JPH09300006A - Manufacture of seamless steel tube difficult to be worked - Google Patents

Manufacture of seamless steel tube difficult to be worked

Info

Publication number
JPH09300006A
JPH09300006A JP8120100A JP12010096A JPH09300006A JP H09300006 A JPH09300006 A JP H09300006A JP 8120100 A JP8120100 A JP 8120100A JP 12010096 A JP12010096 A JP 12010096A JP H09300006 A JPH09300006 A JP H09300006A
Authority
JP
Japan
Prior art keywords
roll
billet
slab
plug
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8120100A
Other languages
Japanese (ja)
Other versions
JP3367332B2 (en
Inventor
Koichi Tsutsumi
康一 堤
Shinichi Nishioka
信一 西岡
Tatsuro Katsumura
龍郎 勝村
Takashi Ariizumi
孝 有泉
Michiou Nakagome
理欧 中込
Takashi Itakura
孝 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP12010096A priority Critical patent/JP3367332B2/en
Publication of JPH09300006A publication Critical patent/JPH09300006A/en
Application granted granted Critical
Publication of JP3367332B2 publication Critical patent/JP3367332B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a round cast billet having good endoplasm using existing continuous casting equipment and, next, to manufacture a seamless steel tube difficult to be worked without causing miss roll in piercing and, without generating the so-called Mannesmann crack at that. SOLUTION: By executing roll reduction, in the last stage of solidification of the round cast billet, especially at a solid phase rate in a shaft center part of >=0.3 and <1, and at the reduction of area in the direction C of 0.1-0.3% in one stage, the cast billet is manufactured. Desirably, molten steel is electromagnetically stirred in a mold. The cast billet is pierced at 1100-1300 deg.C. When P in the case based on that the inclined angle of a piercer roll 3 is 6-12 and roll gap at the tip of a piercing plug 4 is 93% of the diameter of the round billet 1 is expressed by P0 , piercing is executed under conditions by which the formula of P/P0 =0.973-1.027 is satisfied. P and P0 are the coefficients about the driving force of the billet which are imparted with the piercer roll and a function of the inclined angle of the piercer roll, shape of the plug, position of the plug, roll gap/billet diameter in the gorge part, face angle of the roll and diameter of the billet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、高Cr鋼のよう
な熱間加工性の悪い鋼片から継目無鋼管を製造する方法
に関し、特に、連続鋳造で丸ビレットを簡便に鋳造し、
次いで疵の発生を抑えつつ製管する継目無鋼管の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a seamless steel pipe from a steel slab having a poor hot workability such as high Cr steel, and particularly, a continuous round billet is simply cast by continuous casting,
Next, the present invention relates to a method for producing a seamless steel pipe for producing a pipe while suppressing the occurrence of flaws.

【0002】[0002]

【従来の技術】継目無鋼管は、一般に、連続鋳造機で大
断面角形状のブルーム鋳片を鋳造し、加熱後、分塊圧延
機、ブルーミングミルおよびビレッティングミル等で断
面丸形状のビレット(丸ビレット)に熱間圧延した後、
製管工場へ搬送するか、または、連続鋳造機で丸ビレッ
トを鋳造した後、製管工場へ搬送し、そして、マンネス
マン穿孔もしくはプレス穿孔、または、熱間押出等によ
り中空素管を製造し、エロンゲータ、プラグミルまたは
マンドレルミル等の圧延機で延伸し、最終的にサイザー
およびストレッチレデューサー等により定径して製品と
する。
2. Description of the Related Art Generally, a seamless steel pipe is produced by casting a bloom slab having a large cross-section square shape with a continuous casting machine, heating it, and then billeting it with a round cross-section with a slab mill, blooming mill, billeting mill, etc. After hot rolling into round billets),
Transport to a pipe manufacturing plant, or after casting a round billet with a continuous casting machine, transport to a pipe manufacturing plant, and Mannesmann perforation or press perforation, or to manufacture a hollow shell by hot extrusion, The product is drawn by a rolling machine such as an elongator, a plug mill, or a mandrel mill, and finally made into a product by sizing with a sizer or a stretch reducer.

【0003】一般の低炭素鋼のように連続鋳造で比較的
容易に鋳造することができ、そして熱間加工性も良好な
鋳片は、継目無鋼管用の素材として鋳造ままで供給され
るが、ステンレス鋼などのように連続鋳造では鋳片の軸
芯部にポロシティや偏析が発生し易く、そして熱間加工
性に劣る鋳片は、大きな加工を加えた後に供給されるこ
とが多い。熱間加工性に劣る鋳片の場合にこのような工
程を経る理由は、素材ビレットが先ずマンネスマン穿孔
という過酷な加工を受けるからであり、このような前加
工を省略すると、軸芯部のポロシティおよび偏析により
管内面に疵が発生するからである。従って、難加工性材
料と呼ばれる鋳片は勿論のこと、炭素含有量の多い鋳片
およびCrが添加された鋳片についても、穿孔前の加工
が必要であると言われている。
A slab, which can be relatively easily cast by continuous casting and has a good hot workability like a general low carbon steel, is supplied as a raw material for a seamless steel pipe. In continuous casting, such as stainless steel, porosity and segregation are likely to occur in the shaft core of the slab, and the slab with poor hot workability is often supplied after large processing. The reason why such a step is performed in the case of a cast piece having poor hot workability is that the material billet is first subjected to severe processing such as Mannesmann drilling, and if such preprocessing is omitted, the porosity of the shaft core portion is omitted. And segregation causes flaws on the inner surface of the pipe. Therefore, it is said that processing before piercing is necessary not only for a slab called a difficult-to-work material, but also for a slab with a high carbon content and a slab to which Cr is added.

【0004】特に、鋳片の内部品質は圧延工程での圧延
成績に大きな影響を及ぼす。鋼中のCr含有量が多くな
ると、連鋳鋳片の軸芯部に偏析およびポロシティが発生
し、製管工程で継目無鋼管の内面にうろこ状の表面疵が
発生し、内面を手入れして疵を除去しなければならず、
製造コストの上昇を招く。
In particular, the internal quality of the slab has a great influence on the rolling performance in the rolling process. When the Cr content in the steel increases, segregation and porosity occur in the axial core of the continuous cast slab, and scaly surface flaws occur on the inner surface of the seamless steel pipe in the pipe manufacturing process. You have to remove the flaws,
This leads to an increase in manufacturing costs.

【0005】一般に、連鋳鋳片のポロシティの発生機構
は、鋳片の最終凝固段階において本来なら凝固収縮に伴
い溶鋼が供給されて空隙は生じないが、溶鋼の粘性が高
い等のために溶鋼が供給されない場合にポロシティが生
成するとされている。特に、鋼中Cr含有量の増加につ
れて溶鋼の粘性が増大し、図6に示すようにCr含有量
が13 wt.%前後で最大となる。
Generally, in the porosity generation mechanism of continuous cast slabs, molten steel is originally supplied with solidification shrinkage in the final solidification stage of the slab and voids do not occur, but the molten steel has a high viscosity and so on. It is said that porosity is generated when is not supplied. In particular, the viscosity of the molten steel increases as the Cr content in the steel increases, and the Cr content reaches a maximum around 13 wt.% As shown in FIG.

【0006】そこで、従来、製管用素材には、仮に鋳片
にポロシティが発生していても分塊圧延によりポロシテ
ィを圧着させ、しかる後にビレッティングミルで丸形状
に加工し供給していた。また、鋳片品質の向上を図り製
管時の欠陥発生を防止するために、連続鋳造機の鋳型に
電磁撹拌装置を設置し、鋳型内溶鋼を電磁撹拌し、核生
成を促進して最終凝固部に等軸晶を形成させることによ
り鋳片の中心偏析およびポロシティの生成を抑制してい
る。
Therefore, conventionally, even if porosity is generated in a cast piece, porosity is pressure-bonded to a pipe-making material by slabbing, and then processed into a round shape by a billeting mill and supplied. In addition, in order to improve the quality of the slab and prevent the occurrence of defects during pipe manufacturing, an electromagnetic stirrer is installed in the mold of the continuous casting machine, and the molten steel in the mold is electromagnetically stirred to promote nucleation and final solidification. By forming equiaxed crystals in the part, center segregation of the slab and generation of porosity are suppressed.

【0007】鋳片の内部品質を向上させる手段として
は、連続鋳造ラインにおいて鋳片に軽圧下を施す方法が
ある。例えば、特公昭59−16862号公報は、鋳片
を凝固末期に凝固収縮量分だけロールで圧下し、凝固末
端領域(クレータエンド領域)の濃化溶鋼の流動を抑え
ることにより中心偏析を防止する技術(以下、「先行技
術1」という)を開示している。
As a means for improving the internal quality of the slab, there is a method of subjecting the slab to a light reduction in a continuous casting line. For example, Japanese Examined Patent Publication No. 59-16862 discloses that a slab is rolled at the end of solidification by the amount of solidification shrinkage, and the flow of concentrated molten steel in the solidification end region (crater end region) is suppressed to prevent center segregation. The technology (hereinafter referred to as "prior art 1") is disclosed.

【0008】「材料とプロセス」1994 vol.7
No.1 p.194〜197は、丸ブルーム鋳片を未
凝固状態で2段階で、ロールで軽圧下する方法をステン
レス鋼SUS410に適用する技術(以下、「先行技術
2」という)を開示している。しかしながら、先行技術
2では鋳片軸芯部の密度は7.7であり、ポロシティが
発生していないときの鋳片軸芯部の密度7.8に及ばず
完全にはポロシティを圧着させていず、また、マクロ腐
食試験結果でも若干のポロシティが残っている。
[Materials and Processes] 1994 vol. 7
No. 1 p. 194 to 197 disclose a technique (hereinafter, referred to as "prior art 2") in which a method of lightly rolling a round bloom slab in two stages in a non-solidified state with a roll is applied to stainless steel SUS410. However, in the prior art 2, the density of the cast slab shaft core portion is 7.7, which does not reach the density 7.8 of the cast slab shaft core portion when porosity is not generated, and the porosity is not completely pressure-bonded. In addition, some porosity remains in the macro corrosion test results.

【0009】「材料とプロセス」1994 vol.7
No.1 p.179〜182は、C含有量0.4〜
0.6 wt.%の連鋳ブルームの中心偏析を改善するため
に、凝固末期の鋳片を金型に押し込み、連続的に大圧下
をする鍛圧法(以下、「先行技術3」という)を開示し
ている。
[Materials and Processes] 1994 vol. 7
No. 1 p. 179-182 has a C content of 0.4-
In order to improve the center segregation of the 0.6 wt.% Continuous casting bloom, a forging method (hereinafter referred to as "Prior art 3") in which a slab at the final stage of solidification is pushed into a die and continuously subjected to large reduction Disclosure.

