JPS63215353A - Production of continuously cast billet - Google Patents

Production of continuously cast billet

Info

Publication number
JPS63215353A
JPS63215353A JP4703887A JP4703887A JPS63215353A JP S63215353 A JPS63215353 A JP S63215353A JP 4703887 A JP4703887 A JP 4703887A JP 4703887 A JP4703887 A JP 4703887A JP S63215353 A JPS63215353 A JP S63215353A
Authority
JP
Japan
Prior art keywords
section
rolling
cross
continuously cast
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4703887A
Other languages
Japanese (ja)
Other versions
JPH0818116B2 (en
Inventor
Yoshikazu Takai
高井 慶和
Tadamasa Yajima
矢島 忠正
Shizunori Hayakawa
早川 静則
Masayuki Yamamoto
雅之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP62047038A priority Critical patent/JPH0818116B2/en
Publication of JPS63215353A publication Critical patent/JPS63215353A/en
Publication of JPH0818116B2 publication Critical patent/JPH0818116B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the treatment of a cast billet and to improve the quality by executing the casting by a water cooling mold having round shape or polygonal shape in the cross section and also cutting the continuously cast material after executing rollingreduction. CONSTITUTION:The mold having round shape or polygonal shape in the cross section is used as the water cooling mold 6 for continuous casting machine and roll groups I, II, III for rolling-reduction are arranged one after another. Then, the roll groups I, II alternately arrange vertical mill and horizontal mill one after another and apply the prescribed quantity of the rolling-reduction to the continuously cast material 2. In this way, the continuously cast material 2 having round shape or polygonal shape is reduced by rolling before completion of solidification in the center part, and the development of center segregation and cavity are prevented. The continuously cast material 2, reduced by rolling and straightened by the roll group III, is cut at the prescribed length, to obtain the cast billet 4. As the cast billet 4 is formed into the square shape, the treatment is facilitated and the development of cavity and center segregation are prevented, and the quality is improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

凡皿り亘力 Ability to excel in ordinary dishes

【産業上の利用分野】[Industrial application field]

本発明は、金属とくに鋼の連続鋳造による鋳片の製造方
法に関する。
The present invention relates to a method for manufacturing slabs by continuous casting of metal, particularly steel.

【従来の技術】[Conventional technology]

