JP3990450B2 - 光ファイバ感知コイル用の固有周波数トラッカ - Google Patents

光ファイバ感知コイル用の固有周波数トラッカ Download PDF

Info

Publication number
JP3990450B2
JP3990450B2 JP50221797A JP50221797A JP3990450B2 JP 3990450 B2 JP3990450 B2 JP 3990450B2 JP 50221797 A JP50221797 A JP 50221797A JP 50221797 A JP50221797 A JP 50221797A JP 3990450 B2 JP3990450 B2 JP 3990450B2
Authority
JP
Japan
Prior art keywords
phase
signal
output
frequency
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP50221797A
Other languages
English (en)
Other versions
JPH11511246A (ja
Inventor
ストランドジョード,リー・ケイ
Original Assignee
ハネウエル・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハネウエル・インコーポレーテッド filed Critical ハネウエル・インコーポレーテッド
Publication of JPH11511246A publication Critical patent/JPH11511246A/ja
Application granted granted Critical
Publication of JP3990450B2 publication Critical patent/JP3990450B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers

Description

本発明は、光ファイバ・ジャイロスコープに関し、詳細には、光信号を感知ループ内でバイアス変調する方法に関する。さらに詳細には、本発明は、感知ループの固有周波数を決定する方法に関する。
光ファイバ・ジャイロスコープは、ジャイロスコープを支持する物体の回転を感知するのに好適な手段である。そのようなジャイロスコープは、かなり小形に作成することができ、またかなりの機械的衝撃、温度変化、および他の極限状況に耐えられるように構成することができる。ジャイロスコープは、可動部品がないので、保守がほとんど不要であり、またコストを節約することができる。また、ジャイロスコープは、他の種類の光ジャイロスコープにおいて問題となる遅い回転速度に対して敏感である。
光ファイバ・ジャイロスコープは、コア、および回転を感知する軸のまわりに巻き付けられた光ファイバコイルを有する。光ファイバは、一般に長さ100メートルないし2000メートル程度であり、電磁波すなわち光波がその中に導入され、コイル中を互いに相反する方向に伝播する一対の波に分割され、どちらも最後に光検出器に入射する閉じた光路の一部をなす。コア、または光ファイバコイルの感知軸のまわりの回転は、これらの波の1つに対して一方の回転方向においては実効光路長の増大をもたらし、他方の回転方向においては実効光路長の減少をもたらす。相反する方向に回転した場合、反対の結果が生じる。各波間のそのような光路長差は、どちらの回転方向に対してもこれらの波間に位相差、すなわち周知のサニャック効果をもたらす。このジャイロスコープは、干渉光ファイバ・ジャイロ(IFOG)と呼ばれる。回転による位相差遷移の量、したがって出力信号は、相反する方向に伝播する2つの電磁波が通過したコイル中の光路全体の長さに依存し、しかも長い光ファイバ内では大きい位相差が得られ、しかし、コイルになっているためにそれが占める比較的小さいくなるので、コイルに巻かれた光ファイバを使用することが望ましい。
光ファイバコイル中を通過した後で光検出器システム・フォトダイオードに入射する相反する方向に伝播する電磁波に応答する光検出器システム・フォトダイオードからの出力電流は、二乗コサイン関数に従う。すなわち、出力電流は、これら2つの波間の位相差のコサインに依存する。コサイン関数は偶関数なので、その出力関数は、位相差遷移の相対方向に関する指示、したがってコイル軸のまわりの回転の方向に関する指示を与えない。さらに、ゼロ位相の近傍のコサイン関数の変化率は非常に小さく、したがって出力関数は、遅い回転速度に対して非常に低い感度となる。
これらの不十分な特性のために、相反する方向に伝播する2つの電磁波間の位相差は、通常、バイアス変調器とも呼ばれる光位相変調器を光ファイバコイルの一方の側の光路内に配置することによって変調される。回転の感知検出を行うために、サニャック干渉計は、一般に、干渉計ループ内を相反する方向に伝播するビーム間の位相差の正弦波変調または方形波変調によってバイアスされる。したがって、これらの相反する方向に伝播する波の一方の波は、変調器中をコイルに向かって進み、反対の方向でコイルを横断する他方の波は、コイルを出ると変調器中を進む。
さらに、復調器システムの一部をなし、光検出器出力電流を表す信号を受信する位相感知検出器が備えられている。位相変調器ならびに位相感知検出器は、変調器によってもたらされる振幅変調を小さくするか、またはなくすために、信号発生器によっていわゆる「固有」周波数において動作するが、同じ基本周波数の他の波形タイプも使用できる。他の周波数も使用でき、またしばしば周波数をより扱いやすい値に下げることができる。
位相感知検出器の得られた信号出力は、サイン関数に従う。すなわち、出力信号は、フォトダイオードに入射する2つの電磁波間の位相差のサイン関数、主として他の大きい、望ましくない位相遷移が生じない場合、コイルの軸のまわりの回転による位相遷移に依存する。サイン関数は、ゼロ位相遷移において最大変化率を有する奇数関数であり、したがってゼロ位相遷移のどちらの側においても代数符号を変化させる。したがって、位相感知検出器信号は、コイルの軸のまわりで起きている回転の方向の指示を与えるとともに、信号値の最大変化率をゼロ回転速度に近い回転速度の関数として与える。すなわち、検出器は、ゼロの近傍の位相遷移に対して最大感度を有し、したがって出力信号は、遅い回転速度に対して非常に敏感である。もちろん、これは、他の原因すなわち誤りによる位相遷移が十分小さい場合のみ可能である。さらに、これらの状況におけるこの出力信号は、比較的遅い回転速度において直線に極めて近くなる。位相感知検出器の出力信号のそのような特性は、光位相変調なしの光検出器の出力電流の特性に比べてかなりの改良である。
従来技術によるそのようなシステムの一例を第1図に示す。システムの光学部分は、このシステムが相互性であること、すなわち以下で説明するように、非相反位相差遷移の特定の導入を除いて、相反する方向に伝播する各電磁波ごとに実質上同じ光路が生じることを保証するいくつかの特徴を光路に沿って含んでいる。光ファイバコイルは、そのまわりで回転を感知すべき軸のまわりに巻き付けられた単一モード光ファイバを使用して、コアまたはスプールのまわりにコイル10を形成する。単一モードファイバを使用した場合、電磁波すなわち光波の経路を一意に定義することができ、さらにそのような案内された波の同位相波面をも一意に定義することができる。これは、相互性を維持するのを大いに助ける。
さらに、光ファイバは、非常に大きい複屈折がファイバ内で構成されるいわゆる偏波保存ファイバにし、それにより相反する方向に伝播する波間の位相差遷移の変化をもたらす不可避的な機械的応力、磁界中のファラデー効果、または他の原因によってもたらされる偏波のゆらぎが比較的小さくなる。したがって、システム内の他の光構成要素に応じて電磁波を伝播するために、屈折率の高い軸、すなわちより伝播の遅い軸、または屈折率の低い軸が選択される。
第1図において、コイル10中を相反する方向に伝播する電磁波は、電磁波源または光源11から発生する。この光源は、一般にスペクトルの近赤外部分において、830ナノメートル(nm)ないし1550nmの代表的な波長を有する電磁波を発生するレーザ・ダイオードなど一般に半導体光源である。光源11は、コイル10内の散乱部位におけるレイリー散乱およびフレネル散乱による波間の位相遷移誤差を小さくするために放出光に対して短いコヒーレンス長を有しなければならない。コイル10内の非線形カー効果のために、2つの相反する方向に伝播する波の強度が異なれば、それらの間の位相遷移も異なる。この状況は、適切な統計特性を有する光を放出する光源11としてコヒーレンス長の短い光源を使用すれば克服することができる。
第1図において、レーザ・ダイオード11と光ファイバ・コイル10の間には、コイル10を形成する光ファイバの各端部を、光路全体をいくつかの光路部分に分割するいくつかの光結合構成要素まで延長することによって形成された光路構成が示されている。光ファイバの一部は、レーザ・ダイオード11に接触してその最適光放出点のところに配置され、その点から第1の光方向結合器12まで延びる。
光方向結合器12は、4つのポート間に延びる光伝送媒体をその中に有し、ポートは、その媒体の各端部に2つずつあり、これらは、第1図において結合器12の各上端部に示されている。これらのポートの1つは、ポートに接触して配置されたレーザ・ダイオード11から延びる光ファイバを有する。光方向結合器12の感知端部上の他のポートには、ポートに接触して配置され、光検出システム14に電気的に接続されたフォトダイオード13に接触して配置されるように延びる他の光ファイバが示されている。
フォトダイオード13は、それに接触して配置された光ファイバの部分から入射する電磁波または光波を検出し、信号成分選択手段35に応答して、光電流を発生する。この光電流は、上述のように、ほぼコヒーレントな2つの光波が入射した場合、実質上コヒーレントな一対の光波間の位相差のコサインに依存する光電流出力を供給するコサイン関数に従う。この光起電力デバイスは、入射した放射の一次関数である光電流を供給するように非常に低いインピーダンスで動作する。一般にp−i−nフォトダイオードである。
光方向結合器12は、その他方の端部においてポートに接触し、偏光子15まで延びる他の光ファイバを有する。結合器12のその同じ側の他のポートには、光ファイバの他の部分を含む無反射終端構成16がある。
光方向結合器12は、そのいずれかのポートにおいて電磁波または光波を受けると、その光の約半分が入射ポートを有する端部の反対側の端部の2つの各ポートにそれぞれ現れるように伝送する。一方、その波または光は、結合器12の入射光ポート同じ側の端部のポートには伝送されない。
偏光子15は、単一空間モード・ファイバ内でも光が2つの偏光モードで伝播することができるので使用される。したがって、偏光子15は、同じ偏光の時計回り(cw)波および反時計回り(ccw)波が感知ループ内に導入され、かつcw波およびccw波に対して同じ偏光の感知ループからの光のみが検出器において妨害されるように、ある偏光で伝播する光を通過させるために備えられる。しかしながら、偏光子15は、それが阻止される偏光状態の光を完全には阻止しない。したがって、この場合も、そこを通過する相反する方向に伝播する2つの電磁波間に小さい非相互性をもたらし、したがってそれらの間に、偏光子が配置される環境の状態に従って変化する小さい非相反位相遷移差が生じる。この点で、使用された光ファイバの高い複屈折性は、上述のように、この得られた位相差を小さくするのを助ける。