【0010】一方、製管プロセスにおける内面疵発生防
止技術も多数提案されている。例えば、特開平1−22
8603号公報は、内外面性状の良好な二相ステンレス
鋼継目無鋼管を丸ビレット連鋳鋳片から製造するため
に、連鋳丸ビレット鋳片を、1200〜1310℃に加
熱してから穿孔圧延機で、穿孔比を1.40以下、ドラ
フト率({(素材径−ゴージ径)/素材径}×100
%)を5.0%以下で圧延する方法(以下、「先行技術
4」という)を開示している。
On the other hand, many techniques for preventing the occurrence of internal flaws in the pipe manufacturing process have been proposed. For example, Japanese Patent Application Laid-Open No. 1-22
No. 8603 discloses heating a continuous cast round billet slab to 1200 to 1310 ° C. and then piercing-rolling it in order to manufacture a duplex stainless steel seamless steel pipe having good inner and outer surface properties from the round billet continuous cast slab. Machine, perforation ratio 1.40 or less, draft ratio ({(material diameter-gorge diameter) / material diameter} x 100
%) Is rolled at 5.0% or less (hereinafter referred to as "prior art 4").

【0011】また、特開平6−106209号公報は、
ねじれ変形を少なくし且つ外表面疵の発生を少なくする
ために、ステンレス鋼の穿孔圧延において、穿孔機およ
びプラグの各種形状諸元間の幾何学的関係を適正化した
条件下で穿孔圧延する方法(以下、「先行技術5」とい
う)を開示しており、圧延素材については特に限定して
いない。しかしながら、穿孔圧延のように過酷な条件の
加工を受ける場合には、内面疵発生原因となるビレット
軸芯部の内質は、素材の化学成分組成および製造方法に
よって大きく異なるので、鋳片の鋳造方法から穿孔圧延
まで一貫した適正な製造方法が望まれる。従って、難加
工性材料を穿孔圧延し、内面疵の発生しない継目無鋼管
を製造するには不十分である。
Further, Japanese Unexamined Patent Publication No. 6-106209 discloses
A method of piercing and rolling stainless steel in a piercing and rolling process under conditions in which the geometrical relationship between various shape parameters of the piercing machine and the plug is optimized in order to reduce torsional deformation and occurrence of external surface flaws. (Hereinafter, referred to as "Prior Art 5") is disclosed, and the rolling material is not particularly limited. However, when subjected to processing under harsh conditions such as piercing and rolling, the internal quality of the billet shaft core that causes internal flaws greatly differs depending on the chemical composition of the material and the manufacturing method. A consistent and proper manufacturing method from the method to the piercing and rolling is desired. Therefore, it is not sufficient to pierce and roll a difficult-to-work material to produce a seamless steel pipe in which inner surface defects do not occur.

【0012】[0012]

【発明が解決しようとする課題】上述した各先行技術に
は下記問題点がある。先行技術1は、鋳片の中心偏析改
善には効果的であるが、軽圧下ロールを鋳造ラインの長
い区間にわたって設置しなければならないので、設備費
および運転費がかさむという問題を有する。先行技術2
は、軸芯部の凝固組織改善には効果的であるが、前述し
たように、ポロシティ消滅が不十分であるという問題を
有する。また、先行技術3は、ポロシティの圧着には優
れたプロセスであるが、設備費が高いという欠点があり
現実的ではない。
The above-mentioned respective prior arts have the following problems. The prior art 1 is effective for improving the center segregation of the slab, but it has a problem that the equipment cost and the operating cost increase because the light reduction roll must be installed over a long section of the casting line. Prior art 2
Is effective for improving the solidification structure of the shaft core, but has a problem that the porosity disappearance is insufficient as described above. Further, the prior art 3 is an excellent process for pressure bonding of porosity, but has a drawback of high equipment cost and is not realistic.

【0013】先行技術4は、丸ビレット連鋳鋳片から直
接穿孔圧延機で圧延することができるので、内外面性状
の優れた継目無ステンレス鋼管を高能率で製造すること
ができる。しかしながら、ドラフト率が5%以下では、
噛込み性に問題があり、常時安定して操業可能な条件と
は言い難い。また、先行技術5では、前述したように、
難加工性継目無鋼管の製造において望まれる鋳片の鋳造
方法から穿孔圧延方法までの一貫した製造条件が不明で
ある。
In the prior art 4, since the round billet continuous cast slab can be directly rolled by a piercing and rolling mill, a seamless stainless steel pipe having excellent inner and outer surface properties can be produced with high efficiency. However, if the draft rate is 5% or less,
There is a problem with the biting property, and it is difficult to say that it is a condition that can always be operated stably. In Prior Art 5, as described above,
The consistent manufacturing conditions from the casting method of slabs to the piercing and rolling method, which are desired in the manufacture of difficult-to-work seamless steel pipes, are unknown.

【0014】従って、この発明の目的は、上述した問題
を解決し、既存の連続鋳造設備を用いて中心偏析および
ポロシティの改善された内質良好な丸ビレット鋳片を簡
便に製造し、次いで、特に穿孔圧延においてはミスロー
ルを起こすことなく、しかも所謂マンネスマン割れを発
生させることのない穿孔条件下で熱間圧延し、かくして
内面疵の発生しない難加工性継目無鋼管を製造する方法
を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems, and to easily produce a round billet slab of good quality with improved center segregation and porosity by using existing continuous casting equipment, and then, In particular, to provide a method for producing a difficult-to-work seamless steel pipe that does not cause misrolling in piercing rolling, and is hot-rolled under piercing conditions that does not cause so-called Mannesmann cracking, and thus does not cause internal flaws. It is in.

【0015】[0015]

【課題を解決するための手段】本発明者等は、上述した
実情に鑑み、安価な設備で難加工性継目無鋼管を製造す
る技術の研究を重ねた。その結果、次の方法を開発し
た。
In view of the above-mentioned circumstances, the inventors of the present invention have conducted extensive research into a technique for producing a difficult-to-work seamless steel pipe with inexpensive equipment. As a result, the following method was developed.

【0016】請求項1記載の難加工性継目無鋼管の製造
方法は、0.5 wt.%超えのCr含有する合金鋼を直径
340mm以下の丸形状鋳型にて連続鋳造し、鋳片の凝
固完了点近傍に設置された軽圧下ロールで、得られた丸
ビレット鋳片の凝固末期の部分に軽圧下を加え、次い
で、鋳片を加熱した後熱間圧延し、そして製管すること
に特徴を有するものである。
The method for producing a difficult-to-work seamless steel pipe according to claim 1 is to continuously cast alloy steel containing Cr in an amount of more than 0.5 wt.% In a round mold having a diameter of 340 mm or less, and solidify the slab. Characterized by a light reduction roll installed near the completion point, applying light reduction to the final solidification part of the obtained round billet slab, then heating the slab, then hot rolling, and pipe making Is to have.

【0017】請求項2記載の難加工性継目無鋼管の製造
方法は、請求項1記載の方法において、連続鋳造に際し
ては鋳型内で溶鋼を電磁撹拌し、そして、鋳片に対して
軸芯部固相率が0.3以上1未満の間においてC方向断
面積減少率が0.1%以上3%以下の範囲内の軽圧下を
一段圧下施すことに特徴を有するものである。
According to a second aspect of the present invention, in the method for producing a seamless steel pipe that is difficult to process, in the method according to the first aspect, the molten steel is electromagnetically stirred in the mold during continuous casting, and the shaft core portion with respect to the cast piece is used. When the solid phase ratio is 0.3 or more and less than 1, the C-direction cross-sectional area reduction ratio is characterized by being subjected to a single stage of light reduction in the range of 0.1% or more and 3% or less.

【0018】請求項3記載の難加工性継目無鋼管の製造
方法は、請求項2記載の方法において、鋳片の加熱およ
び圧延を1100℃以上1300℃以下の温度範囲内で
行ない、そして、圧延は穿孔圧延であって穿孔機ロール
傾斜角が6°以上12°以下の範囲内で且つ穿孔プラグ
先端でのロール間隔を丸ビレット径の93%となる値を
基準とした場合に下記(1)式を満たす条件で行なうこ
とに特徴を有するものである。
The method for producing a difficult-to-work seamless steel pipe according to claim 3 is the method according to claim 2, wherein the slab is heated and rolled within a temperature range of 1100 ° C to 1300 ° C. Is piercing and rolling, and if the roll inclination angle of the pier is within the range of 6 ° to 12 ° and the roll spacing at the tip of the piercing plug is 93% of the round billet diameter, the following (1) It is characterized in that it is performed under the condition that satisfies the formula.

【0019】 0.973≦P/P0 ≦1.027 --------- (1) 但し、P0 およびPは、穿孔機のロールによって与えら
れるビレット駆動力に関する係数であり、 P=f(β, DP , LP , γP ,γg ,θ12,Db ) P0 :γP =0.93としたときの上記P値 P/P0 :穿孔機ロール傾斜角をある値で一定としたと
きのPおよびP0 により求められる数 f :所定の関数 β :穿孔機ロール傾斜角 DP :プラグ径 LP :プラグの有効長さ γP :プラグ位置を示す値 γg :ゴージ部におけるロール間隔/ビレット径 θ1 :入側ロール面角 θ2 :出側ロール面角 Db :ビレット径
0.973 ≦ P / P 0 ≦ 1.027 --------- (1) where P 0 and P are coefficients relating to the billet driving force given by the roll of the punching machine, P = f (β, D P , L P , γ P , γ g , θ 1 , θ 2 , D b ) P 0 : The above P value when γ P = 0.93 P / P 0 : Perforator Number obtained by P and P 0 when the roll tilt angle is constant at a certain value f: predetermined function β: punch roll roll angle D P : plug diameter L P : effective length of plug γ P : plug position Γ g : Roll spacing / billet diameter in the gorge section θ 1 : Entrance side roll surface angle θ 2 : Outgoing side roll surface angle D b : Billet diameter

【0020】[0020]

【発明の実施の形態】次に、この発明の実施の形態につ
いて説明する。請求項1記載の発明の一実施態様につい
て説明する。
Next, an embodiment of the present invention will be described. An embodiment of the invention described in claim 1 will be described.