鋼の鋳造技術として連続鋳造法が登場して以来、その高
い生産性が評価され、在来の鋼塊鋳造法に代って広く普
及するに至った。 連続鋳造には、中心部に偏析やキャ
ビティが生じやすいという問題があるが、技術の進歩に
より軽減されつつはある。 すなわち、上記偏析やキャ
ビティを改善する方法として、鋳型内N磁撹拌やストラ
ンド電磁撹拌の技術、おるいはそれらの組み合わせが採
用されている。 鋳型内電磁撹拌を行なう場合、潤滑パウダーの巻込みを
避けて撹拌効果を最大限に発揮させるためには、水冷モ
ールドの断面形状を円形やへ角形などの多角形にするこ
とが望ましい。 しかし、円形やへ角形の断面形状をもった鋳片は転がり
やすいため、連続鋳造工程以俊の鋳片の整備や圧延時の
取扱いに困難がおる。 発明者らは、断面が円形の連鋳
片を試作してみたが、圧延加工に先立つ加熱に際して、
加熱炉内で鋳片がころがるというトラブルを経験した。  鋳片が炉壁側へ寄りすぎたり、鋳片どうじが接触して
所望の均熱ができないばかりか、炉から抽出できないと
いう事態にもなる。 別の問題として、電w1撹拌を行なう連鋳法によっても
、中心部のキャビティの発生を皆無にすることは著しく
困難である。 キャビティのある鋳片をそのまま加熱す
ると、浸入した空気により軸方向に沿う内部酸化が進行
し、酸化された部分は圧延後に切り捨てるはかなく、歩
留り低下をはじめとするマイナスが多い。酸化の防止を
意図して、加熱前に端面を溶接する、いわば目つぶしを
行なうことも試みられているが、まだ高温の鋳片を対象
とする悪環境下の仕事であるし、作業の能率はよくない
Since the advent of the continuous casting method as a steel casting technology, its high productivity has been praised and it has come to be widely used in place of the conventional steel ingot casting method. Continuous casting has problems in that segregation and cavities tend to occur in the center, but these problems are being alleviated with advances in technology. That is, as a method for improving the above-mentioned segregation and cavities, techniques such as in-mold N magnetic stirring, strand electromagnetic stirring, or a combination thereof are employed. When performing in-mold electromagnetic stirring, in order to avoid entrainment of lubricating powder and maximize the stirring effect, it is desirable that the cross-sectional shape of the water-cooled mold be polygonal, such as circular or hexagonal. However, slabs with a circular or hexagonal cross-sectional shape tend to roll, making it difficult to maintain the slabs during the continuous casting process and handle them during rolling. The inventors tried making a continuous cast slab with a circular cross section, but during heating prior to rolling,
We experienced a problem with slabs rolling in the heating furnace. Not only will the slabs be too close to the furnace wall, or the slabs may come into contact with each other, making it impossible to achieve the desired uniform heating, but also making it impossible to extract the slabs from the furnace. Another problem is that even with the continuous casting method using electric w1 stirring, it is extremely difficult to completely eliminate the formation of cavities in the center. If a slab with cavities is heated as it is, internal oxidation along the axial direction will proceed due to the infiltration of air, and the oxidized portion will be cut off after rolling, resulting in many negative effects such as a decrease in yield. Attempts have been made to weld the end faces before heating to prevent oxidation, so to speak, but the work is still done in harsh environments with hot slabs, and the efficiency of the work is low. not good.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

