JPH03198964A - Method and apparatus for executing rolling reduction to strand in continuous casting - Google Patents
Method and apparatus for executing rolling reduction to strand in continuous castingInfo
- Publication number
- JPH03198964A JPH03198964A JP33693689A JP33693689A JPH03198964A JP H03198964 A JPH03198964 A JP H03198964A JP 33693689 A JP33693689 A JP 33693689A JP 33693689 A JP33693689 A JP 33693689A JP H03198964 A JPH03198964 A JP H03198964A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- strand
- stage
- continuous casting
- rolling reduction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005096 rolling process Methods 0.000 title claims abstract description 50
- 230000009467 reduction Effects 0.000 title claims abstract description 40
- 238000009749 continuous casting Methods 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims description 13
- 239000002184 metal Substances 0.000 claims abstract description 13
- 229910052751 metal Inorganic materials 0.000 claims abstract description 13
- 238000005266 casting Methods 0.000 claims abstract description 9
- 238000005204 segregation Methods 0.000 abstract description 7
- 238000007711 solidification Methods 0.000 abstract description 5
- 230000008023 solidification Effects 0.000 abstract description 5
- 229910000831 Steel Inorganic materials 0.000 abstract description 4
- 239000010959 steel Substances 0.000 abstract description 4
- 238000005482 strain hardening Methods 0.000 abstract description 3
- 230000002250 progressing effect Effects 0.000 abstract 2
- 230000002265 prevention Effects 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Landscapes
- Continuous Casting (AREA)
Abstract
Description
本発明は、金属とくに鋼の連続鋳造において、偏析を軽
減し空洞の発生を防止するために行なう圧下技術の改良
に関する。
[従来の技術]
鋼の連続鋳造においては、水冷モールドを出た鋳造スト
ランドの内部で溶融金属の凝固が終了する直前に、若干
の圧下を行なって中心偏析の軽減や空洞の発生を防止す
ることが行なわれている。
凝固に伴う体積の収縮を補うだけであれば、圧下率は3
%程度で足り、このような圧下を軽圧下とよび、これを
超える高率の圧下を大圧下とよんでいる。 いずれの場
合も、圧下手段としてはピンチロールおよび圧下ロール
セグメントを用いることが多いが、大圧下は油圧プレス
を用いることもある。
従来の圧下は、鋳造ストランドに対してもっばら一方向
に力を加えて行なうものであった。 最も一般的な連続
鋳造法であるわん曲型ストランドの場合に例をとると、
水冷モールドで一定の曲率半径を与えられて鋳造された
ストランドは、わん曲して進み水平に近づくあたりでピ
ンチロールの列を通過する間に圧下され、最後に直線状
に形状を矯正されてカッターに向う。 ピンチロールは
各段とも軸を水平に配置したものであって、ストランド
の下側のロールは位置が固定されていて、上側のロール
は可変に設けである。
ピンチロールで比較的高率の圧下を行なおうとするとき
は、多段の圧下をすればよいが、加工硬化の問題があり
、必ずしも容易ではない。
連続鋳造の対象とする鋼が、たとえば線材のように細く
加工するものであれば、ストランドから製品までの圧延
量をできるだけ小さくできるよう、小断面のストランド
に連続鋳造をすることか、原理的には得策なはずである
。 ところが、連続鋳造にとっては大断面のストランド
に鋳造する方が、作業性および品質の面から有利である
。 大断面の方が水冷モールド内の湯面を安定させるこ
とが容易であるし、スラグの巻き込み、表層直下の介在
物、あるいはブローホールも少い。 従って、連続鋳造
は大断面で行ない、高率の圧下を行なって所望の小断面
鋳片を提供できるようにすることが望ましい。 また、
連続鋳造の多くは正方形を含む長方形の断面のストラン
ドを鋳造するように行なわれていて、円形(それに近い
へ角形以上の多角形を含む)断面をもつストランドの鋳
造は、あまり一般的ではない。 これには、主として得
られた鋳片のハンドリングの問題、たとえば円形断面の
ものは転りやずいとか、以後の圧延で角形断面にするこ
とが多いとかが、理由としてあげられる。 しかし、鋳
造そのものの観点からいえば、円形断面が好ましい。
溶湯の電磁攪拌(水冷モールド内と二次冷却帯における
ものの両方に関して)の効果は円形のモールドの方が高
く、同じ消費電力で長方形断面の場合の3倍といわれる
ほどであって、偏析の軽減が容易にできるからである−
6(発明が解決しようとする課題]
本発明の目的は、連続鋳造における上記した技術の現状
にかんがみ、鋳造ストランドの圧下をより効果的に行な
うとともに、操業上有利な大断面のストランドから所望
の小断面の鋳片を製造することや、品質面で右利な円形
断面のストランドから角形断面をもった鋳片を得ること
の可能な、連続鋳造のストランド圧下方法およびその実
施に使用する装置を提供することにある。The present invention relates to improvements in rolling techniques for reducing segregation and preventing the formation of cavities in continuous casting of metals, particularly steel. [Prior Art] In continuous casting of steel, a slight reduction is performed immediately before solidification of the molten metal inside the cast strand exiting the water-cooled mold to reduce center segregation and prevent the formation of cavities. is being carried out. If only to compensate for the volumetric shrinkage due to solidification, the reduction rate is 3.