【0021】連続鋳造によりCr含有量0.5 wt.%超
えで直径340mm以下の丸ビレット鋳片を鋳造し、鋳
片の凝固完了点近傍で鋳片をフラットロールで軽圧下
し、次いで、上記鋳片をマンネスマン穿孔機で圧延して
中空素管を製造し、エロンゲーターで延伸し、そしてサ
イザーで定径して継目無鋼管を製造する。
A round billet slab having a Cr content of more than 0.5 wt.% And a diameter of 340 mm or less is cast by continuous casting, the slab is lightly pressed by a flat roll near the solidification completion point of the slab, and then The cast slab is rolled by a Mannesmann puncher to produce a hollow shell, stretched by an elongator, and sized by a sizer to produce a seamless steel tube.

【0022】鋳片の直径が340mm以下の場合には、
軸芯部最終凝固部の凝固速度が速くなるため、ポロシテ
ィが生成し易く、更に熱応力による軸芯割れが誘発す
る。従って、直径340mm以下の鋳片を穿孔圧延後、
難加工性継目無鋼管を製造する場合には、本発明法によ
る製造プロセスが必須となる。以下、その理由を説明す
る。
When the diameter of the slab is 340 mm or less,
Since the solidification rate of the final solidified portion of the shaft core is high, porosity is easily generated, and further, the shaft core crack due to thermal stress is induced. Therefore, after piercing and rolling a slab with a diameter of 340 mm or less,
When manufacturing a difficult-to-work seamless steel pipe, the manufacturing process according to the method of the present invention is essential. Hereinafter, the reason will be described.

【0023】所定の丸ビレットを連続鋳造する過程で、
鋳片を軽圧下してポロシティを穿孔圧延前に圧着させて
おくことが必要である。鋳片の軽圧下時期はポロシティ
を圧着させ得る液相を有する、鋳片軸芯部が凝固完了前
であればよい。また、鋳片の化学成分組成については、
Cr含有量が増加すると溶鋼の粘性が増大し、本発明者
等の試験結果によれば、特に、Cr含有量が0.5wt.%
を超えると継目無鋼管に内面疵が発生する。なお、本発
明法では、大断面連鋳鋳片を一旦丸ビレットに圧延する
ことなく、丸ビレット鋳片から中空素管を直接製造する
ので、コスト的にも効果的である。
In the process of continuously casting a predetermined round billet,
It is necessary to lightly reduce the slab and press the porosity before piercing and rolling. The time of light reduction of the slab may be any time as long as the slab core has a liquid phase capable of pressing porosity and has not yet solidified. Regarding the chemical composition of the slab,
As the Cr content increases, the viscosity of molten steel increases, and according to the test results of the present inventors, in particular, the Cr content is 0.5 wt.%.
If it exceeds, internal flaws will occur in the seamless steel pipe. In addition, in the method of the present invention, the hollow shell is directly manufactured from the round billet slab without once rolling the large-section continuous cast slab into the round billet, which is also cost effective.

【0024】請求項2記載の発明の一実施態様について
説明する。連続鋳造の鋳型内で溶鋼を電磁撹拌しつつ丸
ビレットを鋳造し、鋳片軸芯部の固相率fS が0.3以
上1未満においてC方向断面減少率が0.1%以上3%
以下の圧下を、連続鋳造ラインに設置された一組のフラ
ットロールを用いて一段圧下により行なうことにより継
目無鋼管用の鋳片を製造する。このようにして製造され
た丸ビレット鋳片をマンネスマン穿孔機で圧延して中空
素管を製造し、エロンゲーターで延伸し、そしてサイザ
ーで定径して継目無鋼管を製造する。
An embodiment of the invention described in claim 2 will be described. A round billet is cast while electromagnetically stirring molten steel in a continuous casting mold, and when the solid phase ratio f S of the slab axial part is 0.3 or more and less than 1, the C-direction cross-section reduction rate is 0.1% or more and 3%.
The following reduction is performed by one-step reduction using a set of flat rolls installed in a continuous casting line to produce a cast slab for a seamless steel pipe. The round billet slab thus produced is rolled by a Mannesmann puncher to produce a hollow shell, stretched by an elongator, and then sized by a sizer to produce a seamless steel pipe.

【0025】鋳型内で溶鋼を電磁撹拌しつつ鋳造するこ
とは、鋳片軸芯部に等軸晶を形成させるのに効果があり
必須である。鋳片の軽圧下時期については、軸芯部が完
全凝固後ではポロシティは圧着しないので、固相線温度
未満(固相率1未満)で軽圧下することが必要である。
しかしながら、軸芯部の固相率が0.3以下では、一旦
軽圧下されてもこの軽圧下後再度クレーター内で溶鋼流
動が起こり、その結果、中心偏析およびポロシティが形
成される。
It is essential to cast molten steel while electromagnetically stirring it in the mold, because it is effective in forming equiaxed crystals in the core of the cast slab. Regarding the timing of light reduction of the slab, since the porosity is not pressure-bonded after the shaft core is completely solidified, it is necessary to perform light reduction below the solidus temperature (solid fraction of less than 1).
However, when the solid fraction of the shaft core is 0.3 or less, even if the pressure is once lightly reduced, molten steel flow again occurs in the crater after the light pressure reduction, and as a result, center segregation and porosity are formed.

【0026】鋳片の軽圧下方法については、上述した固
相率条件に加え、C方向断面積減少率を限定することに
より軸芯部のポロシティの形成を抑制ないし圧着する効
果を発揮する。鋳片のC方向断面積減少率が0.1%以
下では偏析を抑制することはできるが、ポロシティを抑
制ないし圧着することはできない。一方、C方向断面積
減少率が3%を超えると、ポロシティを圧着することは
できるが、鋳片内部に割れが発生する。
As for the method of lightly rolling down the cast slab, in addition to the above-mentioned solid fraction conditions, the reduction rate of the cross-sectional area in the C direction is limited to exert the effect of suppressing or crimping the formation of porosity in the shaft core. When the C-direction cross-sectional area reduction rate of the slab is 0.1% or less, segregation can be suppressed, but porosity cannot be suppressed or pressure bonding cannot be performed. On the other hand, if the C-direction cross-sectional area reduction rate exceeds 3%, the porosity can be pressure-bonded, but cracks occur inside the slab.

【0027】図1は、本発明者等による実験結果の一例
であり、330mmφビレット鋳片の連続鋳造におい
て、鋳片軸芯部の固相率fs が0.52の位置でフラッ
トロールによる一段圧下をした場合、鋳片の内質に及ぼ
す鋳片のC方向断面積減少率(%)の影響を示すグラフ
である。同図において内質評点は小さいほど良好であ
り、1および2が合格範囲である。この実験結果から
も、C方向断面積減少率が0.1%以上3%以下の範囲
内の軽圧下をすることが必要であることがわかる。
FIG. 1 is an example of an experimental result by the inventors of the present invention. In continuous casting of 330 mmφ billet slabs, a single step by a flat roll was performed at a position where the solid fraction f s of the slab axial part was 0.52. It is a graph which shows the influence of the C direction cross-sectional area reduction rate (%) of a cast piece which acts on the internal quality of a cast piece when it is reduced. In the figure, the smaller the internal quality score, the better, and 1 and 2 are the acceptable ranges. From this experimental result, it can be seen that it is necessary to carry out the light reduction within the range in which the C-direction cross-sectional area reduction rate is 0.1% or more and 3% or less.

【0028】以上により、鋳片の軽圧下はC方向断面積
減少率が0.1%3%以下の範囲内にすべきである。更
に、この軽圧下方法においては、ロールによる一段圧下
で行なうことを条件として付加すべきである。その理由
は多段圧下するより1段圧下する方がポロシティの圧下
に効果的だからである。
From the above, the light reduction of the cast slab should be such that the reduction rate of the cross-sectional area in the C direction is within 0.1% and 3% or less. Further, this light reduction method should be added under the condition that it is performed under a single stage pressure by a roll. The reason is that one-stage reduction is more effective in reducing porosity than multi-stage reduction.

【0029】請求項3記載の発明の一実施態様について
説明する。直径340mm以下の連続鋳造鋳型内で、C
r含有量0.5wt.%超えの溶鋼に電磁撹拌を施しつつ、
丸ビレットを鋳造し、連続鋳造ラインの鋳片凝固完了点
近傍に設置された一組のフラットロールで、鋳片軸芯部
の固相率fS が0.3以上1未満において、C方向断面
積減少率が0.1%以上3%以下の圧下を一段圧下で行
ない、次いで、このようにして製造された丸ビレット鋳
片を1100℃〜1300℃以下の間の所定温度に加熱
し、マンネスマン穿孔機で圧延して中空素管を製造し、
エロンゲーターで延伸し、そしてサイザーで定径して継
目無鋼管を製造する。
An embodiment of the invention described in claim 3 will be described. In a continuous casting mold with a diameter of 340 mm or less, C
While electromagnetically stirring molten steel with an r content of more than 0.5 wt.%,
The round billet was cast, with a set of flat rolls installed in the vicinity of the cast piece solidification completion point of the continuous casting line, in the solid fraction f S of the slab axial core portion is less than 1 0.3 or more, C-direction sectional An area reduction rate of 0.1% or more and 3% or less is performed under a single step reduction, and then the round billet slab thus produced is heated to a predetermined temperature between 1100 ° C and 1300 ° C, and a Mannesmann It is rolled with a piercing machine to manufacture a hollow shell,
A seamless steel pipe is manufactured by stretching with an elongator and calibrating with a sizer.

【0030】加熱温度1100℃以上1300℃以下
は、一般的な穿孔圧延時の加熱温度であり、この温度範
囲内において内面疵の発生を抑えつつ難加工性鋳片を正
常に穿孔圧延するためには、穿孔条件を適正な範囲内に
特定する必要がある。本発明を完成するために特定した
穿孔条件の考え方を説明する。
The heating temperature of 1100 ° C. or more and 1300 ° C. or less is a general heating temperature during piercing and rolling, and in order to normally pierce and roll a difficult-to-process slab while suppressing the occurrence of inner surface defects within this temperature range. Need to specify the drilling condition within an appropriate range. The concept of the drilling conditions specified to complete the present invention will be described.