本発明の目的は、上記した事情にかんがみ、円形や多角
形の水冷モールドを使用しても、鋳片整備工程や加熱工
程におけるハンドリングに支障がなく、しかも、鋳片の
中心キャビティの問題を解決した鋳片の製造技術を提供
することにある。 近年ますますきびしくなる鋼材の品質向上の要求にこた
え、偏析をざらに低減した連鋳片の製造方法を提供する
こともまた、本発明の目的に含まれる。 及旦Ω膳羞 [問題点を解決するための手段] 本発明の連続鋳造鋳片の製造方法は、第1図に示すよう
に、断面が円形または多角形の水冷モールドに金属溶湯
]とくに溶鋼を注入して連続的に鋳造を行ない、得られ
た断面が円形または多角形の連鋳材2を、ロール7.8
または9で圧下して圧下材3としたのち、所定の長さに
切断して鋳片4を得ることからなる。 連鋳材は、断面が第2図に示すように円形の連鋳材2A
T:″めればロール圧下によって、その断面が四角形の
圧下材3Aにするとよい。 断面が第3図に示すような
多角形の連鋳材2Bは、ロール圧下によって、断面の角
数を減じ、図示したようにその断面が実質上四角形で必
る圧下材3Bにすることが適当である。 いずれにして
も、加熱炉への出、し入れおよび炉内での取扱いに好都
合な、転がり難い、重心の低い断面形状とする。4ここ
で多角形とは、いうまでもなく四角形を超える五角形以
上を意味するが、水冷モールドの製造の都合などからい
って、実際上は六角形以上、たとえば第3図に示したよ
うなへ角形が好適であろう。 十人角形またはそれ以上
の多角形は、実質的に円形に近い。 圧下ロールは、その目的によって、第2図に示したよう
なフラットロール7A (8A、9A>と、第3図にみ
るとおりのカリバーロール7B (88゜9B>を選択
する。 カリバーロールは、へ角形→四角形のように異
なる形状のカリバーを組み合わせてもよいし、フラット
ロールの位置も、水平(Hミル)、垂直(■ミル)、ざ
らには斜方向のいずれでもよく、それらの二双上の組み
合わせもあり得る。 連鋳材2の圧下のタイミングは、水冷モールドの下のガ
イドロールを出た後、矯正ロールによりわん曲を矯正さ
れて鋳片に切断されるまでの間、任意にえらぶことかで
きる。 連鋳材の中心部が未凝固のうちに圧下すれば、
中心部のキャビティの発生を防ぐだけでなく、中心偏析
が実質上解消できる。 このことは、後記する実施例の
データを示した第4図のグラフをみれば明らかである。 一方、中心部が凝固した後に圧下すれば、中心偏析に対
してはほとんど効果ないが、中心キャビティの発生は防
止できる。 第1図で符号■で示した第1群のロール位置は前者の場
合を意図したものであり、■で示した第2群のロールは
、優者を実施するための位置でおる。 符号■で示した
ロール群は矯正ロールであって、鋳片の曲りを直すもの
であるが、中心部凝固復の圧下の役割をすることもある
。 ロール圧下は、1段より2〜3段にわたって行なう方が
よい(とくに断面を丸→四角に変える場合)から、一部
のロールは中心部が未凝固のうちに圧下刃を加え、他の
ロールは凝固したのち圧下刃を加えることになる場合も
考えられる。 もちろんそれで支障はないばかりか、ま
ず前半のロールで中心偏析を解消し、後半のロールで加
熱炉への装入をはじめとする取扱いに好都合な形に成形
する、といったことが可能になる。 対象とする鋼の性
質、断面サイズおよび形状に応じて、また設備の構成の
難易を考えて、圧下を行なう位置を決定すればよい。 
断面がたとえば直径150mのような小型のものは、中
心偏析が少いから、第2群のロールだけで足りるでおろ
う。 圧下量は、合計で数〜10%程度で足りる。 [作 用] 本発明の連続鋳造鋳片の製造方法は、転がりやすいとい
う円形や多角形の材料のもつ欠点を、ロール圧下によっ
て断面を角形またはそれに近いものに変えることで解消
している。 ロール圧下により、鋳片中心のキャビティの発生が防止
でき、かつ中心偏析も高度に解消できる。 圧下を行なうの゛は連鋳材がまだ高温にあって変形抵抗
が小さい段階であるから、その所要動力は比較的小さく
て済む。 比較的小さな圧下量で中心キャビティをなくすことがで
きる理由は、連続鋳造に直結した圧下を行なうとき、連
鋳材はその内部が外部に比較して高温であり、圧下刃は
内部において大いに作用し、キャビティが容易に圧着し
て消滅するためと考えられる。 一方、いったん鋳片に
してから加熱して圧下する従来の方法では、材料の内部
と外部とで温度差はほとんどなく、圧下を加えたときに
圧下率は表層部で大きく内部では小さいから、中心キャ
ビティを消滅させるには、より大きな圧下量を必要とす
る。 この事実は、第5図のデータにより明らかであり、図の
グラフは内部の未圧着にもとづく欠陥が、本発明によれ
ば従来より低い鍛錬比で解消することを示している。 [実施例1] 0.45%C−0,25%5i−0,75%Mn−残部
Feからなる組成の鋼を、直径370Mの断面円形の水
冷モールドで連続鋳造した。 第1図における工および■の位置に、下記のカリバーロ
ールを設けて連鋳材を順次変形し、−辺300mの正方
形断面の鋳片に仕上げた。 群    ロ   −   /L’    JLEμk
D−)I乙旦シケエ 第1段(Vミル)   1%  
 45を第2段(Hミル)   1%   45を第3
段(Vミル)1,5%   45t■ 第4段(Hミル
)  1゜5%   50を第5段(■ミル)   2
%   55を第6段(Hミル)   2%   55
を圧下による表面の割れは認められなかった。 この鋳片が加熱炉内で転がるといったトラブルは、もち
ろんない。 得られた鋳片の切断面において、第4図に示すように、
中心から左右の両辺にわたる線上の諸点でサンプルを採
取し、C含有量を測定した。 比較のため、はぼ同じ仕
上り寸法の角形断面をもった水冷モールドで連続鋳造を
行ない、本発明で従う圧下を行なわなかった連鋳片につ
いても、切断面のC偏析をしらべた。 それらの結果を、あわせて第4図に示す。 図のグラフ
の縦軸は、レードル中すなわち溶鋼のC含有層C8に対
する鋳片のC含有量Cの比である。 [実施例2] 実施例1と同じ鋼を対象に、径160#の円形断面のモ
ールドを使用して連鋳材をつくった。 第1図で■の位置で下記のようにロール圧下を加え、−
辺134!rI!r1の正方形の鋳片とした。 ロ   −   ル    圧 下 量 旦:ゴロL力
第1段 カリバーロール  2%   15を第2段 
カリバーロール  2%   15を第3段 カリバー
ロール  2%   15tこの場合も、圧下による表
面および内部の割れは、観察されなかった。 ロール圧
下が連鋳材中心部の凝固完了後でおるため、中心偏析は
とりたてて改善されていないが、中心キャビティは顕著
に改善されていた。 R里ユ四ス 本発明に従って連続鋳造の鋳片製造を行なうことにより
、最終的に得られた鋳片は、中心にはキャビティが存在
せず、キャビティの存在がひきおこす酸化の問題はもと
もとない。 また、とくに中心部の凝固完了前に圧下し
た場合は中心偏析が大いに改善されるから、きびしい品
質規格に合格することが容易である。 たとえば、焼入
性に最も大きな影響を与えるC偏析を少なくすることに
より、焼入性のバラツキがもたらす歪みは著しく軽減さ
れる。 いうまでもなく、鋳片の最終形態を断面が四角形のよう
な転がり難い形とすることによって、加熱炉への出入を
はじめとする取扱いに好都合となり、従って所望の均熱
が行なわれ、品質要求にこたえることがいっそう容易に
なる。 ざらに、本発明の製造方法によれば、同一断面積の水冷
モールドを用いて得られる鋳片のサイズは、従来方法に
よる場合と比較して、より大きくできる。
In view of the above-mentioned circumstances, an object of the present invention is to solve the problem of the central cavity of the slab without any problem in handling during the slab preparation process or heating process even if a circular or polygonal water-cooled mold is used. The objective is to provide a manufacturing technology for cast slabs. It is also an object of the present invention to provide a method for producing a continuous cast slab in which segregation is significantly reduced in response to the increasingly stringent demands for improving the quality of steel materials. [Means for solving the problem] As shown in Fig. 1, the method for producing continuous cast slabs of the present invention is to place molten metal into a water-cooled mold having a circular or polygonal cross section. The continuously cast material 2 having a circular or polygonal cross section is cast onto a roll 7.8.
Alternatively, the rolled material 3 is rolled in step 9, and then cut into a predetermined length to obtain the slab 4. The continuous casting material is a continuous casting material 2A with a circular cross section as shown in Fig. 2.