% is sufficient, and such a reduction is called a light reduction, and a high reduction exceeding this is called a large reduction. In either case, pinch rolls and reduction roll segments are often used as rolling means, but a hydraulic press may be used for large reductions. Conventional rolling involves applying force to the cast strand in only one direction. For example, in the case of curved strands, which is the most common continuous casting method,
The strand is cast in a water-cooled mold with a constant radius of curvature, then curves until it becomes horizontal, where it is rolled down while passing through a row of pinch rolls, and finally straightened into a straight line and cut into a cutter. heading to The pinch rolls have their shafts arranged horizontally in each stage, with the rolls on the lower side of the strand being fixed in position, and the rolls on the upper side of the strand being variable. When attempting to perform a relatively high rolling reduction using pinch rolls, it is sufficient to carry out rolling reduction in multiple stages, but this is not always easy due to the problem of work hardening. If the steel to be continuously cast is to be processed into thin pieces, such as wire rods, it is possible in principle to continuously cast strands with a small cross section so that the amount of rolling from the strand to the product can be minimized. should be a good idea. However, for continuous casting, casting into a strand with a large cross section is more advantageous in terms of workability and quality. A large cross section makes it easier to stabilize the molten metal level in the water-cooled mold, and there are fewer slag entanglements, inclusions just below the surface layer, or blowholes. Therefore, it is desirable to carry out continuous casting with a large cross-section and to perform a high reduction rate so as to be able to provide the desired small-section slab. Also,
Continuous casting is mostly carried out to cast strands with rectangular cross-sections, including squares, and casting strands with circular cross-sections (including hexagonal or larger polygons) is less common. The main reasons for this are problems with the handling of the resulting slabs, such as the fact that slabs with a circular cross section tend to roll, and that they are often rolled into a square cross section during subsequent rolling. However, from the standpoint of casting itself, a circular cross section is preferred.
The effect of electromagnetic stirring of the molten metal (both in the water-cooled mold and in the secondary cooling zone) is higher in circular molds, said to be three times as effective as in rectangular cross-section molds for the same power consumption, reducing segregation. This is because it can be easily done.
6 (Problems to be Solved by the Invention) In view of the above-mentioned current state of the technology in continuous casting, the purpose of the present invention is to more effectively reduce the reduction of the cast strand, and to form a desired material from a strand with a large cross section that is advantageous for operation. We have developed a continuous casting strand reduction method and the equipment used to carry out the process, which enables the production of slabs with small cross sections and the production of slabs with a square cross section from strands with a circular cross section, which are advantageous in terms of quality. It is about providing.