【0031】内面疵の発生を抑制するためには、所謂マ
ンネスマン割れを防ぐことが必要となる。マンネスマン
割れは、傾斜穿孔機でビレットが圧延される過程におい
て、ビレットがプラグ先端に達するまでの歪みの蓄積に
よって発生するから、ビレット材質の熱間加工性が良好
であることが内面疵抑制の重要な条件となる。一方、マ
ンネスマン割れを防ぐため、機械的には、圧延方向にお
けるビレットがロールに噛み込んだ位置からプラグ先端
までの距離を短くすれば、ビレットに蓄えられる歪みが
小さくなり割れの抑制に効果的である。しかしながら、
この距離を小さくし過ぎると、ロールからビレットに与
えられる圧延方向の駆動力が不十分となりビレットがプ
ラグに噛み込まない、所謂ミスロールを起こす。従っ
て、ミスロールを起こすことなく、且つ内面疵を発生さ
せない穿孔条件は、特定の条件を満たす場合に制限され
る。更に付加して、ビレット材質、特に軸芯部近傍の内
質の良好な鋳片が要求される。
In order to suppress the generation of inner surface defects, it is necessary to prevent so-called Mannesmann cracking. Mannesmann cracks occur due to the accumulation of strain until the billet reaches the tip of the plug during the process of rolling the billet with an inclined punching machine.Therefore, it is important for the hot workability of the billet material to suppress internal defects. It will be a condition. On the other hand, in order to prevent Mannesmann cracking, mechanically, if the distance from the position where the billet bites into the roll in the rolling direction to the tip of the plug is shortened, the strain accumulated in the billet becomes smaller and it is effective in suppressing cracking. is there. However,
If this distance is made too small, the driving force applied from the roll to the billet in the rolling direction becomes insufficient and the billet does not get caught in the plug, so-called misroll occurs. Therefore, the perforation condition that does not cause misroll and does not cause the inner surface flaw is limited to the case where the specific condition is satisfied. In addition, a billet material, particularly a slab with good internal quality in the vicinity of the shaft core, is required.

【0032】上記観点から本発明者等が検討して得られ
た難加工性材料のビレット鋳片のマンネスマン穿孔機に
よる穿孔条件は、Pが下記(1)式を満たす条件で穿孔
圧延を行なうことである。ここで、Pは、穿孔機のロー
ル荷重を穿孔材の変形抵抗値で除したもの(無次元)で
あり、いわばロールによって与えられるビレット駆動力
に関する係数である。
From the above viewpoints, the present inventors investigated and obtained the billet slab of the difficult-to-process material by the Mannesmann piercing machine. The piercing and rolling should be carried out under the condition that P satisfies the following formula (1). Is. Here, P is the roll load of the punching machine divided by the deformation resistance value of the punching material (dimensionless), and is a coefficient related to the billet driving force given by the roll.

【0033】 0.973≦P/P0 ≦1.027 --------- (1) 但し、P0 およびPは、穿孔機のロールによって与えら
れるビレット駆動力に関する係数であり、 P=f(β, DP , LP , γP ,γg ,θ12,Db ) P0 :γP =0.93としたときの上記P値 P/P0 :穿孔機ロール傾斜角をある値で一定としたと
きのPおよびP0 により求められる値 なお、ここでP/P0 のベース値としてγP =0.93
としたときのP値をP 0 として扱い、穿孔圧延条件P/
0 の範囲を上記(1)式の通り限定したが、ベース値
がγP =0.93のときに限るものではない。即ち、例
えば、γP =0.92あるいはγP =0.94等のとき
であっても、そのときのP値を用いて求めたP/P0
γP =0.93のときのP/P0 の換算値が上記(1)
式を満たせばよい。
0.973 ≦ P / P0≦ 1.027 --------- (1) However, P0And P are given by the roll of the punch
Is a coefficient related to the billet driving force, P = f (β, DP, LP, γP, Γg, Θ1, θTwo, Db) P0: ΓPP value P / P when = 0.930: When the punch roll angle is constant at a certain value
Mushroom P and P0The value obtained by P / P0Γ as the base value ofP= 0.93
And the P value is P 0As perforation and rolling condition P /
P0Although the range of is limited as in the above equation (1), the base value
Is γPIt is not limited to when 0.93. That is, an example
For example, γP= 0.92 or γP= 0.94 mag
, P / P obtained using the P value at that time0To
γPP / P when = 0.930The converted value of is (1) above
You just have to satisfy the formula.

【0034】f :所定の関数 β :穿孔機ロール傾斜角 DP :プラグ径 LP :プラグの有効長さ γP :プラグ位置を示す値 γg :ゴージ部におけるロール間隔/ビレット径 θ1 :入側ロール面角 θ2 :出側ロール面角 Db :ビレット径 図2に、丸ビレットの穿孔条件の各要素を説明する圧延
方向縦断面の概略穿孔状態図を示し、図3に、穿孔機ロ
ールの傾斜角度等のセッティング状態を説明する要部の
圧延方向縦断面図を示し、そして、図4に、丸ビレット
の穿孔圧延において、一圧延周期毎の管厚圧下量ΔHを
説明する圧延方向直角断面図を示す。
F: predetermined function β: perforator roll inclination angle D P : plug diameter L P : effective length of the plug γ P : value indicating the plug position γ g : roll interval / billet diameter at the gorge portion θ 1 : Entry-side roll surface angle θ 2 : Exit-side roll surface angle D b : Billet diameter FIG. 2 is a schematic diagram showing the state of perforation of a round billet in the longitudinal direction of the rolling direction, and FIG. FIG. 4 is a longitudinal cross-sectional view in the rolling direction for explaining the setting state of the machine roll inclination angle and the like, and FIG. 4 illustrates the rolling reduction of the tube thickness ΔH for each rolling cycle in the round billet piercing rolling. The right-angled sectional view is shown.

【0035】Pは、下記〜の仮定のもとで、簡易的
な方法によりロール荷重を算出して求めることができ
る。 圧延圧力はビレットの進行方向および回転方向のそれ
ぞれでの力の釣り合いにより求まる。
P can be obtained by calculating the roll load by a simple method under the following assumptions. The rolling pressure is determined by the balance of forces in the moving direction and the rotating direction of the billet.

【0036】降伏条件として、Von−Misesの
条件が成立する。 圧延中の材料各部の圧下率は、主に前進角度および前
進効率により決定される。
As the yield condition, the Von-Mises condition is satisfied. The rolling reduction of each part of the material during rolling is mainly determined by the advancing angle and the advancing efficiency.

【0037】接触長はロール、プラグおよびビレット
が半回転する間に減少した管厚量の関数で近似される。
上記仮定に基づき、ビレット径Db 、穿孔機ロール径D
R 、管厚、ロール面角θ1 ,θ2 、プラグ形状DP ,L
P 、および、プラグ先進量または下記(2)式で示され
るプラグ先端圧下率γP で代表されるプラグ位置を示す
値γP からPを求めることができる。
The contact length is approximated as a function of the amount of tube thickness reduced during half a turn of the roll, plug and billet.
Based on the above assumptions, the billet diameter D b and the punch roll diameter D
R , tube thickness, roll surface angles θ 1 , θ 2 , plug shape D P , L
P can be obtained from P 1 and the value γ P indicating the plug position represented by the advanced plug amount or the plug tip reduction γ P represented by the following equation (2).

【0038】 γP =(GP /Db ) --------- (2) 但し、GP :プラグ先端でのロール間隔 以下、Pの求め方を説明する。Γ P = (G P / D b ) --------- (2) However, G P : Roll interval at the tip of the plug Hereinafter, a method of obtaining P will be described.

【0039】圧延方向に関するロールとビレットとの接
触長は、一般に、ロール入側の接触長については、ビレ
ットとロールとの接触開始点から穿孔機ロールの最大径
部(ゴージ)までのロール面角、ロール傾斜角、およ
び、ビレット径とゴージのロール間隔とから求められる
ゴージ圧下率によって決まり、また、ロール出側の接触
長についても素管径の違いはあるが、ほぼ同様に求めら
れる。ここではこれを更に単純化させて、ロール面角を
θ、ビレット径をDb 、ゴージ圧下率をγg とすると、
圧延方向のビレットとロールとの接触開始点からゴージ
までの投影長さである入側接触長Lxaは、下記(3)式
で表わされる。
Regarding the contact length between the roll and the billet in the rolling direction, the contact length on the roll entry side is generally the roll face angle from the contact start point between the billet and the roll to the maximum diameter portion (gorge) of the punch roll. , The roll inclination angle, and the gorge reduction ratio obtained from the billet diameter and the gorge roll interval. The contact length on the roll outlet side is also found to be substantially the same, although there is a difference in the raw pipe diameter. Here, further simplifying this, if the roll surface angle is θ, the billet diameter is D b , and the gorge reduction ratio is γ g ,
The entrance side contact length L xa , which is the projected length from the contact start point between the billet and the roll in the rolling direction to the gorge, is represented by the following formula (3).

【0040】 Lxa=(Db ×(1−γg )/2)/tanθ --------- (3) また、ビレット半回転当たりの圧下後管厚は、ロール間
隔とプラグ径との差によって簡略的に求めることが可能
である。即ち、ある点xでのロール間隔をGx、プラグ
径をDPxとすれば、管厚Hx は、下記(4)式で表わさ
れる。
L xa = (D b × (1−γ g ) / 2) / tan θ --------- (3) Further, the tube thickness after rolling per half rotation of the billet is the roll interval and the plug. It is possible to simply obtain the difference from the diameter. That is, if the roll interval at a certain point x is G x and the plug diameter is D Px , the tube thickness H x is expressed by the following equation (4).

【0041】 Hx =(Gx −DPx)/2 --------- (4) 本来であれば回転方向応力をも考慮すべきであるが簡便
に計算を行なうために、これらを上記仮定の各応力の釣
り合い式より導出した圧延方向応力解にのみ代入するこ
とにより、例えば、本発明に適用した、プラグ先端近傍
でのロール荷重P’を、下記(5)式により求めること
が可能となる。
H x = (G x −D Px ) / 2 --------- (4) Originally, the stress in the rotational direction should also be taken into consideration, but for the sake of simple calculation, By substituting these into only the rolling direction stress solution derived from the above-described assumed stress balance equation, for example, the roll load P ′ in the vicinity of the plug tip, which is applied to the present invention, is obtained by the following equation (5). It becomes possible.

【0042】 P’={(m1 ×変形抵抗+m2 ×変形抵抗+圧延方向応力)}/2 ---------(5) 但し、m1 、m2 :Von−Misesの降伏条件式の
係数、m1 2+m2 2−m1 2 =1により求められる値 なお、ビレット駆動力に関する係数Pは、穿孔機のロー
ル荷重P’を穿孔材の変形抵抗値で除したものであるか
ら、ビレット材質による変動要素も組み込まれているこ
とになる。また、穿孔機の工具面角による特性を補正す
るため、P/P 0 値の幅にαを用いる。この場合は、P
/P0 値の1よりの偏差である2.7%にαを乗じてそ
の範囲とする。
P ′ = {(m1× Deformation resistance + mTwo× Deformation resistance + rolling direction stress)} / 2 --------- (5) where m1, MTwo: Of Von-Mise's yield condition
Coefficient, m1 Two+ MTwo Two-M1mTwo= 1 value Note that the coefficient P related to the billet driving force is
Is the load P'divided by the deformation resistance value of the perforated material?
In addition, the variable element due to the billet material is also incorporated.
And In addition, the characteristics due to the tool surface angle of the punch are corrected.
Therefore, P / P 0Use α for the range of values. In this case, P
/ P02.7%, which is the deviation from the value of 1, is multiplied by α
The range is.