T: If the rolled material 3A is rectangular in cross section, it is best to roll it down by roll rolling to make a rolled material 3A with a rectangular cross section. Continuously cast material 2B, which has a polygonal cross section as shown in FIG. As shown in the figure, it is appropriate to use rolled material 3B whose cross section is substantially square.In any case, it is suitable to use rolled material 3B, which is convenient for taking in and out of the heating furnace and handling in the furnace, and does not easily roll. , the cross-sectional shape has a low center of gravity. 4. Polygon here means, of course, a pentagon or more that exceeds a quadrilateral, but due to the convenience of manufacturing water-cooled molds, it is actually a hexagon or more, such as A hexagonal shape as shown in Figure 3 would be preferred. A decagon or larger polygon is substantially circular. Depending on its purpose, the roll roll may be shaped like the one shown in Figure 2. Select flat roll 7A (8A, 9A>) and caliber roll 7B (88°9B> as shown in Figure 3. Caliber rolls may be a combination of calibers of different shapes, such as hexagonal → rectangular. The position of the flat rolls may be horizontal (H mill), vertical (■ mill), or even diagonally, and a combination of these is also possible.The timing of rolling down the continuous cast material 2 is as follows. After exiting the guide roll under the water-cooled mold, the curvature is corrected by the straightening roll and it can be selected arbitrarily until it is cut into slabs.While the center of the continuous cast material is still unsolidified. If you press down,
Not only can the formation of a cavity in the center be prevented, but also center segregation can be virtually eliminated. This is clear from the graph of FIG. 4, which shows data of Examples described later. On the other hand, if the core is rolled down after it has solidified, it will have little effect on center segregation, but it will prevent the formation of a center cavity. The first group of roll positions indicated by the symbol ■ in FIG. 1 are intended for the former case, and the second group of rolls indicated by the symbol ■ are at positions for executing the winner. The roll group indicated by the symbol ■ is a straightening roll, which corrects the bending of the slab, but may also play the role of rolling down to solidify and restore the center part. It is better to roll down the rolls in two or three stages rather than in one stage (especially when changing the cross section from round to square), so add the rolling blades to some rolls while the center is still unsolidified, and roll down the rolls in two or three stages. It is conceivable that a reduction blade may be added after the solidification. Of course, not only does this pose no problem, but it also makes it possible to first eliminate center segregation with the first half of the rolls, and then use the second half of the rolls to shape the product into a shape that is convenient for handling, including charging into a heating furnace. The location for rolling may be determined depending on the properties, cross-sectional size and shape of the target steel, and considering the difficulty of configuring the equipment.
If the cross section is small, for example, 150 m in diameter, the center segregation will be small, so only the second group of rolls will be sufficient. A total reduction amount of several to 10% is sufficient. [Function] The continuous casting slab manufacturing method of the present invention overcomes the drawback of circular or polygonal materials, such as easy rolling, by changing the cross section to a square or something close to it by roll reduction. Roll reduction can prevent the formation of cavities at the center of the slab, and can also eliminate center segregation to a high degree. Since rolling is carried out when the continuously cast material is still at a high temperature and has low deformation resistance, the required power is relatively small. The reason why the center cavity can be eliminated with a relatively small amount of reduction is that when reduction is directly connected to continuous casting, the inside of the continuous cast material is hotter than the outside, and the reduction blade has a large effect on the inside. This is thought to be because the cavity is easily compressed and disappears. On the other hand, in the conventional method of heating and rolling the material once it is made into a slab, there is almost no temperature difference between the inside and outside of the material, and when rolling is applied, the rolling reduction is large on the surface layer and small on the inside, so A larger reduction is required to eliminate the cavity. This fact is clear from the data in FIG. 5, and the graph in the figure shows that defects due to internal non-bonding are eliminated according to the present invention at a lower forging ratio than in the past. [Example 1] A steel having a composition of 0.45% C-0.25% 5i-0.75% Mn-balance Fe was continuously cast in a water-cooled mold with a circular cross section of 370M in diameter. The following caliber rolls were installed at the positions marked with and () in Fig. 1 to sequentially deform the continuously cast material, and it was finished into a slab with a square cross section of -side 300 m. Group Lo - /L' JLEμk