本発明の連続鋳造のストランド圧下方法は、代表的な態
様を第1図および第2図にポリ−ように、連続鋳造され
て水冷モールド(1)を出た鋳造ストランド(5A、5
B>に対し、その内部の溶融金属(6)の凝固が終了す
る直前に圧下を行なう連続鋳造の方法において、圧下の
方向をストランドの進行につれて直角に変え、少くとも
2回の圧下を行なうことを特徴とする。
上記の方法を実施する本発明の連続鋳造のストランド圧
下装置は、水冷モールド(1)から出る鋳造ストランド
(5A、5B>を、ストランド内部の溶融金属(6)の
凝固が終了する直前に圧下する手段(2)をそなえた連
続鋳造の装置において、圧下手段(2)が少くとも2組
あり、圧下の方向が互いに直角となるように設けたこと
を特徴とする。
第1図に示した例は、鋳造ストランド(5A)がわん曲
型であって、水平に近づく位置においてこれを圧下した
のち直線状に矯正をする操作を伴っている。 そこでは
4段のピンチロール(21゜22.23.3>を使用し
、第1段(21)はロール軸を水平に設けて縦方向の圧
下を行ない、第2段(22)はロール軸を垂直に設けて
横方向の圧下を、そして第3段(23)は再び水平に設
けて縦方向の圧下を、それぞれ行なって鋳片(7A)と
するように構成しである。 続くロール(3)もロール
軸を水平に設けであるが、これはストランドを直線状に
するための矯正ロールである。
軸を水平にした各ロールは、ストランドの下側のものは
その位置を固定されていて、上側のものは可変である。
第2図に示した例においては、鋳造ストランド(5B)
が円形断面をもち、垂直に下降する間に上部のピンチロ
ール(21,22,23,24)により軽圧下され、さ
らに下部のロール(41゜42)からなるピンチロール
(4)により圧下されて、小径の角形断面をもった鋳片
(7B)となる。 この装置では4段のピンチロールの
うら前半2段(21,22)と(多生2段(23,24
>との圧下方向を90°変えている。 第1図のように
各段ごとに圧下方向を変える態様に限らず、第2図に示
した態様もまた、本発明に含まれる。
大断面の鋳造ストランドから小径の鋳片を得ることは、
第2図に示したように軽圧下に続いて別の圧下ロールを
用いて実施するのがよいが、第1図の各圧下ロールの圧
下率を高めることによっても可能である。
[作 用]
第1図に示した態様において、鋳造ストランド(5A)
は、点Aにおいては第3図Aに断面を示すように内部に
溶融金属(6)があり、その凝固が終了する直前の点B
において第1段のロール(21)による圧下を受け、第
3図Bに示すようになる。 続いて点Cにおいて、第2
段のロール(22)による上記と直角方向の圧下を受け
、第3図Cに示すように変形し、さらに点りにおいて第
3図りに示すようになる。 この段階では、未凝固の部
分はほとんど消滅する。
ロールの圧下を毎回異なる方向に行なうことは、前記し
た加工硬化による圧下の困難を緩和するとともぐ、未凝
固部分への圧縮力の作用を有利にするから、圧下をより
効果的に行なえ、中心偏析の軽減や空洞発生の防止とい
う目的にかなう。 縦方向および横方向のロール間隔を
調節することにより、長辺、短辺とも所望のサイズの鋳
片をつくることができる。
第2図に示した態様においては、円形断面をもった鋳造
ストランド(5B)が、上部ロール(21,22,23
,24)による軽圧下と下部ロール(41,42>によ
る二次圧下とによって、小径の角形断面をもった鋳片(
7B)に変化する。
その状況は第4図に示すとおりであって、第2図のa、
b、cおよびd点におけるストランド(5B)の形状は
、ロールがある場合はそれらとともに示せば、それぞれ
第4図a、b、cおよびdに示すとおりであり、鋳片(
7B)の断面形状は第4図eに示すとおりである。 第
1図の場合に得られた作用が第2図の態様でも実現して
いることは、いうまでもないであろう。The continuous casting strand reduction method of the present invention shows typical aspects of the cast strands (5A, 5
B>, in a continuous casting method in which rolling is performed immediately before the solidification of the molten metal (6) inside the metal is completed, the direction of rolling is changed at right angles as the strand progresses, and rolling is performed at least twice. It is characterized by The continuous casting strand reduction device of the present invention, which implements the above method, reduces the cast strand (5A, 5B) coming out of the water-cooled mold (1) immediately before the molten metal (6) inside the strand finishes solidifying. A continuous casting apparatus equipped with means (2) is characterized in that there are at least two sets of rolling means (2), and the rolling directions are arranged at right angles to each other.The example shown in FIG. The casting strand (5A) has a curved shape, and involves an operation of rolling it down at a position approaching horizontality and then straightening it into a straight line. .3>, the first stage (21) has a horizontal roll axis and performs vertical rolling, the second stage (22) has a vertical roll axis and performs horizontal rolling. The third stage (23) is again set horizontally and is configured to perform longitudinal reduction respectively to form a slab (7A).The following roll (3) is also set horizontally with its roll axis, This is a straightening roll for straightening the strands. Each roll with a horizontal axis has a fixed position on the lower side of the strand, and a variable position on the upper side. Fig. 2 In the example shown in, the cast strand (5B)
has a circular cross section, and while descending vertically, it is lightly rolled down by upper pinch rolls (21, 22, 23, 24), and further rolled down by pinch rolls (4) consisting of lower rolls (41° 42). , it becomes a slab (7B) with a small diameter rectangular cross section. In this device, the back half of the four-stage pinch roll has two stages (21, 22) and two stages (23, 24).