偏光子15は、両端部にポートを有し、その間に電磁波伝送媒体が配置されている。光方向結合器12に接続された端部の反対側の端部のポートに接触して、結合器12と同じ波伝送特性を有する他の光方向結合器17まで延びる他の光ファイバ部分が配置されている。
この場合も、偏光子15に結合される結合器17のポートと同じ端部上の他のポートは、他の光ファイバ部分を使用して、無反射終端構成18に接続される。結合器17の他の端部上のポートについて考えてみる。1つは、コイル10内の光ファイバの1つの端部からそこまで延びる光路部分内の他の光構成要素に接続される。結合器17の他のポートは、光ファイバ10の残りの端部に直接結合される。コイル10と結合器17の間で、コイル10に直接接続された側の反対側に光位相変調器19が備えられる。光位相変調器19は、第1図に示されるように、内部に含まれる伝送媒体の両端に2つのポートを有する。コイル10からの光ファイバが変調器19の1つのポートに接触して配置される。結合器17からの光ファイバが変調器19の他のポートに接触して配置される。
光変調器19は、伝送媒体または複数の伝送媒体の屈折率を変化させて、それにより光路長を変化させることによって、その中に伝送された電磁波中に位相差をもたらす電気信号を受信するようになっている。その電気信号は、ωgを変調周波数fgと等価の角周波数とした場合、変調周波数fgでC1sin(ωgt)に等しい正弦波電圧出力信号または方形波電圧出力信号を発生するバイアス変調信号発生器20によって変調器19に供給される。代わりに、他の適切な周期波形も使用できる。
以上で、光源11によって放出された電磁波または光波がたどる光路に沿って形成された第1図のシステムの光学部分の説明を終える。そのような電磁波は、光源から光ファイバ部分を介して光方向結合器12に結合される。光源11から結合器12に結合された波の一部は、その反対側の端部のポートに結合された無反射終端構成16内で失われるが、その波の残部は、偏光子15を介して光方向結合器17に伝送される。
結合器17は、偏光子15から受け取られ、そのポートに入る電磁波がほぼ半分に分割され、その一部が反対側の端部の2つの各ポートから出るビーム・スプリット装置の役目をする。結合器17の反対側の端部上の1つのポートから、電磁波が光ファイバ・コイル10、変調器19を介して、結合器17に戻る。この戻った波の一部は、結合器17の偏光子15接続端部の他のポートに接続された無反射構成18内で失われるが、その波の残部は、結合器17の他のポートを介して偏光子15および結合器12に進み、そこからその一部がフォトダイオード13に伝送される。偏光子15からコイル10へ送られた波の他の部分は、結合器17のコイル10の端部上の他のポートを出て、変調器19、光ファイバ・コイル10を通過し、結合器17に再び入り、その一部は、他の部分と同じ経路をたどって、最後にフォトダイオード13に入射する。
上述のように、フォトダイオード13は、それに入射した2つの電磁波または光波の強度に比例する出力光電流iPD13を発生し、したがって次式によって与えられるように、そのダイオードに入射したこれら2つの波の間の位相差のコサインに従うことが予想される。
Figure 0003990450
これは、電流がフォトダイオード13に入射した実質上コヒーレントな2つの波の合成光強度に依存するためである。フォトダイオード13の強度は、2つの波の間でどのくらい構造的または破壊的な干渉が起こるかに応じて、ピーク値Ioからより小さい値まで変化する。βは、光検出器の感度である。この波の干渉は、コイル10を形成する光ファイバコイルがその軸のまわりで回転し、そのような回転が波間に位相差遷移ψRをもたらしたときに変化する。さらに、cos(ωgt)に従って変化するようになされた振幅値ψmを有する変調器19によってこのフォトダイオード出力電流中にもたらされる追加の可変位相遷移がある。
光位相変調器19は、上述の種類のものであり、光検出システム14の出力信号を、上述のコサイン関数に従う信号からサイン関数に従う信号に変換する復調システムの一部として位相感知検出器とともに使用される。サイン関数に従うことにより、上記の出力信号中に、回転の速度に関する情報、ならびにコイル10の軸のまわりのその回転の方向に関する情報を与える。
したがって、フォトダイオード13を含む光検出システム14からの出力信号は、電圧に変換され、増幅器21中に与えられ、増幅され、フィルタ22を介して、位相感知検出器手段23に送られる。光検出システム14、増幅器21、フィルタ22、および位相感知検出器手段23は、信号成分選択手段を構成する。位相感知検出器手段23は、位相復調システムの一部をなし、周知の装置である。その位相感知検出器は、ろ波されたフォトダイオード・システム出力信号の第1高調波の振幅、または変調信号発生器20の基本周波数を取り出して、フォトダイオード13に入射する電磁波の相対位相の指示を与える。この情報は、位相感知検出器23によって、サイン関数に従う出力信号中に与えられる。すなわち、この出力信号は、フォトダイオード13に入射する2つの電磁波間の位相差のサインに従う。
また、バイアス変調信号発生器20は、光路内の光を上述の周波数fgで変調する際に、再結合した電磁波によって光検出システム14内に発生する高調波成分をもたらす。フィルタ22は、光検出器14の出力信号の変調周波数成分、すなわち第1高調波を、増幅器21によって増幅された後で通過させる帯域通過フィルタである。
動作に際して、回転のために、光路内のコイル10を通過する電磁波を伝播する2つの相反する方向における位相差の変化は、変調器19による位相差の変化と比較して比較的ゆっくり変化する。回転による位相差、すなわちサニャック効果は、単に2つの電磁波間の位相差を遷移させるだけである。フィルタ22の出力のところに現れる光検出システム14の出力信号の変調周波数成分の振幅スケール・ファクタは、a)変調器19および発生器20によるこれらの波の位相変調の振幅値、b)システム中の様々な利得を示す定数の各ファクタによってのみさらに修正される、この位相差のサインによって設定されることが予想される。したがって、この信号成分中の発生器20および変調器19によるこの正弦波変調の周期的効果は、振幅スケール・ファクタに応じて復調器システム(検出器)出力信号を残す位相感知検出器23を含むシステム内の復調によって除去されることが予想される。
したがって、増幅器21の出力における電圧は、一般に次のようになる。
21-out=k{1+cos[ψR+ψmcos(ωgt+θ)]}
定数kは、増幅器21の出力に対するシステム中の利得を示す。記号θは、発生器20によって与えられる信号の位相に対する増幅器21の出力信号中の追加の位相遅延を示す。この位相遷移の一部は、光検出システム14内に導入され、一部は、その中の媒体の屈折率および/またはその長さがそれに応じて変化する際に発生器20によって供給される信号の位相と変調器19の応答との間の変調器19間の位相遷移など他の原因による。上式中で使用されている他の記号は、上記の最初の式中で使用されているものと同じ意味を有する。
上式をベッセル級数展開で展開すれば、次のようになる。
21-out=k[1+J0(ψm)cosψR
−2kJ1(ψm)sinψRcos(ωgt+θ)
−2kJ2(ψm)cosψRcos2(ωgt+θ)
+2kJ3(ψm)sinψRcos3(ωgt+θ)
Figure 0003990450
増幅器21の出力におけるこの信号は、フィルタ22の入力に加えられる。
上記のフィルタ22は、主として最後の式からの第1高調波、すなわち変調周波数成分を通過させる。したがって、フィルタ22の出力信号は、次のように書ける。
22-out=−2kJ1(ψm)sinψRcos(ωgt+θ+ψ1
他の位相遅延項ψ1は、フィルタ22を通過した結果として追加された第1高調波項中の追加の位相遷移である。この追加された位相遷移は、実質上一定であると予想され、フィルタ22の周知の特徴である。
フィルタ22からの信号は、次いでバイアス変調器発生器20からの信号と同様に位相感知検出器23に加えられる。後者は、この場合もC1sin(ωgt)に等しくなる。ここで、ωgは変調周波数fgと等価の角周波数である。θ+ψ1に等しい位相遷移に位相感知検出器23によって基準信号が追加されると仮定すると、その発生器20の出力信号とともに検出器の出力は次のようになる。
23-out=k’J1(ψm)sinψR
定数k’は、位相感知検出器23中のシステム利得を示す。
この式から分かるように、位相感知検出器23の出力は、バイアス変調発生器20によって動作するバイアス変調器19によって与えられた振幅ψmに依存する。そして、コイル10のその軸のまわりの所与の回転速度を位相感知検出器23の出力の信号の値に設定する、すなわち少なくともその可能な値の範囲内でジャイロスコープのスケール・ファクタを設定するために使用することができる。
しかしながら、これらの予想される結果は、第1図のシステムでは達成されない。予想される結果を達成することができない1つの理由は、バイアス変調信号発生器20が、位相変調器19の上述の周波数fgで光路中の光を変調する際に、再結合した電磁波によって光検出システム14内に発生する高調波成分をもたらすだけでなく、発生器20と変調器19に生じる非線形性のために、変化している光路位相中に高調波成分を直接与えることである。
すなわち、第1の可能性として、変調発生器20からその出力に供給される出力信号は、周波数fgの基本信号だけでなく、高調波をも含んでいる。そのような高調波を含んでいない信号が与えられた場合でも、位相変調器19内の非線形成分特性およびヒステリシスのために、高調波が光路中で変化する位相中にもたらされる。そのような高調波は、光ファイバ・ジャイロスコープの出力信号中に大きい速度バイアス誤差をもたらす。したがって、変調システムによるそのような誤差が小さいかまたはない干渉計光ファイバ・ジャイロスコープが望まれる。
「固有(proper)」周波数は、1つの波が他の波の変調に対して位相が180度ずれて変調されるその周波数となるように選択される。2つの波の間の180度の位相差をもたらすこの変調には、得られた光検出器信号の変調器によってもたらされる振幅変調をなくす効果がある。「固有」周波数の値は、光ファイバの長さおよびその等価の屈折率から決定することができる。
位相感知復調器で得られた信号出力は、サイン関数に従う。すなわち、出力信号は、フォトダイオードに入射した2つの電磁波間の位相差、主としてコイルの軸のまわりの回転による位相遷移のサインに依存する。サイン関数は、ゼロにおいて最大変化率を有する奇数関数であり、したがってゼロのどちらの側かによって代数符号を変化させる。したがって、位相感知復調器信号は、コイルの軸のまわりで起きている回転の方向の指示を与えるとともに、信号値の最大変化率をゼロ回転速度に近い回転速度の関数として与える、すなわちゼロ位相遷移の近傍でその最大感度を有し、したがってその出力信号は、遅い回転速度に非常に敏感である。もちろん、これは、他の原因すなわち誤りによる位相遷移が十分小さい場合のみ可能である。さらに、これらの状況におけるこの出力信号は、比較的遅い回転速度において直線に極めて近くなる。位相感知復調器の出力信号のそのような特性は、光検出器の出力電流の特性に比べてかなりの進歩である。
しかし、位相感知復調器出力は、サイン関数に従う際に、ゼロから離れた回転速度において、出力は徐々に直線でなくなる。サイン関数のピークの1つを越えるのに十分な振幅の回転速度に対して、出力応答値は、周期的であるために、まさに生じている回転速度に対して曖昧になる。したがって、位相感知復調器の出力信号がゼロ回転速度値の近傍の線形領域内に入るように、ジャイロスコープを動作させることが強く望まれる。