D-) I Ototan Shikee 1st stage (V Mill) 1%
45 in 2nd stage (H mill) 1% 45 in 3rd stage
Stage (V mill) 1.5% 45t ■ 4th stage (H mill) 1°5% 50 to 5th stage (■ mill) 2
% 55 to 6th stage (H mill) 2% 55
No cracks on the surface due to rolling were observed. Of course, there is no problem of the slab rolling around in the heating furnace. On the cut surface of the obtained slab, as shown in Fig. 4,
Samples were taken at various points on a line extending from the center to both left and right sides, and the C content was measured. For comparison, continuous casting was carried out in a water-cooled mold with a rectangular cross section having approximately the same finished dimensions, and C segregation on the cut surface was also examined for continuous cast slabs that were not subjected to the reduction according to the present invention. The results are also shown in FIG. The vertical axis of the graph in the figure is the ratio of the C content C in the slab to the C content layer C8 in the ladle, that is, in the molten steel. [Example 2] Using the same steel as in Example 1, a continuous casting material was made using a mold with a circular cross section of 160 # in diameter. Apply roll pressure as shown below at the position ■ in Figure 1, and -
Side 134! rI! It was made into a square slab of r1. Roll pressure reduction amount 1: Goro L force 1st stage Calibur roll 2% 15 to 2nd stage
Calibur roll 2% 15 was placed in the third stage Calibur roll 2% 15t In this case as well, no cracks on the surface or inside due to rolling were observed. Since the rolling reduction was carried out after the solidification of the center of the continuously cast material had been completed, the center segregation was not significantly improved, but the center cavity was significantly improved. By manufacturing slabs by continuous casting according to the present invention, the slabs finally obtained do not have a cavity in the center, and are free from the problem of oxidation caused by the presence of cavities. In addition, center segregation is greatly improved especially when rolling is performed before the solidification of the center is completed, making it easier to pass strict quality standards. For example, by reducing C segregation, which has the greatest effect on hardenability, the distortion caused by variations in hardenability can be significantly reduced. Needless to say, by making the final shape of the slab into a shape that does not easily roll, such as a rectangular cross section, it becomes convenient to handle, including taking it in and out of the heating furnace, so that the desired uniform heating is achieved and the quality requirements are met. It becomes easier to respond to In general, according to the manufacturing method of the present invention, the size of the slab obtained using a water-cooled mold with the same cross-sectional area can be made larger than when using the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の連続鋳造鋳片の製造方法を説明する
ための、概念的な断面図である。 第2図および第3図は、ともに本発明の鋳片製造方法に
おける連鋳材が、ロール圧下により断面形状を変えた鋳
片になることを示す説明図である。 第4図は、本発明の実施例において得た鋳片の切断面に
おけるC偏析の状況を、従来技術によるものと比較して
示すグラフである。 第5図は、本発明の方法により製造した鋳片の鍛錬比と
内部欠陥指数との関係を、従来技術による場合と比較し
て示すグラフでおる。 1・・・溶 鋼 2 (2A、2B>・・・連鋳材 3 (3A、3B)・・・圧下材 4 (4A、4B>・・・鋳 片 6・・・水冷モールド 7 (7A、7B>、8 (8A、8B>、9 (9A
。 9B>・・・ロール 特許出願人   大同特殊鋼株式会社 代理人  弁理士  須 賀 総 夫 第1図 第211 第3図 ◇ 第4図
FIG. 1 is a conceptual cross-sectional view for explaining the method for manufacturing a continuously cast slab of the present invention. FIG. 2 and FIG. 3 are both explanatory diagrams showing that the continuously cast material in the slab manufacturing method of the present invention becomes a slab whose cross-sectional shape has been changed by rolling reduction. FIG. 4 is a graph showing the state of C segregation on the cut surface of the slab obtained in the example of the present invention in comparison with that according to the prior art. FIG. 5 is a graph showing the relationship between the forging ratio and the internal defect index of the slab produced by the method of the present invention in comparison with the conventional method. 1... Molten steel 2 (2A, 2B>... Continuously cast material 3 (3A, 3B)... Reduced material 4 (4A, 4B>... Slab 6... Water-cooled mold 7 (7A, 7B>, 8 (8A, 8B>, 9 (9A
. 9B>・・・Roll Patent Applicant Daido Steel Co., Ltd. Agent Patent Attorney Souo Suga Figure 1 Figure 211 Figure 3 ◇ Figure 4

Claims (5)

【特許請求の範囲】[Claims] (1)断面が円形または多角形の水冷モールドに金属溶
湯を注入して連続的に鋳造を行ない、得られた断面が円
形または多角形の連鋳材をロール圧下したのち所定の長
さに切断して鋳片を得ることからなる連続鋳造鋳片の製
造方法。
(1) Continuous casting is performed by pouring molten metal into a water-cooled mold with a circular or polygonal cross section, and the resulting continuous cast material with a circular or polygonal cross section is rolled and then cut into predetermined lengths. A method for producing continuously cast slabs, which comprises obtaining slabs by continuous casting.
(2)断面が円形の連鋳材をロール圧下して断面を四角
形にする特許請求の範囲第1項の鋳片の製造方法。
(2) The method for manufacturing a slab according to claim 1, in which a continuously cast material having a circular cross section is rolled down to have a rectangular cross section.
(3)断面が多角形の連鋳材をロール圧下して断面の角
数を減じる特許請求の範囲第1項の鋳片の製造方法。
(3) The method for manufacturing a cast slab according to claim 1, wherein the continuous casting material having a polygonal cross section is rolled down to reduce the number of squares in the cross section.
(4)連鋳材が凝固を完了する前にロール圧下を行なう
特許請求の範囲第1項の鋳片の製造方法。
(4) The method for producing a slab according to claim 1, wherein roll reduction is performed before the continuous casting material completes solidification.
(5)連鋳材が凝固を完了した後にロール圧下を行なう
特許請求の範囲第1項の鋳片の製造方法。
(5) The method for producing a slab according to claim 1, wherein roll reduction is performed after the continuous cast material has solidified.
JP62047038A 1987-03-02 1987-03-02 Continuous casting slab manufacturing method Expired - Lifetime JPH0818116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62047038A JPH0818116B2 (en) 1987-03-02 1987-03-02 Continuous casting slab manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62047038A JPH0818116B2 (en) 1987-03-02 1987-03-02 Continuous casting slab manufacturing method

Publications (2)

Publication Number Publication Date
JPS63215353A true JPS63215353A (en) 1988-09-07
JPH0818116B2 JPH0818116B2 (en) 1996-02-28

Family

ID=12763993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62047038A Expired - Lifetime JPH0818116B2 (en) 1987-03-02 1987-03-02 Continuous casting slab manufacturing method

Country Status (1)

Country Link
JP (1) JPH0818116B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724552A (en) * 1991-10-11 1995-01-27 Kawasaki Heavy Ind Ltd Method and apparatus for horizontal continuous casting
US5497821A (en) * 1991-09-12 1996-03-12 Giovanni Arvedi Manufacture of billets and blooms from a continuously cast steel
US5803155A (en) * 1995-05-18 1998-09-08 Danieli & C. Officine Meccaniche Spa Casting line for slabs
US5832984A (en) * 1991-11-26 1998-11-10 Mannesmann Aktiegesellschaft Method of producing long steel products
JP2013252542A (en) * 2012-06-07 2013-12-19 Nippon Steel & Sumitomo Metal Corp Method for continuously casting cast slab
CN103464707A (en) * 2013-09-30 2013-12-25 攀钢集团攀枝花钢钒有限公司 Tension leveler of square and round black continuous casting machine and method for producing square and round blanks
WO2014030701A1 (en) * 2012-08-22 2014-02-27 新日鐵住金株式会社 Method for continuous casting of steel, and method for manufacturing bar steel
WO2014203937A1 (en) * 2013-06-20 2014-12-24 新日鐵住金株式会社 Continuous casting method for cast slab

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5085523A (en) * 1973-12-04 1975-07-10
JPS57175065A (en) * 1981-04-18 1982-10-27 Kubota Ltd Production of dissimilar diameter circular columnar body by continuous casting and continuous molding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5085523A (en) * 1973-12-04 1975-07-10
JPS57175065A (en) * 1981-04-18 1982-10-27 Kubota Ltd Production of dissimilar diameter circular columnar body by continuous casting and continuous molding

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5497821A (en) * 1991-09-12 1996-03-12 Giovanni Arvedi Manufacture of billets and blooms from a continuously cast steel
JPH0724552A (en) * 1991-10-11 1995-01-27 Kawasaki Heavy Ind Ltd Method and apparatus for horizontal continuous casting
US5832984A (en) * 1991-11-26 1998-11-10 Mannesmann Aktiegesellschaft Method of producing long steel products
US5803155A (en) * 1995-05-18 1998-09-08 Danieli & C. Officine Meccaniche Spa Casting line for slabs
JP2013252542A (en) * 2012-06-07 2013-12-19 Nippon Steel & Sumitomo Metal Corp Method for continuously casting cast slab
WO2014030701A1 (en) * 2012-08-22 2014-02-27 新日鐵住金株式会社 Method for continuous casting of steel, and method for manufacturing bar steel
CN103764316A (en) * 2012-08-22 2014-04-30 新日铁住金株式会社 Method for continuous casting of steel, and method for manufacturing bar steel
JP5545419B1 (en) * 2012-08-22 2014-07-09 新日鐵住金株式会社 Method for continuous casting of steel and method for manufacturing strip steel
CN103764316B (en) * 2012-08-22 2015-03-11 新日铁住金株式会社 Method for continuous casting of steel, and method for manufacturing bar steel
WO2014203937A1 (en) * 2013-06-20 2014-12-24 新日鐵住金株式会社 Continuous casting method for cast slab
JP5825456B2 (en) * 2013-06-20 2015-12-02 新日鐵住金株式会社 Continuous casting method for slabs
CN105209194A (en) * 2013-06-20 2015-12-30 新日铁住金株式会社 Continuous casting method for cast slab
CN103464707A (en) * 2013-09-30 2013-12-25 攀钢集团攀枝花钢钒有限公司 Tension leveler of square and round black continuous casting machine and method for producing square and round blanks

Also Published As

Publication number Publication date
JPH0818116B2 (en) 1996-02-28

Similar Documents

Publication Publication Date Title
WO2002083341A1 (en) Magnesium alloy material and method of manufacturing the alloy material
JPS63215353A (en) Production of continuously cast billet
US4962808A (en) Method of producing a steel strip having a thickness of less than 10 mm
JPH0220650A (en) Continuous casting rolling method
KR100295954B1 (en) Manufacturing method of long steel
CN1161199C (en) Technology for manufacturing seamless Al-alloy pipe
JP2690191B2 (en) Method for producing high δ-Fe-based austenitic stainless steel strip
CN1083307C (en) Beam formed from as-continuously cast beam blank
JP3958787B1 (en) Continuous casting method
JPH03198964A (en) Method and apparatus for executing rolling reduction to strand in continuous casting
JPS61245913A (en) Production of cladding bar steel wire rod
JP4325527B2 (en) Belt wheel type continuous casting machine, ring mold for belt wheel type continuous casting machine, rough drawing wire manufacturing apparatus and manufacturing method
JP3067895B2 (en) Manufacturing method of thin slab for non-oriented electrical steel sheet
CA1325326C (en) Method of producing a steel strip having a thickness of less than 10 mm
JPH01162551A (en) Method for continuously casting round shape billet
JP3149818B2 (en) Manufacturing method of round billet slab by continuous casting
JPS6137020B2 (en)
JP3051237B2 (en) Manufacturing method of thin slab for non-oriented electrical steel sheet
JPS5647204A (en) Manufacture of composite pipe
JPH0416257B2 (en)
JP3624856B2 (en) Method for improving yield of continuous cast steel slabs
RU2044598C1 (en) Method of manufacturing continuous billet
JPH03142044A (en) Production of rolled deformed bar
CN111940506A (en) Method for eliminating surface defects of high-carbon steel billet casting blank
JPS6123567A (en) Production of composite roll having tough neck part