>The rolling direction is changed by 90 degrees. The present invention is not limited to the mode in which the rolling direction is changed for each stage as shown in FIG. 1, but also the mode shown in FIG. 2. Obtaining small diameter slabs from large cross-section casting strands is
As shown in FIG. 2, it is preferable to carry out the light reduction using another reduction roll following the light reduction, but it is also possible to carry out the reduction by increasing the reduction ratio of each reduction roll shown in FIG. [Function] In the embodiment shown in Fig. 1, the cast strand (5A)
At point A, there is molten metal (6) inside as shown in the cross section in Figure 3A, and at point B just before the solidification of the metal is completed,
At this point, it is rolled down by the first stage roll (21), and becomes as shown in FIG. 3B. Then, at point C, the second
When it is rolled down in a direction perpendicular to the above direction by the corrugated rolls (22), it is deformed as shown in FIG. At this stage, most of the unsolidified portion disappears. Rolling down the rolls in different directions each time not only alleviates the difficulty of rolling down due to work hardening mentioned above, but also makes it more advantageous to apply compressive force to the unsolidified area, making it possible to roll the rolls more effectively. This serves the purpose of reducing segregation and preventing the formation of cavities. By adjusting the roll spacing in the vertical and horizontal directions, slabs with desired sizes on both long and short sides can be produced. In the embodiment shown in FIG.
, 24) and secondary rolling by the lower rolls (41, 42>), a slab with a small diameter rectangular cross section (
7B). The situation is as shown in Figure 4, with a,
The shapes of the strand (5B) at points b, c and d are as shown in Figure 4 a, b, c and d, respectively, with rolls if any, and the shape of the strand (5B) is as shown in Figure 4 a, b, c and d, respectively,
7B) is as shown in FIG. 4e. It goes without saying that the effect obtained in the case of FIG. 1 is also realized in the embodiment of FIG.
本発明に従えば、連続鋳造のストランド圧下を、従来よ
り効果的に行なうことができ、中心偏析の軽減や空洞の
発生防止に役立てることができる。
圧下の度合を調節して全体として高率にする態様による
ときは、鋳造それ自体は右利な大断面ストランドで行な
い、一方、用途に応じて所望の小径の鋳片を得ることが
できる。
同様に、これも連続鋳造技術上好都合な円形の断面でス
トランドをつくり、圧下により角形とすることで、品質
のすぐれた鋳片を得ることができる。According to the present invention, strand reduction in continuous casting can be performed more effectively than before, and can be useful for reducing center segregation and preventing the formation of cavities. If the degree of reduction is adjusted to achieve a high overall yield, the casting itself can be carried out with a large cross-section strand, while a slab of the desired small diameter can be obtained depending on the application. Similarly, a strand of excellent quality can be obtained by forming a strand with a circular cross section, which is advantageous in terms of continuous casting technology, and making it into a square shape by rolling.
第1図および第2図は、ともに本発明の連続鋳造のスト
ランド圧下の態様を説明するための、装置主要部の側面
図であって、第1図はわん凸型ストランドの場合、第2
図は垂直型ストランドの場合をそれぞれ示す。
第3図A−Dは、本発明に従う圧下を受ける鋳造ストラ
ンドの断面形状と、ピンチロールの配置とを示すもので
あって、A、B、CおよびDは第1図の対応するA、B
、CおよびDの各点における断面図である。
第4図a−eは、同じく本発明に従う圧下を受ける鋳造
ストランドの断面形状とピンチロールの配置とを示すも
のであって、a、b、c、dおよびeの各図は、やはり
第2図の対応するa、b。
c、dおよびe点に対応する。
1・・・水冷モールド
2・・・圧下ロール
21.22.23・・・軽圧下ロール
3・・・矯正ロール
4 (41,42>・・・圧下ロール
5A・・・鋳造ストランド(わん凸型)5B・・・鋳造
ストランド(垂直型)
6・・・未凝固部分
7A、7B・・・鋳 片1 and 2 are side views of the main parts of the apparatus for explaining the aspect of strand reduction in continuous casting of the present invention, and FIG.