【0043】〔Pの算出方法例〕次に、Pの算出方法の
一例として、モデル実験の条件である、ビレット径=5
0mmφ、ロール径=300mmφ、入側・出側面角=
3°、傾斜角β=9°、ゴージでの圧下率=10%、プ
ラグ先端での圧下率=5.5%でのP値の計算を行な
う。なお、ロールとの摩擦係数μ1 =0.5、プラグと
の摩擦係数μ2 =0.3、m1 =1.15、m2 =0.
5とする。プラグ形状は底部半径=20mm、長さ=6
6mmとする。
[Example of P Calculation Method] Next, as an example of the P calculation method, the billet diameter = 5, which is the condition of the model experiment.
0 mmφ, roll diameter = 300 mmφ, entrance / exit angle =
The P value is calculated at 3 °, the inclination angle β = 9 °, the rolling reduction at the gorge = 10%, and the rolling reduction at the plug tip = 5.5%. The coefficient of friction with the roll μ 1 = 0.5, the coefficient of friction with the plug μ 2 = 0.3, m 1 = 1.15, m 2 = 0.
5 is assumed. The plug has a bottom radius of 20 mm and a length of 6
6 mm.

【0044】先ず、入側・出側面角からロールが傾斜し
ていることに起因する見掛け上の面角を本発明にて既に
書き下した長手方向接触長Lxaを用い、下記(6)式に
より求める。
First, using the contact length L xa in the longitudinal direction which has already been written in the present invention as the apparent surface angle due to the inclination of the roll from the entrance / exit side surface angle, the following equation (6) is used. Ask.

【0045】 tanθ1'=(Ga −G0 )/(Lxacosβ) --------------(6) 但し、θ1':算出上の見かけの面角 また、プラグ長LP から、プラス先進量sをひいた長さ
xbおよび出側外径Gbを用いて(6)式と同様に出側
の見掛け上の面角を求める。このとき、 tanθ1'=0.0555、tanθ2'=0.0658
9 但し、θ2':算出上の見かけの面角となる。また、この
ときのプラグ先進量(ゴージより入側へプラグ先端が突
出している長さ:図2参照)は、上記プラグ先端での圧
下率の数字に基づき算出する。
Tan θ 1 ′ = (G a −G 0 ) / (L xa cos β) -------------- (6) where θ 1 ′: apparent face angle in calculation Further, the apparent face angle on the outlet side is obtained from the plug length L P by using the length L xb obtained by subtracting the plus advanced amount s and the outlet side outer diameter G b in the same manner as in the equation (6). At this time, tan θ 1 '= 0.0555, tan θ 2 ' = 0.0658
9 However, θ 2 ': an apparent face angle in calculation. Further, the advanced amount of the plug at this time (the length of the plug tip protruding from the gorge toward the entrance side: see FIG. 2) is calculated based on the numerical value of the rolling reduction at the plug tip.

【0046】 s=(10−5.5)/100×(50/2)/tan3° =21.5(mm) 更に、圧延中の肉厚は、単純にロール間隔とプラグ径に
よって決まるものとした。例えば、ゴージ部での肉厚
は、 ゴージ部での肉厚=(ゴージ間隔/2)−(ゴージ部でのプラグ半径) =16.4 となる。
S = (10−5.5) / 100 × (50/2) /tan3°=21.5 (mm) Further, the wall thickness during rolling is simply determined by the roll interval and the plug diameter. did. For example, the wall thickness at the gorge portion is: wall thickness at the gorge portion = (gorge interval / 2) − (plug radius at the gorge portion) = 16.4.

【0047】これより、応力計算を行なうが、簡単のた
め、長手方向のみの応力分布をもって荷重Pを計算す
る。先ず、境界条件としては、プラグおよび穿孔された
ビレットがプラグおよびロールから離れる点で、応力が
0(零)となるよう、下記式群をもって計算する。
From this, the stress is calculated, but for simplicity, the load P is calculated with the stress distribution only in the longitudinal direction. First, as a boundary condition, the following formula group is used so that the stress becomes 0 (zero) at the point where the plug and the perforated billet are separated from the plug and the roll.

【0048】tf =プラグ底部半径/プラグ長さ a1 =μ1 sinβ−(tf +μ2 sinβ)/(1−
μ2 f ) g1 =tf −tanθ2 ’ b1 =m2 1 /(g1 +a1 ) b2 =出側肉厚/g13 =−(g1 +a1 )/g11 =b1 2 (-b3) これらを計算した後、(7)式により出側〜ゴージ部ま
での応力を求める。
T f = radius of bottom of plug / length of plug a 1 = μ 1 sin β- (t f + μ 2 sin β) / (1-
μ 2 t f ) g 1 = t f −tan θ 2 ′ b 1 = m 2 a 1 / (g 1 + a 1 ) b 2 = outlet wall thickness / g 1 b 3 = − (g 1 + a 1 ) / g 1 c 1 = b 1 b 2 (-b3) After calculating these, the stress from the exit side to the gorge portion is obtained by the equation (7).

【0049】 応力=c1 {(Lxb−x)+b2 b3−b1 --------------(7) 但し、x:長手方向位置(出側でLxb、ゴージで0) 次に、入側と出側とでは幾何学条件が異なるため、再度
上記係数を求める。但し、ゴージ部で応力値が連続とな
るようにゴージ部応力が既知のものとしてc1にあわせ
こむ。
Stress = c 1 {(L xb −x) + b 2 } b3 −b 1 -------------- (7) where x: longitudinal position (L on the exit side xb , 0 in Gorge) Next, since the geometric conditions are different between the input side and the output side, the above coefficient is obtained again. However, it is assumed that the stress of the gorge portion is known so that the stress value is continuous at the gorge portion, and it is adjusted to c 1 .

【0050】g1 =tf +tanθ1' b1 =m2 1 /(g1 +a1 ) b2 =(ゴージ部での肉厚)/g13 =−(g1 +a1 )/g11 =(ゴージ部での応力+b1 )/(Lxb+b2 b3 これを用いて入側応力値を求めることが可能となる。G 1 = t f + tan θ 1 'b 1 = m 2 a 1 / (g 1 + a 1 ) b 2 = (wall thickness at gorge part) / g 1 b 3 =-(g 1 + a 1 ) / g 1 c 1 = (stress at the gorge part + b 1 ) / (L xb + b 2 } b3 It is possible to obtain the entry-side stress value using this.

【0051】そこで、プラグ先端近傍、即ち、x=(−
s)近傍の応力値を(7)式により求めることが可能と
なる。この値を下記(8)式に入れ、荷重Pを算出す
る。 P=(m1 +m2 +応力値)/2 --------------(8) 本例においては、 P=1.241 を得る。実施例では、同様にP値を計算後、ある傾斜角
β、あるゴージ圧下率を設定したときのプラグ先端での
圧下率7%(表2〜3 中では、プラグ位置γpが0.
93と示された条件)をベース値P0 として、P/P0
の範囲を限定した。
Therefore, in the vicinity of the tip of the plug, that is, x = (-
It is possible to obtain the stress value in the vicinity of s) by the equation (7). This value is put into the following equation (8) to calculate the load P. P = (m 1 + m 2 + stress value) / 2 -------------- (8) In this example, P = 1.241 is obtained. In the embodiment, similarly, after the P value is calculated, a reduction rate of 7% at the plug tip when a certain inclination angle β and a certain gorge reduction rate are set (in Tables 2 to 3, the plug position γ p is 0.
93) is set as the base value P 0 , and P / P 0
The range of was limited.

【0052】上述した方法により、穿孔時の一般的な加
熱温度である1100〜1300℃におけるビレット材
質に応じた材料の変形抵抗をも考慮し、ミスロールがな
く且つ内面疵が発生しない穿孔条件を特定することがで
きる。このようにして、難熱間加工性の高合金鋼継目無
鋼管を従来と全く変わらない製管設備を用いて、圧延能
率の向上や低コスト化を実現することができる。
By the above-mentioned method, the perforation condition that there is no misroll and no inner surface flaw is specified by considering the deformation resistance of the material according to the billet material at 1100 to 1300 ° C which is a general heating temperature during perforation. can do. In this way, it is possible to realize an improvement in rolling efficiency and a reduction in cost of a high alloy steel seamless steel pipe having a poor hot workability by using a pipe manufacturing facility which is completely the same as the conventional one.

【0053】この発明では、連続鋳造ラインにおいて軽
圧下された丸ビレット鋳片はその後圧下工程を経ること
なく熱間圧延により素管が製造されるので、一貫製造コ
ストも安価にすることができる。
In the present invention, the round billet slab lightly reduced in the continuous casting line is manufactured by hot rolling without a reduction process thereafter, so that the consistent manufacturing cost can be reduced.

【0054】[0054]

【実施例】次に、この発明を実施例により、更に詳細に
説明する。 (試験1)半径11.5mの湾曲型ビレット用連続鋳造
機において、鋳片断面170または330mmφの丸形
状鋳型にCr含有量が2.5または13.8wt.%の継目
無鋼管向け高Cr溶鋼を鋳造し、丸ビレット鋳片を製造
した。次いで、鋳片を1100℃以上1300℃以下の
間の所定温度に加熱し、マンネスマン穿孔機で圧延して
中空素管を製造し、エロンゲーターで延伸し、そしてサ
イザーで定径して継目無鋼管を製造した。
Next, the present invention will be described in more detail with reference to examples. (Test 1) In a continuous casting machine for curved billets with a radius of 11.5 m, a high Cr molten steel for a seamless steel pipe with a Cr content of 2.5 or 13.8 wt.% In a round mold having a slab cross section of 170 or 330 mmφ Was cast into a round billet slab. Then, the slab is heated to a predetermined temperature between 1100 ° C and 1300 ° C, rolled by a Mannesmann puncher to produce a hollow shell, stretched by an elongator, and then sized by a sizer to produce a seamless steel pipe. Was manufactured.

【0055】表1に、本発明の範囲内の製造方法である
実施例1〜8、および、本発明の範囲外の製造方法であ
る比較例1〜3を示す。なお、比較例1および3は、軽
圧下をしなかった場合であり、この場合の同表中固相率
s は軽圧下ロール位置における軸芯部固相率を示して
いる。
Table 1 shows Examples 1 to 8 which are manufacturing methods within the scope of the present invention, and Comparative Examples 1 to 3 which are manufacturing methods outside the scope of the present invention. Comparative Examples 1 and 3 are cases in which light reduction was not performed, and the solid fraction f s in the table in this case indicates the axial core solid fraction at the light reduction roll position.

【0056】[0056]

【表1】 [Table 1]

【0057】鋳造された溶鋼の化学成分組成はいずれも
鋳片軸芯部ポロシティおよび中心偏析を形成し易く、し
かも難加工性鋼種である。鋳型には電磁攪拌装置が設置
されている。鋳造温度は、溶鋼の化学成分組成に応じた
常法の温度とし、鋳造中電磁攪拌装置で鋳型内溶鋼を攪
拌した。また、鋳片冷却水量も溶鋼の化学成分組成に応
じて適正な量とした。
The chemical composition of each of the cast molten steels is a type of steel which is difficult to form and easily forms porosity and center segregation of the cast core. An electromagnetic stirrer is installed in the mold. The casting temperature was a temperature according to a conventional method according to the chemical composition of the molten steel, and the molten steel in the mold was stirred by an electromagnetic stirrer during casting. Also, the amount of slab cooling water was set to an appropriate amount according to the chemical composition of the molten steel.

【0058】凝固末期の未凝固鋳片を圧下するために1
組の圧下ロールを有する軽圧下装置を、連続鋳造ライン
の所定の場所に設置した。圧下方式は油圧式で、ロール
径は380mm、タイプはフラットロールである。軽圧
下ロールの設置位置は、鋳型内溶鋼メニスカスから1
6.7mとし、溶鋼組成や鋳片径が鋳造No. 間で異なっ
ていても、鋳造速度等を調整することにより鋳片軸心部
の固相率fs を任意に選定することができるようにし
た。
To reduce the unsolidified slab in the final stage of solidification, 1
A light reduction device with a set of reduction rolls was installed in place on the continuous casting line. The rolling system is a hydraulic system, the roll diameter is 380 mm, and the type is a flat roll. The installation position of the light reduction roll is 1 from the molten steel meniscus in the mold.
Even if the molten steel composition and the slab diameter differ between casting Nos., It is possible to arbitrarily select the solid fraction f s of the slab axial center by adjusting the casting speed etc. I chose

【0059】鋳造終了後、丸ビレット鋳片から所定の試
験片を採取し、鋳片中心部の密度および内部割れについ
て試験した。次いで製管後、継目無鋼管の内面疵発生状
況を観察し、鋳片の内質を評価した。
After the casting, predetermined test pieces were taken from the round billet slabs and tested for density and internal cracks at the center of the slab. Then, after the pipe was manufactured, the state of occurrence of internal flaws in the seamless steel pipe was observed, and the quality of the cast piece was evaluated.

【0060】〔軸芯密度測定試験〕鋳片の軸心を含みL
方向に、10mm角×40mm長さのブロックを切り出
し、レプリカ処理を施し、次いで、フタル酸に浸漬して
アルキメデス法により密度を測定した。また、上記と同
じ方法で当該鋳片の表面から半径1/4部の密度を測定
し、1/4部と軸芯部との密度差(ρ1/4 −ρ1/2 )の
1/4部密度(ρ1/ 4 )に対する比率(Δρ=((ρ
1/4 −ρ1/2 )/ρ1/4 )×100)により下記の評点
をつけた。
[Axial core density measurement test] L including the axial center of the slab
A 10 mm square × 40 mm long block was cut out in the direction, subjected to replica treatment, then immersed in phthalic acid, and the density was measured by the Archimedes method. In addition, the density of the 1/4 part of the radius is measured from the surface of the cast piece by the same method as described above, and 1 / of the density difference between the 1/4 part and the shaft core part (ρ 1/4 −ρ 1/2 ). 4 parts ratio density (ρ 1/4) (Δρ = ((ρ
The following scores were given by 1 / 4− ρ 1/2 ) / ρ 1/4 ) × 100).

【0061】 評点1: Δρ<0.5% 評点2: 0.5≦Δρ<1 % 評点3: 1≦Δρ<5 % 評点4: 5≦Δρ<10% 〔内部割れ試験〕鋳片のC方向断面のマクロ腐食写真3
枚、および、長さ500mmのL方向断面のマクロ腐食
写真1枚の観察により内部割れの度合いを判定し、評点
をつけた。評点1は内部割れを発見することができなか
ったことを示し、評点が小さいほど優れていることを意
味する。
Rating 1: Δρ <0.5% Rating 2: 0.5 ≦ Δρ <1% Rating 3: 1 ≦ Δρ <5% Rating 4: 5 ≦ Δρ <10% [Internal cracking test] C of cast slab Macro corrosion photo 3
The degree of internal cracking was determined by observing one sheet and one macro-corrosion photograph of a cross section in the L direction having a length of 500 mm, and a rating was given. A score of 1 indicates that no internal crack could be found, and a smaller score means better.

【0062】〔内質試験〕継目無鋼管の内面を検査し、
内面疵の発生状況を調査して、対応する鋳片の内質評価
試験とした。評点が小さいほど内質が優れており、評点
1および2は欠陥発生のないもの、3および4は欠陥の
発生したものである。
[Internal Quality Test] The inner surface of the seamless steel pipe is inspected,
The occurrence of internal flaws was investigated and used as an internal quality evaluation test for the corresponding cast pieces. The smaller the score, the better the internal quality, and the scores 1 and 2 indicate that no defects occur, and the scores 3 and 4 indicate that defects occur.

【0063】以上の試験結果を、表1に併記した。表1
から、下記事項がわかる。 軽圧下をしない比較例1および3は、軸芯密度指数お
よび内質評点において劣っている。
The above test results are also shown in Table 1. Table 1
The following matters can be understood from Comparative Examples 1 and 3 which are not subjected to light reduction are inferior in the axial core density index and the internal quality score.

【0064】軽圧下はしたが、軸芯部が完全凝固後に
軽圧下をした比較例2は、未凝固相がないために改善さ
れず、軸芯密度指数および内質評点において劣ってい
る。このように、比較例は鋳片内質特性の少なくとも一
つにおいて劣っている。
Comparative Example 2, in which the shaft core was lightly pressed after being completely solidified, was not improved because there was no unsolidified phase, and the shaft core density index and the internal quality rating were inferior. As described above, the comparative example is inferior in at least one of the slab internal properties.

【0065】これに対して、本発明法による実施例1
〜8は軸芯密度指数、内部割れおよび内質評点の内質特
性において優れている。 実施例1〜8において、軽圧下はしたがC方向断面積
減少率を本発明の範囲内で大き目(3.30)とした実施例
8、および、軸芯部固相率fs を本発明の範囲内で小さ
目とした実施例1(0.21)よりも、C方向断面積減少率
および軸芯部固相率fs 共に本発明の請求項2記載の範
囲内で軽圧下をした実施例2〜7の方が軸芯密度指数、
内部割れ、内質評点ともに同等ないし一層優れている。
On the other hand, Example 1 according to the method of the present invention
˜8 is excellent in the internal quality characteristics such as the axial core density index, internal cracking and internal quality rating. In Examples 1 to 8, Example 8 in which the reduction rate in the C-direction cross-sectional area was set to a large value (3.30) within the scope of the present invention and the solid fraction f s of the shaft core portion was set in the range of the present invention example was smaller in the inner 1 (0.21) than examples 2-7 in which the soft reduction within the scope of claim 2 wherein the C direction area reduction ratio and axial center solid phase ratio f s are both present invention Is the axial core density index,
Both internal cracking and internal quality rating are equal or better.

【0066】(試験2)表1中の実施例1、3および
7、並びに、比較例1および3に示した化学成分組成を
有し、且つ各々の鋳造条件下で製造された各丸ビレット
鋳片を1100℃以上1300℃以下の間の所定温度に
加熱し、マンネスマン穿孔機で圧延して中空素管を製造
し、延伸し定径して継目無鋼管を製造した。マンネスマ
ン穿孔機での圧延条件は、前記係数P/P0 が前記
(1)式の条件を満たす場合および満たさない場合と
し、丸ビレット鋳片の製造条件と適宜組み合わせて穿孔
圧延した。
(Test 2) Each round billet cast having the chemical composition shown in Examples 1, 3 and 7 and Comparative Examples 1 and 3 in Table 1 and produced under each casting condition. The piece was heated to a predetermined temperature between 1100 ° C. and 1300 ° C., and rolled by a Mannesmann perforator to produce a hollow shell, which was drawn and then sized to produce a seamless steel tube. The rolling conditions in the Mannesmann punching machine were such that the coefficient P / P 0 satisfied or did not satisfy the condition of the formula (1), and the rolling conditions were appropriately combined with the manufacturing conditions of the round billet slab for piercing and rolling.

【0067】このようにして構成された、本発明の範囲
内の方法である実施例11〜34および本発明の範囲外
の方法である比較例11〜13で製造された継目無鋼管
の、穿孔性(特に、ミスロール)および内面疵発生状況
を調査し、これに基づき継目無鋼管の圧延性を評価し
た。
Perforation of the seamless steel pipes thus produced in Examples 11 to 34 which are methods within the scope of the present invention and Comparative Examples 11 to 13 which are methods outside the scope of the present invention (Especially, misroll) and the occurrence of internal flaws were investigated, and the rollability of the seamless steel pipe was evaluated based on the results.

【0068】表2および3に、丸ビレット鋳片の製造条
件(化学成分組成および鋳造条件)、並びに、マンネス
マン穿孔機の圧延条件(各要素およびパラメータP/P
0 の値)を示し、これに対する継目無鋼管の圧延性の評
点を併記した。
Tables 2 and 3 show the manufacturing conditions (chemical composition and casting conditions) for round billet slabs and the rolling conditions for Mannesmann piers (each element and parameter P / P).
(Value of 0 ) is shown, and the rating of the rollability of the seamless steel pipe is also shown.

【0069】[0069]

【表2】 [Table 2]

【0070】[0070]

【表3】 [Table 3]

【0071】圧延性の評価方法は、下記の通りである。 穿孔性=主としてミスロール発生の有無 良:◎、可:○、不可:× 管内面疵=内面疵発生の状況 良:◎、可:○、不可:×、全く不可:×× 圧延性総合評価 最良:評点1 良:評点2 可:評点3 不可:
評点4 また、図5には、穿孔条件を表わすパラメータP/P0
と継目無鋼管の圧延性総合評点との関係を示す。
The method for evaluating the rolling property is as follows. Perforability = Mainly the presence or absence of misrolling Good: ◎, Acceptable: ○, Not acceptable: × Pipe inner surface defect = Situation of inner surface defect Good: ◎, Acceptable: ○, Not acceptable: ×, Totally not acceptable: × × Overall rollability evaluation Best : Score 1 Good: Score 2 Acceptable: Score 3 Not acceptable:
Score 4 Further, in FIG. 5, the parameter P / P 0 representing the punching condition is shown.
Shows the relationship between the total rolling property score of seamless steel pipe and.

【0072】表1〜3および図5の結果から下記事項が
わかる。 本発明の範囲外である比較例11〜13は圧延性に劣
っている。即ち、丸ビレット鋳片の製造条件が本発明の
範囲外の場合には、穿孔条件を表わすパラメータP/P
0 が本発明の範囲内であっても、(イ)ミスロールが発
生しない条件で穿孔すると、管内面疵が発生し(比較例
11、12)、一方、(ロ)管内面疵を可能な限り発生
させないように穿孔条件を設定し穿孔を実施しても、ミ
スロールが発生する(比較例13)。なお、比較例13
において、これ以上P/P0 を大きくすると、即ち内面
疵を更に発生させないような条件を設定すると、全てミ
スロールとなるため、全く素材の加工性とは無関係にな
るため意味をなさない。
The following matters can be seen from the results of Tables 1 to 3 and FIG. Comparative Examples 11 to 13, which are outside the scope of the present invention, are inferior in rollability. That is, when the manufacturing conditions of the round billet slab are out of the range of the present invention, the parameter P / P representing the drilling conditions is used.
Even if 0 is within the range of the present invention, (a) when drilling under the condition that no misroll occurs, pipe inner surface defects occur (Comparative Examples 11 and 12), while (b) pipe inner surface defects are as much as possible. Even if the punching condition is set so as not to cause the punching, the misrolling occurs (Comparative Example 13). Comparative Example 13
In the above, if P / P 0 is further increased, that is, if a condition that does not cause further internal flaws is set, all misrolls occur, which is completely irrelevant to the workability of the raw material, which is meaningless.

【0073】これに対して、丸ビレット製造条件が本
発明の範囲内である実施例11〜34ではすべて、圧延
性に優れている。これらの内でも、軸芯部固相率fs
0.3以上1未満の範囲内において0.1%以上3%以
下の範囲内のC方向断面積減少率で鋳片を軽圧下し、且
つ、穿孔圧延のP/P0 を0.973〜1.027の範
囲内としたもの(実施例12、13、16、18、1
9、21、22、24、25、29〜31、33および
34)は、穿孔性および管内面疵ともに安定してより一
層優れ工業上適している。
On the other hand, in Examples 11 to 34 in which the round billet production conditions are within the scope of the present invention, all of them have excellent rolling property. Among these, the slab is lightly pressed at a C-direction cross-sectional area reduction rate within the range of 0.1% to 3% within the range of the axial core solid fraction f s of 0.3 to less than 1. In addition, P / P 0 of piercing and rolling was set within the range of 0.973 to 1.027 (Examples 12, 13, 16, 18, 1)
Nos. 9, 21, 22, 24, 25, 29 to 31, 33, and 34) are stable in both perforability and inner surface flaws of the pipe, and are more excellent and industrially suitable.

【0074】本発明においては、P/P0 のベース値と
して、γP =0.93としたときのP値をP0 として扱
い、穿孔圧延条件P/P0 の範囲を限定したが、前述し
た通り、ベース値がγP =0.93のときに限るもので
はなく、γP が0.93以外のときであっても、そのと
きのP/P0 をγP =0.93としたときのP/P0
換算したときに本発明の範囲内にあればよく、本発明に
よる穿孔性についての効果は十分に発揮される。
[0074] In the present invention, as the base value of P / P 0, treats P value when the gamma P = 0.93 as P 0, but limit the scope of the piercing condition P / P 0, the aforementioned As described above, the base value is not limited to γ P = 0.93, and even when γ P is other than 0.93, P / P 0 at that time is set to γ P = 0.93. When it is converted into P / P 0 at this time, it may be within the range of the present invention, and the effect of the present invention regarding the perforation property is sufficiently exerted.

【0075】従来行なわれている穿孔条件では、難加工
性ビレット鋳片の内質が優れていないために穿孔圧延に
より内面疵の発生を無くすことが困難であり、その発生
を抑制しようとすると、かなりの頻度でミスロールが発
生するので、工業的に問題のない操業条件を得ることが
困難であった。ところが、本発明法により、従来内面疵
を発生させていた圧延条件でもほぼ内面疵なしで穿孔圧
延をすることが可能となり、更に、プラグの位置を適正
な位置に変えることによりミスロールも発生することな
く品質の良好な継目無鋼管を製造することができるよう
になった。
Under the conventional piercing conditions, it is difficult to eliminate the generation of inner surface flaws by piercing and rolling because the internal quality of the difficult-to-work billet slab is not excellent. Since misrolls occur quite often, it has been difficult to obtain operating conditions that have no industrial problems. However, according to the method of the present invention, it becomes possible to perform piercing rolling with almost no inner surface flaw even under the rolling conditions that conventionally generate inner surface flaws, and further, misrolling occurs by changing the position of the plug to an appropriate position. It has become possible to manufacture seamless steel pipes of good quality without any problems.

【0076】[0076]

【発明の効果】この発明は上述したように構成したの
で、鋳造から製管に至る従来より簡便な一貫プロセス
で、内面疵のない難加工性継目無鋼管をより安価に製造
することができる。即ち、本発明法によれば、難熱間加
工性の高合金鋼、特に、従来困難とされていた高Cr合
金鋼の無欠陥ビレットの連続鋳造化を、設備に変更を加
えることなく達成し、且つ穿孔圧延を含む製管プロセス
により管内面疵のない継目無鋼管を製造することがで
き、更にまた、穿孔条件を適正化することにより管内面
疵がなく付加価値の高い継目無鋼管を一層有利に製管
し、且つ製造コストも低減することができるという、難
加工性継目無鋼管の製造方法を提供することができ、工
業上有用な効果がもたらされる。
EFFECTS OF THE INVENTION Since the present invention is configured as described above, it is possible to manufacture a difficult-to-work seamless steel pipe having no internal flaws at a lower cost by a simpler and more integrated process from casting to pipe manufacturing. That is, according to the method of the present invention, continuous casting of a defect-free billet of a high-alloy steel with poor hot workability, particularly a high-Cr alloy steel, which has been conventionally considered difficult, is achieved without changing equipment. In addition, it is possible to manufacture a seamless steel pipe with no flaws on the inner surface of the pipe by a pipe-making process including piercing and rolling. Furthermore, by optimizing the piercing conditions, a seamless steel pipe with no flaws on the inner surface of the pipe and high added value can be further obtained. It is possible to provide a method for producing a difficult-to-work seamless steel pipe, which is advantageous in pipe production and can reduce the production cost, and brings an industrially useful effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋳片の内質に及ぼす鋳片凝固末期部分に対する
軽圧下の影響を示すグラフである。
FIG. 1 is a graph showing the effect of light reduction on the internal quality of a slab for the final stage of solidification of the slab.

【図2】穿孔条件の各要素を説明する圧延方向縦断面の
概略穿孔状態図である。
FIG. 2 is a schematic diagram of perforation of a longitudinal section in the rolling direction, which explains each element of perforation conditions.

【図3】穿孔機ロールのセッティング状態を説明する要
部の圧延方向縦断面図である。
FIG. 3 is a longitudinal sectional view in a rolling direction of a main part for explaining a setting state of a punching machine roll.

【図4】丸ビレットの穿孔圧延において、一圧延周期毎
の管厚圧下量ΔHを説明する圧延方向直角断面図であ
る。
FIG. 4 is a cross-sectional view perpendicular to the rolling direction, which illustrates the tube thickness reduction ΔH for each rolling cycle in the round billet piercing and rolling.

【図5】穿孔条件を表わすパラメータP/P0 と管の圧
延性総合評点との関係を示すグラフである。
FIG. 5 is a graph showing a relationship between a parameter P / P 0 indicating a piercing condition and a rollability comprehensive score of a pipe.

【図6】鋼中Cr含有量と溶鋼の粘性との関係を示すグ
ラフである。
FIG. 6 is a graph showing the relationship between the Cr content in steel and the viscosity of molten steel.

【符号の説明】[Explanation of symbols]

1 ビレット 2 管厚 3 穿孔機ロール 4 プラグ 5 穿孔機ロール軸線 1 Billet 2 Tube thickness 3 Punch roll 4 Plug 5 Punch roll axis

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B22D 11/128 350 B22D 11/128 350A 11/20 11/20 C C21D 8/10 9270−4K C21D 8/10 A 9270−4K D C22C 38/00 301 C22C 38/00 301Z 302 302Z 38/18 38/18 (72)発明者 有泉 孝 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 中込 理欧 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 板倉 孝 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location B22D 11/128 350 B22D 11/128 350A 11/20 11/20 C C21D 8/10 9270-4K C21D 8/10 A 9270-4K D C22C 38/00 301 C22C 38/00 301Z 302 302Z 38/18 38/18 (72) Inventor Takashi Arizumi 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihonkokanko Ltd. (72) Inventor Rigo Nakagumi 1-2-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd. (72) Inventor Takashi Itakura 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 0.5 wt.%超えのCrを含有する高C
r合金鋼を直径340mm以下の丸形状鋳型にて連続鋳
造し、得られた丸ビレット鋳片の凝固末期の部分にロー
ルで軽圧下を加え、次いで、前記鋳片を加熱した後熱間
圧延し、そして製管することを特徴とする難加工性継目
無鋼管の製造方法。
1. A high C containing more than 0.5 wt.% Cr.
r alloy steel was continuously cast in a round-shaped mold having a diameter of 340 mm or less, a light reduction was applied by a roll to the final solidification portion of the obtained round billet slab, and then the slab was heated and then hot-rolled. , And a method for producing a difficult-to-work seamless steel pipe.
【請求項2】 前記連続鋳造において鋳型内での溶鋼の
電磁撹拌処理を付加し、そして、前記鋳片の軽圧下は、
軸芯部固相率が0.3以上1未満の間においてC方向断
面積減少率が0.1%以上3%以下の範囲内の圧下を一
段圧下で行なうことを特徴とする、請求項1記載の難加
工性継目無鋼管の製造方法。
2. In the continuous casting, electromagnetic stirring treatment of molten steel in a mold is added, and the light reduction of the slab is performed.
2. The reduction in the C-direction cross-sectional area reduction rate within the range of 0.1% or more and 3% or less is performed in a single-stage reduction when the axial core solid phase ratio is 0.3 or more and less than 1. A method for producing a seamless steel pipe having a difficult workability as described above.
【請求項3】前記鋳片の加熱および熱間圧延を1100
℃以上1300℃以下の温度範囲内で行ない、且つ、前
記熱間圧延は穿孔圧延であって穿孔機ロール傾斜角が6
°以上12°以下の範囲内で且つ穿孔プラグ先端でのロ
ール間隔を前記丸ビレット径の93%となる値を基準と
した場合に下記(1)式を満たす条件で行なうことを特
徴とする、請求項1または2記載の難加工性継目無鋼管
の製造方法。 0.973≦P/P0 ≦1.027 --------- (1) 但し、P0 およびPは、穿孔機のロールによって与えら
れるビレット駆動力に関する係数であり、 P=f(β, DP , LP , γP ,γg ,θ12,Db ) P0 :γP =0.93としたときの上記P値 P/P0 :穿孔機ロール傾斜角をある値で一定としたと
きのPおよびP0 により求められる数 f :所定の関数 β :穿孔機ロール傾斜角 DP :プラグ径 LP :プラグの有効長さ γP :プラグ位置を示す値 γg :ゴージ部におけるロール間隔/ビレット径 θ1 :入側ロール面角 θ2 :出側ロール面角 Db :ビレット径
3. The heating and hot rolling of the slab 1100
℃ or more and 1300 ℃ or less in the temperature range, and the hot rolling is piercing rolling, piercing roll angle of 6
Characterized in that the roll interval at the tip of the perforated plug is within a range of 90 ° or more and 12 ° or less, and the roll interval at the tip of the perforated plug is 93% of the diameter of the round billet as a reference under the condition that the following expression (1) is satisfied The method for producing a difficult-to-work seamless steel pipe according to claim 1. 0.973 ≦ P / P 0 ≦ 1.027 --------- (1) where P 0 and P are coefficients relating to the billet driving force given by the roll of the punch, and P = f (Β, D P , L P , γ P , γ g , θ 1 , θ 2 , D b ) P 0 : The above P value when γ P = 0.93 P / P 0 : Punch roll tilt angle Is a number obtained by P and P 0 when is constant at a certain value f: predetermined function β: punch roll inclination angle D P : plug diameter L P : effective length of plug γ P : value indicating plug position γ g : Roll spacing / billet diameter in the gorge section θ 1 : Entrance side roll surface angle θ 2 : Outgoing side roll surface angle D b : Billet diameter
JP12010096A 1996-05-15 1996-05-15 Manufacturing method of difficult-to-work seamless steel pipe Expired - Fee Related JP3367332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12010096A JP3367332B2 (en) 1996-05-15 1996-05-15 Manufacturing method of difficult-to-work seamless steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12010096A JP3367332B2 (en) 1996-05-15 1996-05-15 Manufacturing method of difficult-to-work seamless steel pipe

Publications (2)

Publication Number Publication Date
JPH09300006A true JPH09300006A (en) 1997-11-25
JP3367332B2 JP3367332B2 (en) 2003-01-14

Family

ID=14777924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12010096A Expired - Fee Related JP3367332B2 (en) 1996-05-15 1996-05-15 Manufacturing method of difficult-to-work seamless steel pipe

Country Status (1)

Country Link
JP (1) JP3367332B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7739892B2 (en) * 2006-11-20 2010-06-22 Sumitomo Metal Industries, Ltd. Method of manufacturing seamless pipes
JP2011115851A (en) * 2009-11-04 2011-06-16 Jfe Steel Corp Method of manufacturing seamless steel pipe
CN114932146A (en) * 2022-06-30 2022-08-23 浙江青山钢铁有限公司 Rolling method of super duplex stainless steel wire

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55106611A (en) * 1979-02-09 1980-08-15 Kawasaki Steel Corp Determining method for piercing condition of skew roll piercer
JPS613605A (en) * 1984-06-15 1986-01-09 Sumitomo Metal Ind Ltd Piercing method with cross helical roll piercer
JPS61180603A (en) * 1985-02-04 1986-08-13 Nippon Steel Corp Manufacture of seamless steel pipe
JPH03198964A (en) * 1989-12-26 1991-08-30 Daido Steel Co Ltd Method and apparatus for executing rolling reduction to strand in continuous casting
JPH07108358A (en) * 1993-10-13 1995-04-25 Sumitomo Metal Ind Ltd Method for reducing center porosity of continuously cast round cast billet
JPH07164020A (en) * 1993-12-10 1995-06-27 Sumitomo Metal Ind Ltd Production of seamless steel pipe
JPH07185763A (en) * 1993-12-28 1995-07-25 Daido Steel Co Ltd Manufacture of steel for spring
JPH07204812A (en) * 1994-01-14 1995-08-08 Daido Steel Co Ltd Continuous casting method
JPH07299550A (en) * 1994-05-09 1995-11-14 Daido Steel Co Ltd Manufacture of ball bearing steel
JPH0819843A (en) * 1994-07-01 1996-01-23 Sumitomo Metal Ind Ltd Method for cooling cast slab in continuous casting
JPH0852555A (en) * 1994-08-12 1996-02-27 Sumitomo Metal Ind Ltd Eccentric solidified continuous casting method of seamless steel pipe base stock and production of seamless steel pipe
JPH0999349A (en) * 1995-10-02 1997-04-15 Nkk Corp Method for continuously casting round cast billet for bar steel
JPH09253798A (en) * 1996-03-27 1997-09-30 Nkk Corp Continuous casting method for aluminum killed steel round cast billet
JPH09295113A (en) * 1996-04-30 1997-11-18 Nkk Corp Production of round cast billet by continuous casting
JPH09300053A (en) * 1996-05-16 1997-11-25 Nkk Corp Production of chromium alloy steel round cast billet

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55106611A (en) * 1979-02-09 1980-08-15 Kawasaki Steel Corp Determining method for piercing condition of skew roll piercer
JPS613605A (en) * 1984-06-15 1986-01-09 Sumitomo Metal Ind Ltd Piercing method with cross helical roll piercer
JPS61180603A (en) * 1985-02-04 1986-08-13 Nippon Steel Corp Manufacture of seamless steel pipe
JPH03198964A (en) * 1989-12-26 1991-08-30 Daido Steel Co Ltd Method and apparatus for executing rolling reduction to strand in continuous casting
JPH07108358A (en) * 1993-10-13 1995-04-25 Sumitomo Metal Ind Ltd Method for reducing center porosity of continuously cast round cast billet
JPH07164020A (en) * 1993-12-10 1995-06-27 Sumitomo Metal Ind Ltd Production of seamless steel pipe
JPH07185763A (en) * 1993-12-28 1995-07-25 Daido Steel Co Ltd Manufacture of steel for spring
JPH07204812A (en) * 1994-01-14 1995-08-08 Daido Steel Co Ltd Continuous casting method
JPH07299550A (en) * 1994-05-09 1995-11-14 Daido Steel Co Ltd Manufacture of ball bearing steel
JPH0819843A (en) * 1994-07-01 1996-01-23 Sumitomo Metal Ind Ltd Method for cooling cast slab in continuous casting
JPH0852555A (en) * 1994-08-12 1996-02-27 Sumitomo Metal Ind Ltd Eccentric solidified continuous casting method of seamless steel pipe base stock and production of seamless steel pipe
JPH0999349A (en) * 1995-10-02 1997-04-15 Nkk Corp Method for continuously casting round cast billet for bar steel
JPH09253798A (en) * 1996-03-27 1997-09-30 Nkk Corp Continuous casting method for aluminum killed steel round cast billet
JPH09295113A (en) * 1996-04-30 1997-11-18 Nkk Corp Production of round cast billet by continuous casting
JPH09300053A (en) * 1996-05-16 1997-11-25 Nkk Corp Production of chromium alloy steel round cast billet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7739892B2 (en) * 2006-11-20 2010-06-22 Sumitomo Metal Industries, Ltd. Method of manufacturing seamless pipes
JP2011115851A (en) * 2009-11-04 2011-06-16 Jfe Steel Corp Method of manufacturing seamless steel pipe
CN114932146A (en) * 2022-06-30 2022-08-23 浙江青山钢铁有限公司 Rolling method of super duplex stainless steel wire

Also Published As

Publication number Publication date
JP3367332B2 (en) 2003-01-14

Similar Documents

Publication Publication Date Title
JP4438960B2 (en) Seamless pipe manufacturing method
JP5741162B2 (en) Manufacturing method of round steel slab for high Cr steel seamless steel pipe making
JPH09300053A (en) Production of chromium alloy steel round cast billet
WO2002076654A1 (en) Method for manufacturing seamless steel pipe
JPH09295113A (en) Production of round cast billet by continuous casting
JP3425718B2 (en) Seamless pipe manufacturing method
JP3367332B2 (en) Manufacturing method of difficult-to-work seamless steel pipe
JP3214377B2 (en) Manufacturing method of continuous cast slab for seamless steel pipe
JP5343746B2 (en) Continuous casting method of round slabs for seamless steel pipes
JPH08238550A (en) Method for continuously casting steel
JP3503552B2 (en) Seamless pipe manufacturing method
JP3648825B2 (en) Manufacturing method of continuous cast round slab for seamless steel pipe manufacturing with good workability
JP3214379B2 (en) Manufacturing method of continuous cast slab for seamless steel pipe
JPH09201601A (en) Production of continuously cast round billet for producing seamless steel pipe having good workability
JP3533834B2 (en) Method for producing round billet for producing Cr-containing seamless steel pipe with good workability
JP3319379B2 (en) Continuous casting method of steel billet
JP3104627B2 (en) Unsolidified rolling production method of round billet
JPH09174212A (en) Production of continuously cast billet for seamless steel pipe
JP5387205B2 (en) Continuous casting method and continuous casting equipment for round slab
JPH057990A (en) Manufacture of round billet for seamless steel pipe
JP5973703B2 (en) Seamless pipe manufacturing method
JP3275828B2 (en) Continuous casting method
JPH10156495A (en) Method for continuously casting round cross sectional cast billet
JPH09174211A (en) Production of continuously cast billet for seamless steel pipe
JPH0999349A (en) Method for continuously casting round cast billet for bar steel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071108

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121108

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees