度を改良して振動環境でのファイバのピグテール及び運動から起因する強度変調を減衰させることである。最後の方法はジャイロスコープ内の取り付け特徴部の堅牢度を高め振動中構成素子及びサブアッセンブリにかかる機械的応力を減少させることである。
【0051】
本発明の最初の部分は主に振動により誘導された強度変調の減少を通しての整流バイアス誤差の減衰に関する。これは予想振動周波数f、通常5ヘルツ〜3キロヘルツの範囲の光ダイオード13の信号により効果的に行われる。これによりα、強度変調振幅を現場で測定でき、これらが信号処理システムに用いられ、fでの強度変動を直接補償する。この点について以下に説明する。
【0052】
この方法において重要なことは、強度変調αsinωtを独立的に観察可能にすることにある。光ダイオード13での瞬間強度は以下のように表さられ、PSD・ディジタル復調器23で実質的に測定されるωでのスペクトル内容に対しては既に分析されたことは理解されよう。
Figure 0004130730
この周波数内容範囲は、長さが4キロメータ〜50メータの検出コイル固有周波数で動作するジャイロスコープに対し、それぞれ通常25ヘルツ〜2メガヘルツである。一方重要な情報はベースバンドの近傍に、即ち振動により誘起される強度変調の周波数範囲である0ヘルツ〜3キロヘルツの光ダイオード13の内容の近傍に存在する。このベースバンド信号内容Iはサイン波変調の場合には次のように表される。
Figure 0004130730
δ+φ<<1とすると、cos(δ+φ)は約1になる。従ってIは振動が存在する場合光回路の強度変調の直接的な目安である。これはまた(|φ|=π/2とする)方形波変調の場合に正しい。
Figure 0004130730
により引き起こされるベースバンド付近の対応する光検出器の電流は以下のようになる。
Figure 0004130730
図8はIを活性的に検出し主ジャイロスコープ光検出器信号をIでの振動に対し補償し、これにより整流バイアス誤差を減少する方法を示している。強度補償と呼ばれるこの方法は1997年6月19日出願の米国特許出願第,08/879,902号の主題である。ここでは回転は周知例に説明されるように、回転表示に対しPSD・ディジタル復調器23の開ループ出力を得るかPSD・ディジタル復調器23の出力を使用して図8に示すように回転に応動しループ閉鎖波形で速度サーボループを閉鎖することにより検出される。いずれの場合もこの信号振幅安定化技術は光ダイオード13、14の後且つPSD・ディジタル復調器23の前の電気信号通路に「強度補償器」46を使用している。これは周波数fでの光ダイオード信号を安定化せず、振動誤差整流低減の見地から等価な機能を安定化する、即ち復調工程の前に信号を正規化する。この場合振動によるfにおける強度変化が光ダイオード13で観察される。問題の振動周波数バンドでの対象振動がフィルター47により分離され増幅器48で増幅され、上流へ送られて問題の周波数での信号の利得が変更される。振動のために光ダイオードでの信号強度が低下すると、増幅器48の利得は除算器49の出力により増加されこの振動が補償される。同様に除算器49の出力により減少され光ダイオード13信号増加が補償される。このように補償された信号50はfでの振動はなく(あるいは大幅に低減された振動)またはfの可能な値の範囲内にある。ローパスフィルター47は信号変化減衰対周波数を最適化し所望の減衰特性を得るように調整可能である。この方法はマルチジャイロスコープが共通の光源11を共有する場合に有用である他にも、以下の幾つかの利点(1)〜(3)を有している。
(1)これは開ループ強度補償技術であり、ジャイロスコープの速度により誘起
される信号をAM信号から除去するに必要なフィルター動作は代用的な閉
ループの安定条件により制限されない。利得及び位相限界要件は存在しな
いので、複雑なフィルター動作は位相が安定性に与える影響を考慮するこ
となく適用可能である。これにより閉ループシステムを課すバンド幅及び
利得の固有な制限が解決される。
(2)これは調整を遅延なく信号に与える。補償のバンド幅は全部局部専用フィ
ルタにより制御される。これに対し負のフィードバックを用いてレーザダ
イオードの電流を制御可能な方法はファイバループの瞬間時間及び他の信
号処理遅延によりバンド幅が制限される。
(3)強度変調レベルが小さい場合、逆特性は、利得誤差を測定し、出力利得を
正規化し、否定にし、調整することにより、効果的に近似する。この回路
は極めた高いバンド幅を有するディジタルあるいはアナログいずれかの素