The figures show the case of vertical strands. 3A-3D show the cross-sectional shape of a cast strand subjected to rolling according to the present invention and the arrangement of pinch rolls, with A, B, C and D corresponding to A, B of FIG.
, C and D are cross-sectional views. Figures 4a-e also show the cross-sectional shape and pinch roll arrangement of a cast strand subjected to rolling according to the invention; Figures a, b, c, d and e also show the second Corresponding a, b in the figure. Corresponding to points c, d and e. 1... Water-cooled mold 2... Reduction roll 21. 22. 23... Light reduction roll 3... Straightening roll 4 (41, 42>... Reduction roll 5A... Casting strand (dog-convex type) ) 5B... Cast strand (vertical type) 6... Unsolidified portion 7A, 7B... Cast piece
Claims (6)
ドに対し、その内部の溶融金属の凝固が終了する直前に
圧下を行なう連続鋳造の方法において、圧下の方向をス
トランドの進行につれて直角に変え、少くとも2回の圧
下を行なうことを特徴とする連続鋳造のストランド圧下
方法。(1) In a continuous casting method in which a cast strand that has been continuously cast and exits a water-cooled mold is rolled down just before the molten metal inside the strand finishes solidifying, the direction of rolling is changed perpendicularly as the strand progresses; A continuous casting strand rolling method characterized by performing rolling at least twice.
く位置においてこれを圧下したのち直線状に矯正する操
作を伴う連続鋳造において、少くとも4段のピンチロー
ルを使用し、第1段は縦方向、第2段は横方向、第3段
は再び縦方向と方向を変えて圧下を行ない、最終段で矯
正を行なう請求項1の圧下方法。(2) In continuous casting, where the casting strand is curved and the strand is rolled down at a position approaching horizontality and then straightened into a straight line, at least four stages of pinch rolls are used, and the first stage is 2. The rolling method according to claim 1, wherein the rolling is performed in the longitudinal direction, the second stage is the horizontal direction, and the third stage is the vertical direction again, and the final stage is where the straightening is performed.
圧下の繰り返しによりこれをほぼ長方形の断面に変形す
る請求項1または2の圧下方法。(3) The cast strand has a circular cross section,
3. The rolling method according to claim 1 or 2, wherein said rolling is transformed into a substantially rectangular cross section by repeated rolling.
を与えるように、圧下の度合を調節して実施する請求項
1ないし3のいずれかの圧下方法。(4) The rolling method according to any one of claims 1 to 3, wherein the rolling is carried out by adjusting the degree of rolling so as to give a slab of a desired small cross-sectional size by repeated rolling.
ンド内部の溶融金属の凝固が終了する直前に圧下する手
段をそなえた連続鋳造の装置において、圧下手段が少く
とも2組あり、圧下の方向が互いに直角となるように設
けたことを特徴とする連続鋳造のストランド圧下装置。(5) In a continuous casting device equipped with a means for rolling down the cast strand coming out of the water-cooled mold just before the molten metal inside the strand finishes solidifying, there are at least two sets of rolling means, and the rolling directions are perpendicular to each other. A continuous casting strand rolling device characterized by being installed so that.
を圧下および矯正するための少くとも4段のピンチロー
ルをそなえ、ピンチロールの第1段および第3段はロー
ル軸を水平に、第2段および第4段は垂直に設けてあり
、水平に設けたロールのうちストランドの下側のものは
その位置が固定され、上側のものは可変である請求項5
の圧下装置。(6) Equipped with at least four stages of pinch rolls for rolling down and straightening the curved cast strand coming out of the water-cooled mold, the first stage and third stage of the pinch rolls have their roll axes horizontally, and the second stage and the fourth stage is provided vertically, and among the horizontally provided rolls, the lower part of the strand is fixed in position, and the upper part is variable.
Reduction device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33693689A JPH03198964A (en) | 1989-12-26 | 1989-12-26 | Method and apparatus for executing rolling reduction to strand in continuous casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33693689A JPH03198964A (en) | 1989-12-26 | 1989-12-26 | Method and apparatus for executing rolling reduction to strand in continuous casting |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03198964A true JPH03198964A (en) | 1991-08-30 |
Family
ID=18304003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33693689A Pending JPH03198964A (en) | 1989-12-26 | 1989-12-26 | Method and apparatus for executing rolling reduction to strand in continuous casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03198964A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09300006A (en) * | 1996-05-15 | 1997-11-25 | Nkk Corp | Manufacture of seamless steel tube difficult to be worked |
US5832984A (en) * | 1991-11-26 | 1998-11-10 | Mannesmann Aktiegesellschaft | Method of producing long steel products |
JP2001205407A (en) * | 2000-01-25 | 2001-07-31 | Nippon Steel Corp | Method for continuous casting of billet |
EP2543454A1 (en) * | 2011-07-08 | 2013-01-09 | Siemens Aktiengesellschaft | Process and apparatus for the manufacturing of long steel products in a continuous casting |
US20160096219A1 (en) * | 2013-06-20 | 2016-04-07 | Nippon Steel & Sumitomo Metal Corporation | Method for continuously casting slab |
-
1989
- 1989-12-26 JP JP33693689A patent/JPH03198964A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5832984A (en) * | 1991-11-26 | 1998-11-10 | Mannesmann Aktiegesellschaft | Method of producing long steel products |
JPH09300006A (en) * | 1996-05-15 | 1997-11-25 | Nkk Corp | Manufacture of seamless steel tube difficult to be worked |
JP2001205407A (en) * | 2000-01-25 | 2001-07-31 | Nippon Steel Corp | Method for continuous casting of billet |
EP2543454A1 (en) * | 2011-07-08 | 2013-01-09 | Siemens Aktiengesellschaft | Process and apparatus for the manufacturing of long steel products in a continuous casting |
WO2013007469A1 (en) * | 2011-07-08 | 2013-01-17 | Siemens Ag | Process and apparatus for the manufacturing of long steel products in a continuous casting plant |
US20140166231A1 (en) * | 2011-07-08 | 2014-06-19 | Siemens Aktiengesellschaft | Process and apparatus for the manufacturing of long steel products in a continuous casting plant |
CN108326247A (en) * | 2011-07-08 | 2018-07-27 | 普锐特冶金技术德国有限公司 | Technique and equipment for manufacturing the long material product of metal in casting apparatus |
US20160096219A1 (en) * | 2013-06-20 | 2016-04-07 | Nippon Steel & Sumitomo Metal Corporation | Method for continuously casting slab |
US9409229B2 (en) * | 2013-06-20 | 2016-08-09 | Nippon Steel & Sumitomo Metal Corporation | Method for continuously casting slab |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4493363A (en) | Method at continuous casting of steels and metal alloys with segregation tendency and apparatus for carrying out the method | |
KR100295954B1 (en) | Manufacturing method of long steel | |
JPH03198964A (en) | Method and apparatus for executing rolling reduction to strand in continuous casting | |
US3978909A (en) | Mold with convex sidewalls for continuous casting machines | |
JPH03155441A (en) | Vertical continuous casting method and apparatus thereof | |
JP2983152B2 (en) | Continuous casting method and continuous casting equipment | |
US3900066A (en) | Apparatus for continuous casting a metal strand shaped to provide concave surfaces | |
US5348075A (en) | The manufacture of thin metal slab | |
JP3104635B2 (en) | Manufacturing method of round billet slab by continuous casting | |
AU639332B2 (en) | An as-continuously cast beam blank | |
JPS63215353A (en) | Production of continuously cast billet | |
US20080041554A1 (en) | Method and casting machine for production of casting bars in the shape of billets or blocks | |
US3918514A (en) | Method of bending or straightening a continuously cast metal strand with controlled cooling | |
JP3465578B2 (en) | Method of manufacturing rectangular slab by continuous casting | |
JP3677572B2 (en) | Continuous casting method of steel | |
US3580325A (en) | Continuous casting machine for slabs | |
RU2145267C1 (en) | Method for making continuously cast billets | |
JP2949711B2 (en) | Continuous casting roll for unsolidification reduction | |
JPH0732108A (en) | Production of wide and thin cast billet and continuous casting equipment therefor | |
RU2044598C1 (en) | Method of manufacturing continuous billet | |
JP3317260B2 (en) | Manufacturing method of round billet slab by continuous casting | |
JPH0335802A (en) | Production of rough shape billet for shape steel | |
JPH11267804A (en) | Method of producing round billet cast piece by continuous casting | |
JPH01258801A (en) | Method for forging round shaped continuous cast billet | |
JP2690152B2 (en) | Rolling method of coarse billet for thick flange H-section steel |