これは、光ファイバコイル中を伝播し、光検出器に到達する相反する方向に伝播する電磁波によって使用される光路部分内のコイルの近くに、他の位相変調器または周波数シフタを追加することによって行うことができる。この他の位相変調器または周波数シフタは、光検出システムからのフィードバック・ループ内で動作し、位相変調器による位相変化が、光ファイバコイルの軸のまわりの回転によってもたらされる相反する方向に伝播する電磁波間の位相遷移差を相殺するのに十分であるような負のフィードバックを与える。したがって、過渡的な回転速度変化を除いて、光検出器で生じる位相遷移差はほとんどなく、したがって位相感知復調器によって感知される位相遷移はほとんどない。したがって、この位相感知復調器の出力信号は、常にゼロに近いか、またはゼロになる。したがって、回転による位相遷移を相殺するのに十分な特定の位相遷移をもたらすように変調器に指示することによって、この追加の位相変調器を動作させるために位相感知復調器に接続された発生器からの信号は、回転速度の大きさおよび方向に関する情報をその中かまたは関連する信号中に含んでいる。
この追加の光位相変調器を動作させるために、フィードバック・ループ内の位相感知復調器に接続された発生器からの出力信号のいくつかの形が提案されている。1つの一般的かつ良い選択は、鋸歯状信号を光位相変調器に加えるセロダイン発生器を使用することである。鋸歯信号および鋸歯状信号を選択するのは、位相振幅2πの理想的な鋸歯信号は、変調された電磁波に対して純粋な周波数変換をもたらす単側波帯変調器をもたらすことが示されるからである。したがって、そのような鋸歯信号によって動作している位相変調器中を光が通過すると、変調器の周波数が鋸歯信号の周波数に等しい量だけ変換されることになる。理想的でない鋸歯信号は、純粋な周波数変換をもたらさず、代わりに追加の高調波が発生するであろう。しかし、これらの高調波は、鋸歯に極めて近い波形を与え、かつ変調器の設計を良くすることによって小さくすることができる。
そのように動作する光位相変調器は、光ファイバコイルの一方の側にあるので、1つの電磁波は、コイルに入ったときにその周波数が変換され、他の電磁波は、コイルを出るまでその周波数が変換されない。したがって、他の波よりも高い周波数を有する1つの波(どちらの波も光検出器に到達したときに同じ周波数を有するが)は、ループ中を通過し、その結果、取り付けられた変調器(またはセロダイン発生器)周波数に対して、1つの波は、他の波に対して、光検出器において、鋸歯の周波数および2πτΔfのファイバの性質によって設定される量の位相遷移を有することになる。ただし、Δfは、変調器または発生器の周波数、τは、コイル中の光波の通過時間である。この位相遷移は、変調器が負のフィードバック・ループ内に備えられているために、回転によって生じた光波間の位相遷移を相殺する働きをする。したがって、鋸歯または鋸歯状の発生器出力信号の周波数は回転速度を示し、鋸歯の極性は回転の方向を示す。
これを第2図の構成5に示す。位相感知検出器23からの信号は、第1図の回転速度指示器71にではなく、第2図に組み込まれたサーボ電子回路73に進む。この信号は、ビーム間の位相差の大きさおよび符号を示す。そのような位相差に応答して、サーボ電子回路は、合波器72を介して、位相変調器19か、または他のまたは追加の変調器に進み、1つのビームを他のビームに対して位相遷移させて、各ビームを互いに同相にする位相ランプ信号を出力する。セロダイン変調の場合の鋸歯の周波数など、ビームを同相に戻すために必要とされるフィードバック信号は、感知ループの回転速度を示す。この信号は、次いでループの回転速度の便利かつすぐに役立つ指示を与える回転速度指示器71に供給される。
近年、研究者等は、軍事的な全温度範囲にわたって毎時0.01度のバイアス安定度性能を有する干渉計光ファイバ・ジャイロスコープ(IFOG)を開発した。この達成の1つの重要な理由は、位相バイアス変調をIFOG感知コイルの固有周波数において実施する利点の発見である。これを行うことによって、直交タイプ誤差がほとんどなくなった。(直交誤差は、所望の速度信号に対して同期した不要な信号であるが、速度信号に対して位相が90度ずれている)。実際、直交誤差はその程度まで抑圧することができるので、最近の文献には、これらの誤差についての記述がない。現在、IFOGのアクセス性能を軍事温度範囲にわたって0.001度毎時に引き上げる努力が進行中である。このレベルの性能では、直交誤差が再び重要な問題になる。
IFOG内の最も一般的かつ重要な2つの直交誤差は、バイアス位相変調器が発生する強度変調および第2高調波位相変調(または偶数高調波)に起因する。これらの誤差機構はどちらも、所望の速度信号に対して同期しており、かつ位相が90度ずれている光信号を光検出器で発生する。これらの誤差信号は位相が90度ずれているので、完全な位相感知復調器(PSD)またはロックイン増幅器を使用して速度信号を復調すると、誤差信号が完全に除去され、したがってジャイロスコープ出力中にバイアス誤差が存在しない。残念ながら、ジャイロスコープ電子回路は、信号を位相遷移させ、かつ位相遷移が温度に対して安定でないので、実際のPSDは、直交誤差信号を完全に除去することはできない。一般に、直交誤差信号によるバイアス誤差を直交除去によって小さくするために最良であると考えられるファクタは、温度に対して10ないし100である。これは、固有周波数における動作が重要になる1つの理由である。
直交誤差信号は、バイアス変調周波数が調整されて感知コイルの固有周波数になった時にゼロになる。極めて正確かつ安定な周波数をつくり出すことができ、固有周波数は、摂氏1度(C)につき約10PPMしか変化しない。速度PSDの直交除去と固有周波数の近くでの動作との間で、直交誤差は、0.01度毎時の性能レベルに小さくなる。しかしながら、バイアス性能の大幅な改善を行うためには、直交誤差の影響をさらに小さくする必要がある。おそらく直交除去を改善することはできないであろうが、固有周波数をトラッキングすることによって固有周波数に関する動作を改善することが妥当であると考えられる。
固有周波数をトラッキングする1つの簡単な方法は、感知コイルの温度を監視することである。固有周波数の温度依存性は、かなり直線的であり、予測できる。この依存性が較正され、それをメモリ内に記憶すると、動作しているジャイロスコープの変調周波数は、測定したコイル温度から予測される固有周波数に連続的に調整することができる。固有周波数をトラッキングするこの技法は、確かにトラッキングを行わない場合よりも有効であるが、いくつかの制限がある。まず第一に、この技法は、ジャイロスコープが動作仕様を満足する前に正確な較正を必要とする。第二に、較正の正確性と安定性が所望のアクセス性能を保証するために十分でない。第三に、圧力計の圧力、一定の加速、カー効果など、固有周波数を変化させる温度以外のパラメータがある。
国際特許出願第WO−A−9119167号には、光導波路ループ内を反対の方向に伝播する一対の光波を有する光ファイバ回転センサが開示されている。位相変調器は、ループ固有周波数において変調信号によって駆動される。各波は、ループを出ると、結合して感知される光強度信号になる。感知された信号は、回転速度成分と直交する成分を含んでいる。直交成分の大きさは、ループ固有周波数からの変調信号の変調周波数の周波数の偏差に比例すると考えられる。位相変調器は、直交成分をゼロに駆動しようとしてサーボ制御される。
発明の概要
バイアス変調と実際の固有周波数との周波数差に依存し、かつ特にバイアス変調周波数が固有周波数に等しいときにゼロになる振幅を有する光信号を見つけることが理想的である。このタイプの信号は判別子(discriminant)である。
固有周波数判別子は、バイアス変調周波数を制御するサーボを駆動するために利用することができる。サーボ(簡単な積分器でよい)は、バイアス変調周波数を制御することによって固有周波数判別子をゼロに維持することができる。バイアス変調周波数が固有周波数に等しいときのみ判別子はゼロになるので、どんな影響を固有周波数に与えても、サーボは、常にバイアス変調周波数を固有周波数に維持する。判別子およびサーボを使用する方法には、より正確であり、かつ事前較正を必要としないという利点がある。
トリック(本発明)は、良い固有周波数判別子を見つけることである。皮肉なことに、直交誤差をなくすために、バイアス変調周波数を制御する固有周波数判別子として直交誤差信号を使用することができる。直交誤差を判別子として使用するために、第2のPSDを使用しなければならない。IFOGは、直交PSDを使用して、固有周波数判別子を復調する。直交PSDは、基準信号が90度位相遷移している点を除いて速度PSDと同じである。
位相変調器本来の強度変調は、良い判別子を得るために十分安定でなく、また十分大きくない。直流(DC)電圧を位相変調器に印加すれば、強度変調が比較的安定なレベルまで増大し、したがって良い判別子が得られる。良い判別子を得る他の方法は、第2高調波駆動電圧を位相変調器に印加することである。
固有周波数トラッカは、開ループ構成または閉ループ構成を有するPM(偏波保存)光ファイバ・ジャイロスコープまたは減偏光光ファイバ・ジャイロスコープ内で使用される。PM開ループ構成およびPM閉ループ構成をそれぞれ第1図および第2図に示す。光ファイバ・ジャイロスコープの減偏光バージョンは、光ファイバ感知ループの各端部のところかまたはその近くにデポラライザを有し、感知ループは、単一モード・ファイバ、すなわち非PMファイバから作成される。
【図面の簡単な説明】
第1図は、関連技術の開ループ光ファイバ・ジャイロスコープの図である。
第2図は、関連技術の閉ループ光ファイバ・ジャイロスコープの図である。
第3図は、固有周波数トラッキング用に強度変調を使用して直交信号を発生させる本発明を組み込んだIFOG構成を示す図である。
第4図は、デジタル実施形態を使用するとともに、固有周波数トラッキング用に高調波を導入することによって直交信号を発生させる本発明を組み込んだIFOG構成を示す図である。
第5図は、第4図のデジタル実施形態の電子回路の詳細な図である。
第6図は、非50/50デューティ・サイクル波発生器を示す図である。
第7図は、変調器に対する発生器出力に関連する波形のタイミング図である。
実施形態の説明
第3図は、固有周波数トラッキングの設計を組み込んだIFOG 7の図である。光源11からの光ビームは、結合器12を通り、さらにファイバ24中を通って、集積光回路(IOC)25に至る。その光ビームは、接合26において光ビーム27および28に分割される。光ビーム27および28は、それぞれ光ファイバ感知コイル10の両端に入り、コイル10中を相反する方向に伝播する。光ビーム27および28は、コイル10の他の端部を出て、IOC25に入り、接合26において結合されて、光ビーム31になる。IOC25は、ニオブ酸リチウム、陽子交換、シリコンの技術または他の材料および/またはプロセスの技術を使用して作成される。IOC25の代わりに、接合26の分割および結合を実施する光ファイバ結合器が使用できる。変調器30の代わりに、圧電ボビン、コア、スプールまたはマンドレルのまわりに巻き付けられた光ファイバを有する変調器、または感知コイル10内の、コイル10の1つの端部の近くに配置される他の何らかの構造、材料および/または機能特性を有する変調器などが使用できる。偏光子を光ファイバ・ジャイロスコープ内で使用する場合、偏光子は、光源結合器12と接合26の間に配置するか、または光ファイバ結合器を、光ビーム27および28用のスプリッタ/結合器として使用する。
コイル10の中心にあり、かつコイル10を包囲する平面に対して垂直な軸のまわりでコイル10の回転が起こった場合、互いにゼロ位相差をもってコイル10に入る光ビーム27および28は、互いに異なる光路を進み、したがって互いにある位相差をもってコイル10を出る。この現象は、光ビームの媒質の動きが光ビームの光路の長さに影響を及ぼすサニャック効果と呼ばれるものによって起こる。この現象によってもたらされる位相差の量は、コイル10の軸のまわりの回転速度を示す。
IOC25は、バイアス位相変調を与える信号、および閉ループ構成内でビーム27および28の位相差を小さくする位相ゼロ化信号を使用して、入射ビーム28および出射ビーム27を位相変調する変調器30を有する。ゼロ化に必要とされる位相変調信号の量は、コイル10の軸のまわりのその回転速度を示す。ただし、ビーム27とビーム28との位相差に影響を及ぼし、それにより存在しない誤ったまたは間違った回転の指示をもたらす他の要因がないことを条件とする。
光ビーム31は、ファイバ24中を光源結合器12まで伝播する。ビーム31の一部は、結合器12のポート33中を進み、ビーム31が表している電気信号を光検出電子回路14に与えるフォトダイオード13に入射する。電気信号34は、光検出器13で処理され、デバイス14から出力された信号である。信号34は、直交位相感知検出器35および速度位相感知検出器36に進む。90度移相器58は、直交位相感知検出器35の他の入力に接続された出力を有する。バイアス位相変調発生器60は、90度移相器58の入力と、速度位相感知検出器36とに接続される出力端子を有する。発生器60はまた、位相変調器30に接続された出力を有する。発生器60は、ある周波数を有する電気的周期的バイアス位相変調信号62を出力し、信号62は、検出器36、移相器58、変調器30に進む。90度移相器58は、信号62を検出器35への出力信号70として移相させる。変調器30は、ビーム27および28を信号62に従って変調する。発生器60の信号62の周波数は、可変であり、また適切な周波数トラッキングのために、積分器であるサーボ66からの信号64によって制御される。サーボ66は、直交位相感知検出器35からの入力信号68を有する。
光検出電子回路14からの信号34は、位相感知検出器35および36によって復調される。速度位相感知検出器36は、信号34の、変調信号62と同相の部分を復調する。直交位相感知検出器は、直交信号34および70を復調し、サーボ66を信号68を使用して駆動する。サーボ66は、変調信号62の周波数を制御し、感知コイル10の固有周波数に対する変調信号62の周波数のトラッキングを実施する。トラッキング量は、信号70に対して信号34の直交誤差判別子の閉ループ・サーボ縮小に相当する。直流電圧(例えば、数ボルト)を位相変調器30の反対側の電極に印加して、信号34中に判別子を与えるために使用される直交信号を発生する強度変調を増大させる。この直流電圧は、位相変調に影響を及ぼさない。
直交誤差をなくすために、直交誤差を増大させて、よい判別子をつくり出すことは、「鶏と卵」の問題に似ている。問題は、この手法が実際に直交誤差によって制限される全体的なバイアス性能を下げるかどうかである。各位相感知検出器35および36が実施することができる最良の測定は、過剰雑音や光子ショット雑音などの相対強度雑音によって制限される。したがって、判別子を測定する場合、若干の不確実さが生じ、これは、バイアス変調周波数が固有周波数の近傍において幾分ランダムに変動することを意味する。変動の振幅は、相対強度雑音の量に依存する。ここで役立つものが、直交除去である。
光検出器14からの直交信号ΔPquadは、バイアス変調周波数と固有周波数ωpとの間の周波数差Δωに比例すること、また位相変調器30がそれぞれ各相反する方向に伝播するビーム27および28に加える分数強度変調ηにも比例することが分かる。
Figure 0003990450
式1において、P0は、位相バイアスがなく、かつ変調がない場合の検出されたパワーである。位相変調器30に直流電圧を印加すると、ηが増大し、したがって所与の周波数に対して大きい直交信号が検出される。バイアス変調周波数サーボ66は、Δωをゼロに制御することによってΔPquadを最小限に抑えようとする。ただし、光子ショット雑音およびΔPquadを測定する際の他の誤差は、Δωをどのくらい小さくすることができるかを制限する。ΔPquadの不確実さが固定であると仮定した場合、ηを大きくすることによって、より小さいΔωが得られ、したがってバイアス変調信号62の周波数をコイル10の固有周波数により厳密に制御することができる。式2は、光検出器14における同相信号ΔPrateを回転速度ΔΩに関連させる。
ΔPrate=P0SFΔΩ (2)
ジャイロスコープ7の開ループ・スケール・ファクタはSFである。式1および式2を使用すれば、Δωをどのくらい小さくすることができるかを決定することができる。慎重に設計することによって、直交位相感知検出器35が行った測定を速度位相感知検出器36が行った測定と同じくらいよくなる。したがって、ΔPquad=ΔPrateが成り立つと仮定することができ、それによりΔωを速度ΔΩの不確実さに関連させることができる。
Figure 0003990450
また、速度位相感知検出器36によって復調され、かつ強度変調に起因するバイアス信号ΔPbiasを決めることができる。
Figure 0003990450
式1と式4との唯一の違いは、式4が速度位相感知検出器36の直交除去を示す角度Δθを有することであることが分かる。この式は、どのくらいの強度変調が速度位相感知検出器36によって復調されるかを示す。式3を使用すれば、強度変調η、有限の直交除去Δθ、および固有周波数からの小さい周波数差Δωのために、どのくらいの速度バイアスΔΩbias、quadがジャイロスコープによって示されるかを決定することができる。
Figure 0003990450
式5を検討すれば、よい判別子を得るために強度変調を増大させたとき、速度バイアスΔΩbias,quadが増大することが分かる。しかしながら、式3は、バイアス変調周波数サーボ66が活動している限り、ηの増大はΔωの減少によって相殺されることを示す。式3を式5に代入すれば、次式が得られる。
ΔΩbias、quad=ΔθΔΩ (6)
式6は、強度変調による速度バイアスΔΩbias、quadは、バイアス変調周波数サーボ66が使用され、かつ速度位相感知検出器36がある有限の直交除去(Δθ<1)を有する限り、検出できる最小のΔΩよりも常に小さくなることを示す。(一般に、直交除去はファクタ10よりもよいか、またはΔθ<0.1である)。さに、位相変調器30によってもたらされた強度変調の量を増大させて、不要な速度バイアス誤差をもたらすことなく、よい固有周波数判別子を得ることができる。
強度変調を増大させることは、よい固有周波数判別子を得る唯一の方法ではない。第2高調波を位相変調器に加えることもできる。非常に重要なことは、所望の速度信号に対して直交位相の誤差信号がもたらされるような形で第2高調波を加えることである。これが行われた場合、この手法の分析は、いま述べた分析と非常に似ている。最も重要なことは、式6に示される同じ関係が得られることである。要約すれば、バイアス変調信号62の周波数を固有周波数に制御するために固有周波数をトラッキングする手段が開示されている。この方法は、第2の位相感知検出器35を使用して、固有周波数の判別子を与える直交信号を復調する。位相変調器30によって生成される強度変調または第2高調波位相変調を刺激することによって判別子を使用できるレベルまで増大させることができる。この分析から、このプロセスは、ジャイロスコープの全体的なバイアス誤差を増大させないことが分った。
第4図の構成8は、発明の背景に記載されている第1図の構成6と類似している。第3図および第4図の構成7および8は、それぞれ減偏光ジャイロスコープまたはPMジャイロスコープである。減偏光バージョンは、感知コイル10の各端部にデポラライザ75を有し、感知コイル10は、単一モード・ファイバまたは非PMファイバを有する。
第4図は、コイル10の固有周波数をトラッキングする非50/50デューティ・サイクル・バイアス変調を有する光ファイバ・ジャイロスコープ8の図である。
光源11は、一般に約1ミクロンの波長を有する広帯域光を出力する。この光は、ファイバ24を介して光源結合器12中を進み、多機能集積光回路(IOC)25に至る。IOCの代わりに、光ビームを分割し、結合するファイバ結合器も使用できる。システム内に偏光子がある場合、それは、光源結合器とスプリッタ/結合器との間にある構成要素である。IOC25の有用な機能は、ファイバ24からの光を偏光させること、光を接合26において感知コイル10中を互いに反対の方向に伝播するビーム27および28に分割すること、および変調器30が光ビーム28がコイル10に入ったときにそれを位相変調し、光ビーム27がコイル10を出たときにそれを位相変調することを含む。位相変調器30は、光ビーム27および28をコイルの固有周波数である固有周波数においてバイアス位相変調する。ただし、光ビーム27および28の位相変調の周波数が不適切なことによる誤差は、誤った回転速度指示をもたらす。
光ビーム27および28は、コイル10を出た後、戻り、IOC25に入り、接合26において結合され、結合された光ビーム31は、IOC25を出て、ファイバ24中を進み、結合器12に入る。光ビーム31の一部32は、結合器12のポート33から出て、フォトダイオード13に入射する。フォトダイオード13は、光ビーム32を光検出器電子回路14に入る電気信号に変換し、直交位相感知検出器35および速度位相感知検出器36に入る信号32を示す適切な電気信号34を出力する。直交位相感知検出器35の出力は、信号を積分する積分器37に進む。積分器37の出力は、電圧制御発振器38に進む。電圧制御発振器38は、標準の集積回路部品でよい。電圧制御発振器38の周波数安定度は、あまり重要ではない。電圧制御発振器の出力は、Nを2以上の整数として、N分割非50/50デューティ・サイクル方形波発生器40に進む。方形波発生器40の出力は、位相変調器30に接続され、反対の方向に伝播するビーム28および27を位相変調するために位相変調器30を駆動する。発振器38の出力はまた、速度位相感知検出器36および90度移相器41に進む出力を有するN/2分割50/50分割器39に進む。非50/50デューティ・サイクル方形波発生器40は、発生器40の出力の波形の周期の2分の1サイクルを、発生器40の出力の波形の1サイクルの通常の2分の1よりも短い1つのVCO38クロック・サイクルにすることによって、VCO38クロック周波数のN分の1である周波数を有する所望の波形をつくり出す。
第5図に、第4図のジャイロスコープ8の電子回路50のデジタル実施形態を示す。検出器14の出力信号34は、入力サンプル信号端子、および直交位相感知検出器35のインバータ43と速度位相感知検出器36のインバータ44とに接続されたデジタル出力信号バス端子を有するアナログデジタル変換器42に進む。インバータ43の出力は、直交位相感知検出器35のプリアキュムレータ45に進む。プリアキュムレータ45の出力は、積分器37のアキュムレータ46に進み、アキュムレータ46の出力は、デジタルアナログ変換器47に進む。アナログ出力電圧がデジタルアナログ変換器47から電圧制御発振器38に与えられる。電圧制御発振器38は、電圧制御発振器38に対する入力電圧によって決定された可変周波数クロック出力54を有する。電圧制御発振器38のクロック出力54は、N分割非50/50デューティ・サイクル方形波発生器40およびN/2分割50/50基準クロック信号発生器39に進む。
発生器40の出力は、変調器30に進む適切な固有周波数のバイアス位相変調信号である。基準発生器39の出力は、移相器41および2分割変換器48に進む。2分割変換器48は、インバータ44に進む反転信号を出力する。反転信号は、すべてのバイアス変調半サイクルにおいてインバータ44にデータの極性符号を反転させる。したがって、インバータ44の出力は、バイアス位相変調信号のすべてのサイクルにおいてプリアキュムレータ49をリセットする。プリアキュムレータ49の出力は、ジャイロスコープ8の感知コイル10の回転速度を示す回転速度出力である。
90度移相器41に進む発生器39の出力は、移相器41のインバータ51を通過する。基準発生器39の出力信号の周波数は、発生器40のバイアス位相変調信号の周波数の1/2である。インバータ51の出力は、インバータ43に進む反転信号を出力する90度移相器41の2分割変換器52に進む。反転信号は、バイアス位相変調信号のすべての半サイクルにおいてインバータ43にそれを通過するデータの極性符号を反転させる。それによりバイアス位相変調信号のすべてのサイクルにおいてプリアキュムレータ45をリセットする。プリアキュムレータ45の出力は、プリアキュムレータ46によって累積される、すなわち積分される。
速度位相感知検出器36の回転速度出力は、ジャイロスコープ8が開ループ構成である場合、回転速度指示器に進むか、または閉ループ・ジャイロスコープ8のサーボ電子回路に進む。サーボ電子回路から、位相変調器30を通って、バイアス位相変調器信号を有する加算増幅器を介して、または他のまたは追加の位相変調器を通って、感知コイル10の回転によってもたらされたビーム27および28の位相差は、ゼロ位相差になる。
第6図は、波発生器40の図である。電圧制御発振器38の出力クロック信号54は、VCO38クロック信号54の1/Nの周波数を有するN分割信号56を発生器40の出力として出力するカウンタ52のクロック入力に進む。また、カウンタ52の出力は、プログラム可能読取り専用メモリ(PROM)53のクロック入力に供給される。PROM53は、発生器40のN分割出力の各半サイクルごとに必要とされるクロック・サイクルの数を決定するカウンタ52のデータ入力に対して最大カウント信号を出力する。
第7図は、発生器40の信号のタイミング図である。VCOクロック信号54は、カウンタ52への入力信号であり、信号55は、N分割カウンタ52によってつくり出された50/50デューティ・サイクルである。しかしながら、カウンタ52の実際の出力は、クロック信号54の1つのサイクルによって短縮された第1の半サイクルを有する非50/50デューティ・サイクル56であり、非50/50デューティ・サイクル信号56の第2の半サイクルは、クロック信号54の1つのサイクルによって延長される。
以下は、第2図から第4図の構成8の実施形態に対して本固有周波数発明がどのように動作するかを示す分析である。Lは、IOC25の接合26までのビーム27および28の光路を含む感知コイル10ファイバの物理的長さである。通過時間τは、光が感知コイル10を通過するのに要する時間である。τは、
Figure 0003990450
上式で、nは屈折率、cは真空中の光速である。感知コイル10の出力における光パワーは、
Figure 0003990450
上式で、P0は最大パワーであり、
Figure 0003990450
は、反対の方向に伝播する波または光ビーム27と28との間の位相差である。ジャイロスコープ8を遅い回転速度に敏感にするために、位相変調器30を使用して、バイアス変調56を適用する。分析を簡単にするために、
Figure 0003990450
の形の正弦波バイアス位相変調56を適用する。次に、バイアス変調56周波数fmと固有周波数fpとの間の位相差を示す誤差信号を発生するために、
Figure 0003990450
の形を有する第2高調波位相変調を適用する。反対の方向に伝播する波27と28との間の全位相差は次のように書ける。
Figure 0003990450
上式で、
Figure 0003990450
は位相変調である。
Figure 0003990450
式4を式3に代入し、三角恒等式を使用すれば、次式が得られる。
Figure 0003990450
上式で、
Figure 0003990450
式5を式2に代入し、三角恒等式を使用すれば、次式が得られる。
Figure 0003990450
回転速度が遅い場合
Figure 0003990450
小さい角度近似
Figure 0003990450
を使用することができる。
式7の第1項(T1)は、回転速度にほぼ無関係であるが、第2項(T2)は、回転速度Ωにほぼ比例する。文献から次式が成り立つことが分かっている。
Figure 0003990450
上式で、Lは感知ループの長さ
Dは直径
λは波長
cは、真空中の光速である。
三角恒等式を使用すれば、式7の第1項および第2項を次のように書き直すことができる。
T1≒cos[a sin(ωmt−Ψ1)]cos[b sin(2ωmt−Ψ2)]−sin[a sin(ωmt−Ψ1)]sin[b sin(ωmt−Ψ2)] (11)
Figure 0003990450
T1およびT2をベッセル関数の級数に展開すると、バイアス変調56周波数wmにおいて現れるT1およびT2の最大成分が見つかる。
Figure 0003990450
上式では、式6cおよび6dを式11および12中に戻し、bは一般に非常に小さいので近似J0(b)≒1を行う。次に、バイアス変調56周波数が固有周波数に非常に近いと仮定する。したがって、
Figure 0003990450
が成り立つ。上式で、εは、固有周波数からの小さい偏差を示す。式13および14は次のようになる。
T1w=2J1(a)J1(b)sin(ωmt−∈−2θ)(16)
Figure 0003990450
T2wは回転信号である。次に、T1wを同相成分と直交成分に分ける。
Figure 0003990450
位相感知検出器36を使用して、ジャイロ信号を決定するので、
Figure 0003990450
項は、理想的な位相感知検出器に対して回転感知誤差をもたらす。2θ=Π/2となるように第2高調波位相変調を意図的に適用すれば、
Figure 0003990450
によって示される信号を使用して、コイル10の固有周波数を決定することができる。
2θ=Π/2 (20)
Figure 0003990450
式6bを式22に代入し、近似を行い、
1(b)≒b/2かつsin2/ε≒2εが成り立つ場合、
Figure 0003990450
となる。したがって、直交信号
Figure 0003990450
は、固有周波数から変調周波数偏差εに比例する。εに対する感度は、第2高調波位相変調の振幅θ2を増大させると高くなる。
第1、第2、第3および第4の高調波を分析中に含めれば、非50/50デューティ・サイクルを有する方形波位相変調信号による直交信号が得られる。
wquad=−I0{J1(z1)J1(z2)+J0(z1)J1(z2)J1(z3)+J0(z1)J1(z3)J1(z4)}cosωt
(非50/50デューティ・サイクルを有する方形波変調の第1、第2、第3および第4の高調波の場合)
wquad=−I01(z1)J1(z2)cosωt
(正弦波変調および第2の高調波の場合)
方形波変調の場合、中間変調項J0(z1)J1(z2)J1(z3)およびJ0(z1)J1(z3)J1(z4)は、z2およびz4によって示される固有周波数からの偏差に対するIwquadの感度を高めることに留意されたい。理想的な方形波変調に関連するすべての中間項を含めた場合、直交信号は、有限個の中間項から構成される。本発明の構成8および位相変調器30の電子回路は有限の帯域幅を有するので、方形波位相変調信号56は、有限個の高調波を有する。
フーリエ解析を使用すると、非50/50デューティ・サイクルを有する方形波は、式3によって表されること、固有周波数をトラッキングする直交信号を与えるΨ=0であること、およびすべての偶数高調波が同じ振幅を有することが分かる。この解析は、
Figure 0003990450
その場合、偶数高調波を方形波変調に加え、偶数高調波の振幅がすべて同じであると仮定する。
Figure 0003990450
奇数高調波 + 偶数高調波
上式で
Figure 0003990450
反対の方向に伝播する波の位相差は
Figure 0003990450
によって与えられる。上式で、τはループ中の通過時間、
Figure 0003990450
は回転による位相差である。式3および式5から、
Figure 0003990450
が得られる。上式で、τはループ中の通過時間、
Figure 0003990450
は回転による位相差である。式3および式5から、
Figure 0003990450
が得られる。
いくつかの定義を行う。
Figure 0003990450
式7および式6から
Figure 0003990450
が得られる。
光強度は
Figure 0003990450
である。
式9および式10を継続する場合、数学計算の処理が極めて困難になる。高調波の「混合」によるバイアス誤差を決定するために、最も簡単な事例、すなわち第1高調波および第2高調波から始め、次いでより高度の高調波を有するより複雑な事例に進む。事例の進行の傾向を識別し、何千個の高調波によるバイアス誤差の式を導出することができる。
このとき、実験から方形波変調の直交誤差の大部分は分かっているので、偶数高調波による直交バイアス誤差のみに注目する。まず、回転による強度
Figure 0003990450
の式を導出することが有利である。この式は、速度信号の位相を与え、それにより位相と直交誤差とを識別することができる。さらに、この式を使用すれば、誤差を°/時の単位でスケーリングすることができる。
非常に小さい回転Ωによる信号
Figure 0003990450
を見つけるために、まず純粋な正弦波変調を仮定する。
Figure 0003990450
したがって、sin(ωt−ωτ/2)において現れる誤差項を捜したい。回転信号の振幅は
Figure 0003990450
±Π/2における完全な方形波変調の場合、振幅
Figure 0003990450
を有する方形波を検出する。正弦波復調を仮定すると、方形波回転信号の基本振幅は
Figure 0003990450
次に、基本高調波位相変調および第2高調波位相変調の簡単な事例の直交誤差を導出する。式8から
Figure 0003990450
が得られる。
式12を式9に代入すると、
Figure 0003990450
が得られる。
余弦項は
Figure 0003990450
と表すことができる。
スケール・ファクタ誤差ではなく、バイアス誤差のみに注目する。したがって、
Figure 0003990450
と設定することができる。式15は
cos[z1cosθ1+z2cosθ2]=cos[z1cosθ1]cos[z2cosθ2]−sin[z1cosθ1]sin[z2cosθ2] (16)
と表すことができる。
次に、ベッセル関数を使用して次の近似を行うことができる。
cos(z cosθ)=J0(z) (17a)
sin(z cosθ)=2J1(z)cosθ(17b)
次に、変調振幅が比較的小さい場合、
Figure 0003990450

Figure 0003990450
と書くことができる。
式7を使用すると、積cosθ1cosθ2
Figure 0003990450
と書くことができる。
式19a、式18、式9を使用すると、強度は
Figure 0003990450
であることが分かる。
式20と式10を比較し、かつ変調信号56の周波数が固有周波数になったときに位相角ωτ/2→Π/2になることに留意すると、バイアス誤差は、Ψ=0の場合、直交誤差になることが分かる。
Ψ=0(直交誤差の場合) (21)
正弦波復調を仮定して、ωにおいて現れる項のみに注目する。直交誤差強度信号を
wquad=−I01(z1)J1(z2)cos[ωt] (22)
と書くことができる。
次に、式7aおよび式7bを式22に代入する。第2高調波の振幅
Figure 0003990450
が非常に小さい(すなわちz2が小さい)ので、近似J1(z2)≒z2/2を行うことができる。
次に、直交誤差の振幅を
Figure 0003990450
と書くことができる。
°/時の直交誤差を見つけるために、直交信号に匹敵する強度信号を与える実効位相差を見つける。第2高調波誤差による実効位相差を使用して、式11を書き直す。
Figure 0003990450
式23と式24を組み合わせると、
Figure 0003990450
が得られる。
次に、°/時に変換するために
Figure 0003990450
とおく。
°/時の直交誤差は、変調振幅非常に小さく、位相変調周波数fm=ω/2Πが固有周波数fp=1/2τに非常に近く、かつ
Figure 0003990450
が変調振幅
Figure 0003990450
の関数として表される場合、
Figure 0003990450
となる。
m>fpが成り立つ場合、
Figure 0003990450
が成り立つので、fpまたはfmの変化に対する直交誤差がどのくらい敏感であるかを知りたい。まず、fmに対する感度を見つける。
m≒fpが成り立つ場合
Figure 0003990450
いくつかの代表的な数を代入する。代表的な数よりも大きい−60db第2高調波(∈=10-3)を使用する。
Figure 0003990450

Claims (3)

  1. 光ファイバの感知コイル(10)と、この感知コイルの固有周波数に従う変調周波数を有するバイアス位相変調信号によって駆動される変調器(30)とを有する回転センサであって、
    放射源(11)と、
    前記放射源(11)に接続された結合器(12)と、
    前記結合器(12)と前記感知コイル(10)とに接続されたスプリッタ(26)と、
    前記結合器(12)に接続された放射検出器(13、14)と、
    前記放射検出器(13、14)に接続された第1の位相検出器(36)と、
    前記放射検出器(13、14)に接続された第2の位相検出器(35)と、
    前記第2の位相検出器(35)に接続された移相器(41)と、
    所定の周波数の信号を生成する信号生成装置とを含み、
    前記第1の位相検出器(36)が位相感知検出器であり、
    前記第2の位相検出器(35)が直交位相感知検出器であり、
    前記移相器(41)が90度移相器であり、
    nを屈折率、Lを前記感知コイル(10)の光ファイバの長さ、cを真空中の高速として、前記感知コイルの固有周波数がc/(nL)に比例し、
    前記信号生成装置が、
    前記第2の位相検出器(35)の出力に接続された入力を有する積分器(37)と、
    前記積分器(37)の出力に接続された人力を有する電圧制御発振器(38)と、
    前記電圧制御発振器(38)の出力に基づき所定の周波数を有する前記バイアス位相変調信号を生成する非50/50デューティ・サイクル波発生器(40)と、
    前記電圧制御発振器(38)の出力に基づき前記バイアス位相変調信号の1/2の周波数を持つ基準信号を生成する基準発生器(39)と、
    を備えるとともに、前記非50/50デューティ・サイクル波発生器(40)がその生成したバイアス位相変調信号を前記変調器(30)に出力するよう構成され、かつ前記基準発生器(39)がその生成した基準信号を前記移相器(41)と前記第1の位相検出器(36)とに出力するよう構成され、これにより、
    前記第1の位相検出器(36)が、前記基準信号に対して、前記放射検出器(13、14)により検出された電気信号(34)を復調して前記感知コイル(10)の回転速度信号を得、
    前記第2の位相検出器(35)が、前記移相器(58)により90度移相された前記基準信号に対して、前記電気信号(34)を復調して前記積分器(37)に出力する
    ことを特徴とするセンサ。
  2. 前記第1の位相検出器(36)が
    インバータ(44)と、
    前記インバータ(44)に接続されたプリアキュムレータ(49)とを含み、
    前記第2の位相検出器(35)が
    インバータ(43)と、
    前記インバータ(43)に接続されたプリアキュムレータ(45)とを含み、
    前記移相器(41)が
    インバータ(51)と、
    分割コンバータ(52)とを含み、
    前記積分器(37)がアキュムレータ(46)を含むことを特徴とする、請求項に記載の回転センサ。
  3. 前記非50/50デューティ・サイクル波発生器(40)が、
    カウンタ(52)と、
    前記カウンタ(52)の出力に接続された入力、および前記カウンタ(52)の入力に接続された出力を有するプログラム可能読取り専用メモリ(53)とを含むことを特徴とする、請求項に記載の回転センサ。
JP50221797A 1995-06-07 1996-06-07 光ファイバ感知コイル用の固有周波数トラッカ Expired - Lifetime JP3990450B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US47692095A 1995-06-07 1995-06-07
US08/476,920 1995-06-07
PCT/US1996/010125 WO1996041132A1 (en) 1995-06-07 1996-06-07 Proper frequency tracker for fiber optic sensing coil

Publications (2)

Publication Number Publication Date
JPH11511246A JPH11511246A (ja) 1999-09-28
JP3990450B2 true JP3990450B2 (ja) 2007-10-10

Family

ID=23893794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50221797A Expired - Lifetime JP3990450B2 (ja) 1995-06-07 1996-06-07 光ファイバ感知コイル用の固有周波数トラッカ

Country Status (6)

Country Link
US (1) US5734469A (ja)
EP (1) EP0830570B1 (ja)
JP (1) JP3990450B2 (ja)
CA (1) CA2221261A1 (ja)
DE (1) DE69614532T2 (ja)
WO (1) WO1996041132A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6629255B1 (en) * 2000-05-22 2003-09-30 Intel Corporation Generating a 2-phase clock using a non-50% divider circuit
US6798523B2 (en) 2001-12-04 2004-09-28 Honeywell International Inc. Sensor and method for detecting fiber optic faults
US6765678B2 (en) * 2002-01-08 2004-07-20 Honeywell International Inc. Relative intensity noise controller with maximum gain at frequencies at or above the bias modulation frequency or with second order feedback for fiber light sources
US6778279B2 (en) * 2002-02-19 2004-08-17 Honeywell International, Inc. Inline sagnac fiber optic sensor with modulation adjustment
US7038783B2 (en) * 2003-05-23 2006-05-02 Honeywell International Inc. Eigen frequency detector for Sagnac interferometers
KR100606100B1 (ko) * 2004-01-15 2006-07-28 삼성전자주식회사 바이어스 제어장치를 구비한 광변조장치 및 이를 이용한바이어스 제어방법
JP2006173213A (ja) * 2004-12-13 2006-06-29 Advantest Corp 温度安定化装置及び発振装置
US7333209B2 (en) * 2005-11-09 2008-02-19 Honeywell International, Inc. Fiber optic gyroscope asynchronous demodulation
US7872758B2 (en) * 2007-01-22 2011-01-18 The Charles Stark Draper Laboratory, Inc. Determining and compensating for modulator dynamics in interferometric fiber-optic gyroscopes
US7817284B2 (en) * 2007-08-08 2010-10-19 The Charles Stark Draper Laboratory, Inc. Interferometric fiber optic gyroscope with off-frequency modulation signals
US8027590B2 (en) * 2008-09-19 2011-09-27 Goodrich Corporation System and method for signal extraction by path modulation
US8223341B2 (en) 2010-05-28 2012-07-17 Honeywell International Inc. System and method for enhancing signal-to-noise ratio of a resonator fiber optic gyroscope
US8213019B2 (en) 2010-09-07 2012-07-03 Honeywell International Inc. RFOG with optical heterodyning for optical signal discrimination
US8717575B2 (en) 2011-08-17 2014-05-06 Honeywell International Inc. Systems and methods for environmentally insensitive high-performance fiber-optic gyroscopes
US8908187B2 (en) 2011-11-02 2014-12-09 Honeywell International Inc. System and method for reducing errors in a resonator fiber optic gyroscope
FR2983574B1 (fr) * 2011-12-06 2014-01-10 Sagem Defense Securite Capteur angulaire inertiel de type mems equilibre et procede d'equilibrage d'un tel capteur
US8830479B2 (en) 2013-01-28 2014-09-09 Honeywell International Inc. RFOG with optical heterodyning for optical signal discrimination
US8947671B2 (en) 2013-02-22 2015-02-03 Honeywell International Inc. Method and system for detecting optical ring resonator resonance frequencies and free spectral range to reduce the number of lasers in a resonator fiber optic gyroscope
US9001336B1 (en) 2013-10-07 2015-04-07 Honeywell International Inc. Methods and apparatus of tracking/locking resonator free spectral range and its application in resonator fiber optic gyroscope
CN104296740B (zh) * 2014-09-26 2017-05-31 北京控制工程研究所 一种基于反熔丝fpga的光纤陀螺主控板晶振选取方法
US10767995B2 (en) 2018-08-28 2020-09-08 Honeywell International Inc. Hyperbolic modulation offset error reducer for an RFOG
RU2764704C1 (ru) * 2020-10-28 2022-01-19 Александр Александрович Скрипкин Волоконно-оптический гироскоп

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8611394D0 (en) * 1986-05-08 1986-10-29 British Aerospace Fibre optic gyroscopes
US4883358A (en) * 1987-09-02 1989-11-28 Japan Aviation Electronics Industry Limited Fiber optic gyro stabilized by harmonic components of detected signal
US5090809A (en) * 1990-06-04 1992-02-25 Ferrar Carl M Modulation frequency control in a fiber optic rotation sensor
US5131750A (en) * 1990-06-04 1992-07-21 Honeywell Inc. Eigenfrequency phase shift control loop
US5285257A (en) * 1991-03-01 1994-02-08 Matsushita Electric Industrial Co., Ltd. Optic rotation sensing apparatus and related method including providing synchronous detection at a phase at which the AM noise is minimized
FR2679647B1 (fr) * 1991-07-25 1993-11-05 Applications Gles Elect Meca Gyrometre interferometrique a modulateur electro-optique.

Also Published As

Publication number Publication date
EP0830570B1 (en) 2001-08-16
US5734469A (en) 1998-03-31
EP0830570A1 (en) 1998-03-25
JPH11511246A (ja) 1999-09-28
CA2221261A1 (en) 1996-12-19
DE69614532D1 (de) 2001-09-20
DE69614532T2 (de) 2002-05-23
WO1996041132A1 (en) 1996-12-19

Similar Documents

Publication Publication Date Title
JP3990450B2 (ja) 光ファイバ感知コイル用の固有周波数トラッカ
JP2769924B2 (ja) 光ファイバ回転センサ
US5926275A (en) Vibration error reduction servo for a fiber optic gyroscope
JP4130730B2 (ja) 光ファイバジャイロスコープ
US5999304A (en) Fiber optic gyroscope with deadband error reduction
US5923424A (en) Fiber optic gyroscope vibration error compensator
US6563589B1 (en) Reduced minimum configuration fiber optic current sensor
JP3939350B2 (ja) 干渉光ファイバ・ジャイロスコープにおける光強度平衡
JP2002534670A (ja) 干渉計型光ファイバ・ジャイロスコープのためのカー効果補償
WO1996041131A1 (en) Magnetically insensitive fiber optic rotation sensor
JPH1018U (ja) 光ファイバジャイロスコープの位相制御フィードバック装置
JPH0660820B2 (ja) フアイバ光学回転センサ
US5438411A (en) Electronic phase-tracking open-loop fiber optic gyroscope
JPS63138208A (ja) 位相変調方式光フアイバジヤイロ
JPS6280512A (ja) 光フアイバジヤイロ
JPH0323844B2 (ja)
EP1212624A2 (en) Fiber optic current sensor
JPH0469731B2 (ja)
JP3271019B2 (ja) 光ファイバジャイロ
JPS62239011A (ja) 光フアイバジヤイロ
JPH0545162B2 (ja)
JPS63106517A (ja) 位相変調方式光フアイバジヤイロ
WO2001006283A2 (en) Faser optic current sensor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term