子で実現可能である。調整入力に対する出力利得感度の倍率は回路の温度
、寿命あるいは他の代表的変動ファクタを補償するため長く調整可能であ
る。光源の出力に意図した乱れを導入して極めて要請うな性能を望む回路
を連続的に校正可能であろう。
【0053】
このように、項[1+αsin(ωt)]で示される振動による強度変調される入力信号は強度変調に応答して可変利得g(t)により信号路の利得を変えることにより図8の信号処理強度補償構成で補償される。ここでg(t)はベース幅強度の逆数I=1/2I[1+αsin(ωt)]に応動して変化している増幅器Aの利得である。これは1997年6月19日に出願された米国特許出願第08/879,902号に開示されている。信号路は式13の信号(φ項を加えて閉ループに対し変更された)を可変利得g(t)と乗算することにより表される復調の前に補償されることは図8から理解されよう。ここで制限変調の場合、増幅器Aの出力は次のように表される。
Figure 0004130730
増幅器Aの利得g(t)は次のように表される。
Figure 0004130730
ここにgは定数である。これは図示を簡略にする目的で、ローパスフィルタは直流及び振動周波数ωの範囲内では平担な利得を有し、強度が1振動周波数ωでのみ変化していると仮定している。一方式はマルチプル振動周波数及びより複雑なフィルタ機能の場合一般化できよう。式28を式27に代入すると、g(t)はωでの信号変動を補償し、即ちαはなくなり整流バイアスはもはや存在しないことを示す。これは式16のα=0に設定することにより開ループにまた式16でΦ→φ+φにし、次にα=0に設定することにより閉ループに示される。
【0054】
振動整流による振動誘起された誤差を除去あるいは減衰するために使用される別の装置は復調器基準信号の大きさを効果的に変えることにより復調器での可変ウエイト付関数を与える。これは次のデモンストレーションにより図示できる。正弦変調・復調の場合、光検出器(振動を有さない)での信号は式5により与えられる。この信号はωbの多くの高調波を含んでいる。復調工程では、変調信号に位相固定される周期的信号と乗算し、次にその結果を時間で平均化することによりωbでの問題の成分が実質的に引き出される。通常必ずしも必要ではないが、周期的信号はサイン波であり、時間平均化はローパスフィルタにより復調器内で行うことが可能である。従って最初の工程はアナログ乗算、即ち式5からV21−outを取り出しそれをW=cos((ωt+θ)と乗算することにより実施される。
Figure 0004130730
Figure 0004130730
上記式の時間平均を取ると、所望の結果が得られる。復調器の利得が一定であるとすると、復調器の出力は以下のようになる。
Figure 0004130730
ここでk′は定数であり、記号<>は時間平均を示す。従って式30は式6と同じ結果を示す。これは式12からのIを置換しφR→(φ+δ+φ)に刷ることにより振動効果及び閉ループを含むよう一般化できる。
【0055】
同様に方形波復調は関数H(t)による乗算及び時間平均化により示され、ここでH(t)は次のように表される。
Figure 0004130730
ここでt,t,tは式7で定義される。
【0056】
従って信号検出器の電流は式7により与えられると、以下のようになる。
Figure 0004130730
時間平均化には各間隔での時間によりウエイト付された2間隔の値の加算及び全周期t−t=Tによる除算のみが要求されるだけである。利得が一定であるとすると、復調器の出力は以下のようになる。
Figure 0004130730
この式は式8と同じ結果である。またこの式は式12からIoを置換しφ→(φ+φ+δ)にすることにより振動効果を含むよう一般化できる。
【0057】
正弦波変調・復調の場合の本発明の主要部が図9に示されるが、1)方形波変調及び方形波あるいはサイン波復調の場合及び2)方形波変調及びディジタル復調の場合にも示すことができる。本発明においては、前処理においてH(t)あるいはω(t)で表される復調器の基準信号の値は振動環境では変化させてジャイロスコープ内の振動整流効果を除去あるいは減衰させるようにされる。これは図9に示すように、式12で示される周波数ωでの振幅αの強度変調の望ましくない効果により影響される信号光検出器のベース幅値をまず検出することにより達成される。次にこの出力は電圧制御による信号発生器あるいは増幅器51へ送られ、復調器の基準信号の振幅を変調する。図9を参照するに、式12の強度Ioがωでの振動のため減少すると復調器に対する基準信号は増加され、式12の強度Ioがωでの振動のため増加すると復調器に対する基準信号は減少する。従ってW(t)の新しい形態は以下のようになる。
Figure 0004130730
ここにWは定数である。これは再び振動が単一周波数であると仮定するが、次のようにすることにより強度I(t)の一般変化に一般化できる。
Figure 0004130730
ここに、Wは定数である。従って振動の影響下ではジャイロスコープの信号iは正弦波変調の場合式13により与えられ、復調処理は次のように与えられる。
Figure 0004130730
この式は振幅αの強度変調を自動的に補償する。この調整により式16望ましく最初の項であるバイアス整流項が除去され、これはα=0と設定することに等価である。
【0058】
同じ概念が次のようになることにより方形波変調・復調を用いるシステムの場合の振動効果を減少させる際にも使用可能である。
Figure 0004130730
ここにHは定数であり、t1、t2及びt3は式7で定義される。これは振動が存在する場合方形波変調システムに対する式19に与えられるi(t)を含むH(t)i(t)の平均を評価することにより、復調された出力には直流項が即ち振動による整流バイアスが含まれていないことが理解されよう。また式19はφ→(φ+φ)にすることにより閉ループ動作に対し変更可能である。
【0059】
ディジタル復調に基づく信号処理の別のシステムが図10に示される。この場合、光検出器のプリアンプ52の出力はバイアス変調周波数より極めて早いサンプリング速度でフラッシュA/Dコンバータ53によりサンプリングされる。このバイアス変調は通常方形波である。図10bに示すようにサンプリングは矢印により示される。各矢印では、プリアンプ52の出力電圧信号がプリアンプの出力を示すディジタル数に変換される。多くのサンプルηは反周期′a′、′b′に対し行われる。次に各変調周期に対し′a′サンプルaが蓄積されあるいは加算され、′b′サンプルbも同様に蓄積されあるいは加算される。通常比例定数kを含む開ループの場合、回転速度はディジタル復調により以下のように復活される。
Figure 0004130730
回転Ω=0が存在しない場合式38のわたりは図10bに示すようにゼロである。Ω≠0の開ループが図10cに示され、平均aは図示のように平均bと異る。閉ループ動作中、ループ閉鎖電子回路54は例えば図10bに示すように出力をゼロに復活する上述したようなデュアルランプ波形のようなランプ信号を発生する。図10bは以下の閉ループの場合を示す。
Figure 0004130730
ここにkは定数であり、φ及びφは回転及びフィードバック波形による位相差を示す。
【0060】
本発明はまた各サンプルのウエイト付関数が振動による強度変調からの信号振幅変化に応動して変化できる点おいて採用可能である。これは以下に示す信号変化に応動してアナログをA/Dコンバータ55のディジタル利得に変えることにより達成できる。
Figure 0004130730
ここで図11に示すように、A/Dコンバータ55の利得はA/Dコンバータ55への信号変化を補償し振動整流を防止する光検出システム14からのベース幅電流に反比例して調整される。振動スペクトル及び利得信号はローパスフィルタ56及び利得調整器57により決定される。
【0061】
別の装置60が図12bに示され、この場合サンプリング後a加算する、即ちA=Σaを、b加算する、即ちB=Σbを得るためにプリアキュムアレータが使用される。比較のため関連する従来装置59が図12aに示される振動による強度変化は1変調サイクルのみに対し復調器がA−Bを決定する間アキュムレータでA及びBを加算することにより検出される。この場合上述に比べ、図12bに示す復調器で時間平均する意図はない。次にA+Bの値はA−Bに分割されて強度変化を補償する。次に時間平均は速度アキュムレータにより信号に対し行われる。この方法によれば速度アキュムレータの時間平均前に振動によるiの変化からの影響が自動的に除去される。このように、振動整流されたバイアスが生じない。
【0062】
図12の方法はまた図13に示す装置61により実施可能であり、この場合プリアキュムアレータはバイアス変調周期の間tの最初の半変調サイクル中aを自動的に加算し、次に第2の半変調周期t中bの値に対し減分し、1変調サイクルに対しA−Bの出力を発生する。次にこれはリセットされる。
【0063】
第2のプリアキュムアレータは第1及び第2の変調反周期に対しa及びbを増分して変調周期にわたり平均強度を示す信号を得る。プリアキュムアレータはまた時間2t毎にリセットされる。その出力は反転されプリアキュムアレータ1はの出力と乗算されて、振動による大きなバイアス整流なしの回転速度を示す信号が得られる。次にこの信号はループ閉鎖電子回路を駆動するアキュムレータ内でローパスフィルタ処理される。
【0064】
振動整流誤差を減少する最後の方法は主速度サーボのバンド幅を増加して周数fでの振動誘起された位相シフトδと反作用させることである。従来の処理法では、速度サーボの主目的は測定対象の回転速度に等しく且つこれと反対の場合位相差φを与えることにある。これは式10に反映されている。問題の回転速度は通常100ヘルツより低い速度で緩徐に変化するので、従来の必要な速度ループバンド幅はせいぜい数百ヘルツである。
【0065】
一方ループバンド幅を広げて利得を予想振動スペクトルのバンド幅を超える最大周波数までにすると、fでの正味位相シフトが減少され、従って式16の直流誤差が減衰される。即ち正弦波変調に対し、式13は閉ループシステムに対し変更して以下のようにできよう。
Figure 0004130730
十分に高いバンド幅を有する 速度サーボを構成して、位相差φがφに等しいが反対の低い周波数成分φroのみならず周波数fvの高い周波数成分Δφをも含むようにすることは可能である。後者の項はfでの振動誘起の位相変調の位相シフトに対し反対に向く位相シフトを発生する。従って、光検出器の電流次のように表される。
Figure 0004130730
ここでβはfのフィードバック信号の位相角を示す。正味の位相シフトΔφnvは式27に示す2項の組み合わせたものである。即ち、
Figure 0004130730
速度ループのバンド幅が減少されるにつれ、ΔφはΔφの値に近付きβはε+πに近付く。従ってfでの正味の位相差変調Δφnvはゼロに近付く。式16でΔφnvをΔφと置換することにより、Δφnv→0になるにつれ整流項が消滅することが理解されよう。
【0066】
従って本発明によれば、振動整流誤差を除去あるいは減少する別の方法は速度フィードバックループのバンド幅を、回転検出に必要なバンド幅を越え、予測振動スペクトルを越えて大幅に増加することである。この方法は上述したすべての強度サーボ及び強度補償構成と組み合わせて使用可能である。同様に方形波変調法で使用可能である。最後に簡単のため上述した説明は正弦振動入力に焦点をおいたことは理解されよう。実際上の環境はランダムあるいはより正確には擬じランダム振動スペクトルと呼ばれる正弦振動入力を重ねたものを含んでいる。この場合累算整流誤差は各周波数での振動から生じる誤差寄与を集計したものである。各誤差寄与は強度変調及びスペクトルで特定周波数での非ゼロで、正味の位相シフトの結果である。単一周波数での整流を除去する本発明で説明した技術はまた同時に周波数スペクトルに、即ちランダム振動入力にも適用可能である。
【図面の簡単な説明】
【図1】 図1は基本干渉計光ファイバジャイロスコープを示す。
【図2】 図2は光ファイバジャイロスコープの光検出器の検出された光強度あるいは出力電流と検出コイル内の反対方向に伝播する光波の位相差との関係を示す。
【図3a】 図3aはゼロ回転速度に対するジャイロスコープの光波と出力との位相差を示す。
【図3b】 図3bは非ゼロ回転速度に対するジャイロスコープの光波と出力との位相差を示す。
【図4a】 図4aは方形波変調の場合ゼロ回転速度に対するジャイロスコープの光波と出力との位相差を示す。
【図4b】 図4bは方形波変調の場合非ゼロ回転速度に対するジャイロスコープの光波と出力との位相差を示す。
【図5a】 図5aはバイアス変調信号で同期する信号成分を示す。
【図5b】 図5bはバイアス変調信号で同期する信号成分を示す。
【図5c】 図5cはバイアス変調信号で同期する信号成分を示す。
【図6】 図6は光検出器出力のサンプリング方法をしめす。
【図7】 図7は速度フィードバックループを有する干渉計光ファイバジャイロスコープを示す。
【図8】 図8はジャイロスコープの強度補償器を示す。
【図9】 図9は概念を示す。
【図10a】 図10aはンプリング法を示す。
【図10b】 図10bは発明のサンプリング法を示す。
【図10c】 図10cは発明のサンプリング法を示す。
【図11】 図11はアナログ・ディジタルコンバータの利得を調整するフィルタ法を示す。
【図12a】 図12aはアナログ・ディジタルコンバータからのサンプルを処理する古い方法を示す。
【図12b】 図12bはアナログ・ディジタルコンバータからのサンプルを処理する新しい方法を示す。
【図13】 図13は12bに示す方法の別の方法を示す。

Claims (3)

  1. 光源と、
    前記光源に対しての第1ポートコネクタと、第2ポート及び第3ポートとを有するカプラと、
    前記カプラの前記第2のポートに接続される第1ポートと、第2ポート及び第3ポートとを有する分割器と、
    前記分割器の前記第2ポートに接続される第1端部と、前記分割器の前記第3ポートに接続される第2端部とを有する光ファイバコイルと、
    前記カプラの前記第3ポートに接続される光ポートと、電気出力とを有する検出器と、
    出力を有するバイアス変調源と、
    前記検出器の前記出力に接続される第1入力と、前記バイアス変調源の前記出力に接続される第2入力と、出力とを有する利得制御増幅器と、
    前記検出器の出力に接続される第1入力と、前記利得制御増幅器の前記出力に接続される第2入力とを有する復調器と、
    を備える光ファイバジャイロスコープのための振動整流誤差低減装置。
  2. 光源と、
    前記光源に対する第1のポートコネクタと、第2ポート及び第3ポートとを有するカプラと、
    前記カプラの前記第2ポートに接続される第1ポートと、第2ポート及び第3ポートとを有する分割器と、
    前記分割器の前記第2ポートに接続される第1端部と、前記分割器の前記第3ポートと接続される第2端部とを有する光ファイバコイルと、
    前記カプラの前記第3ポートに接続される光ポートと、電気出力とを有する検出器と、
    出力を有するバイアス変調源と、
    前記検出器の前記出力に接続される第1の入力を有し、前記バイアス変調源の前記出力からのバイアス変調信号の周波数を有する信号の基本波及び高調波の両方又は何れかを検出する復調器と
    を備え、
    前記基本波及び前記高調波の両方又は何れかは、前記光ファイバコイル内を伝播する光の非可逆位相シフトを示すものであり、前記復調器の利得は変化させられて、前記非可逆位相シフトを引き起こす振幅変化を補償する、
    光ファイバジャイロスコープの振動整流誤差低減装置。
  3. 光源と、
    前記光源の出力に接続される第1のポートを有する第1分割器と、
    前記第1分割器の第2ポートに接続される第1ポートを有する第2分割器と、
    前記第2分割器の第2ポートに接続される第1端部と、前記第2分割器の第3ポートに接続される第2端部とを有する光ファイバコイルと、
    前記第1分割器の第3ポートに接続される光入力を有する検出器と、
    前記検出器の出力に接続される、可変利得を有するアナログ/ディジタルコンバータとを備え、
    前記可変利得は、前記検出器の前記出力からの信号の振幅変化に応じて変化する、
    光ファイバジャイロスコープの振動整流誤差低減装置。
JP2000527806A 1997-12-31 1998-12-10 光ファイバジャイロスコープ Expired - Fee Related JP4130730B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/001,967 US5946097A (en) 1997-12-31 1997-12-31 Vibration rectification error reducer for fiber optic gyroscope
US09/001,967 1997-12-31
PCT/US1998/026248 WO1999035467A2 (en) 1997-12-31 1998-12-10 Fiber optic gyroscope

Publications (3)

Publication Number Publication Date
JP2002500376A JP2002500376A (ja) 2002-01-08
JP2002500376A5 JP2002500376A5 (ja) 2006-02-02
JP4130730B2 true JP4130730B2 (ja) 2008-08-06

Family

ID=21698633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000527806A Expired - Fee Related JP4130730B2 (ja) 1997-12-31 1998-12-10 光ファイバジャイロスコープ

Country Status (6)

Country Link
US (1) US5946097A (ja)
EP (1) EP1044354B1 (ja)
JP (1) JP4130730B2 (ja)
CA (1) CA2316890A1 (ja)
DE (1) DE69840272D1 (ja)
WO (1) WO1999035467A2 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563589B1 (en) 1996-04-19 2003-05-13 Kvh Industries, Inc. Reduced minimum configuration fiber optic current sensor
DE19802095C1 (de) * 1998-01-21 1999-08-19 Litef Gmbh Verfahren und Einrichtung zur Stabilisierung des Skalenfaktors eines faseroptischen Kreisels
US6801677B1 (en) * 1998-09-10 2004-10-05 The Regents Of The Universtiy Of California Waveguide-based optical chemical sensor
US6891622B2 (en) 1999-02-11 2005-05-10 Kvh Industries, Inc. Current sensor
US6539134B1 (en) 1999-02-11 2003-03-25 Kvh Industries, Inc. Polarization transformer
US7073384B1 (en) * 1999-08-23 2006-07-11 Stevens Institute Of Technology Method and apparatus for remote measurement of vibration and properties of objects
US6370289B1 (en) 2000-01-12 2002-04-09 Kvh Industries, Inc. Apparatus and method for electronic RIN reduction in fiber-optic sensors
AU2001255167A1 (en) 2000-02-28 2001-09-03 Kvh Industries, Inc. Faraday-effect current sensor with improved vibration response
WO2002006769A2 (en) 2000-07-13 2002-01-24 Kvh Industries, Inc. Method for controlling fiber optic sensor scale factor
AU2001279310A1 (en) * 2000-08-02 2002-02-13 Kvh Industries, Inc. Reduction of linear birefringence in circular-core single-mode fiber
AU2002217751A1 (en) 2000-08-02 2002-03-26 Kvh Industries, Inc. Decreasing the effects of linear birefringence in a fiber-optic sensor by use of berry's topological phase
US6836334B2 (en) * 2001-10-31 2004-12-28 Kvh Industries, Inc. Angle random walk (ARW) noise reduction in fiber optic sensors using an optical amplifier
US6763153B2 (en) * 2002-04-17 2004-07-13 Kvh Industries, Inc. Apparatus and method for electronic RIN reduction in fiber-optic sensors utilizing filter with group delay
US20080079946A1 (en) * 2006-09-29 2008-04-03 Honeywell International, Inc. Digital intensity suppression for vibration and radiation insensitivity in a fiber optic gyroscope
US7872758B2 (en) * 2007-01-22 2011-01-18 The Charles Stark Draper Laboratory, Inc. Determining and compensating for modulator dynamics in interferometric fiber-optic gyroscopes
US7715014B2 (en) * 2007-03-06 2010-05-11 Honeywell International Inc. Methods and systems for fiber optic gyroscopes vibration error suppression
US7817284B2 (en) * 2007-08-08 2010-10-19 The Charles Stark Draper Laboratory, Inc. Interferometric fiber optic gyroscope with off-frequency modulation signals
JP4922256B2 (ja) * 2008-07-11 2012-04-25 日本航空電子工業株式会社 クローズドループ方式光干渉角速度計
CN101709971B (zh) * 2009-11-11 2011-08-03 哈尔滨工程大学 一种抑制光纤陀螺振动误差的信号解调方法
RU2444704C1 (ru) * 2010-10-26 2012-03-10 Открытое акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор" Волоконно-оптический гироскоп
US8717575B2 (en) 2011-08-17 2014-05-06 Honeywell International Inc. Systems and methods for environmentally insensitive high-performance fiber-optic gyroscopes
RU2512599C1 (ru) * 2012-10-24 2014-04-10 Федеральное государственное унитарное предприятие "Центр эксплуатации объектов наземной космической инфраструктуры" (ФГУП "ЦЭНКИ") Способ повышения точности волоконно-оптического гироскопа с закрытым контуром
US10502585B2 (en) 2014-10-23 2019-12-10 The Boeing Company Gyro rate computation for an interferometric fiber optic gyro
RU2626019C1 (ru) * 2016-07-13 2017-07-24 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Способ повышения точности волоконно-оптического гироскопа с закрытым контуром
JP7234505B2 (ja) * 2018-04-27 2023-03-08 セイコーエプソン株式会社 振動整流誤差補正回路、物理量センサーモジュール、構造物監視装置及び振動整流誤差補正回路の補正値調整方法
CN112083477B (zh) * 2020-09-10 2024-03-19 北京大学 一种三分量旋转地震仪

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0551537B1 (de) * 1992-01-13 1995-03-22 LITEF GmbH Verfahren und Einrichtung zur Drehratenmessung mittels eines faseroptischen Sagnac-Interferometers
US5278631A (en) * 1992-04-24 1994-01-11 Allied Signal Inc. Closed loop fiber optic gyroscope with signal processing arrangement for improved performance
EP0569993B1 (en) * 1992-05-14 1996-01-31 Japan Aviation Electronics Industry, Limited Optical-interference-type angular rate sensor
US5469257A (en) * 1993-11-24 1995-11-21 Honeywell Inc. Fiber optic gyroscope output noise reducer

Also Published As

Publication number Publication date
JP2002500376A (ja) 2002-01-08
DE69840272D1 (de) 2009-01-08
WO1999035467A3 (en) 1999-09-10
WO1999035467A2 (en) 1999-07-15
EP1044354B1 (en) 2008-11-26
US5946097A (en) 1999-08-31
CA2316890A1 (en) 1999-07-15
EP1044354A2 (en) 2000-10-18

Similar Documents

Publication Publication Date Title
JP4130730B2 (ja) 光ファイバジャイロスコープ
EP0990118B1 (en) Vibration error reduction servo for a fiber optic gyroscope
US7333209B2 (en) Fiber optic gyroscope asynchronous demodulation
US5999304A (en) Fiber optic gyroscope with deadband error reduction
US6046810A (en) Kerr effect compensator for a fiber optic gyroscope
EP0990117B1 (en) Fiber optic gyroscope vibration error compensator
JP3990450B2 (ja) 光ファイバ感知コイル用の固有周波数トラッカ
EP0830569A1 (en) Optical power balancing in an interferometric fiber optic gyroscope
US5018859A (en) Fiber optic gyroscope balanced plural serrodyne modulators phase difference control
EP0535164B1 (en) Demodulation reference signal source
US20030169428A1 (en) Saw tooth bias modulation and loop closure for an interferometric fiber optic gyroscope
EP0455717A1 (en) Fiber optic gyroscope combined signal phase difference control
US5196904A (en) Fiber optic gyroscope bias modulation amplitude determination

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080502

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees