JPH09293604A - Manufacture of grain-boundary insulated laminated ceramic element - Google Patents

Manufacture of grain-boundary insulated laminated ceramic element

Info

Publication number
JPH09293604A
JPH09293604A JP8106693A JP10669396A JPH09293604A JP H09293604 A JPH09293604 A JP H09293604A JP 8106693 A JP8106693 A JP 8106693A JP 10669396 A JP10669396 A JP 10669396A JP H09293604 A JPH09293604 A JP H09293604A
Authority
JP
Japan
Prior art keywords
elements
sheath
ceramic element
grain boundary
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8106693A
Other languages
Japanese (ja)
Other versions
JP3414123B2 (en
Inventor
Akihito Konishi
彰仁 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10669396A priority Critical patent/JP3414123B2/en
Publication of JPH09293604A publication Critical patent/JPH09293604A/en
Application granted granted Critical
Publication of JP3414123B2 publication Critical patent/JP3414123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To lessen irregularity in the electrical characteristics of grain-boundary insulated laminated ceramic elements and to make the reproducibility of the characteristics of the elements enhance by a method wherein the elements are uniformly mixed with powder of the same porosity of the same material as the material for the elements of box-shaped sheaths and are filled in a sheath, then a plurality of these sheaths are stacked to be subjected to firing in a reducing atmosphere. SOLUTION: A semiconductivity-material is mixed into a main component, a strontium titanate, a green sheet is molded from powder obtained by drying, calcinating and grinding the mixture and thereafter, the sheet is cut, internal electrodes 2 are respectively printed on the cut sheets and the sheets are laminated. After that, invalid layers 3 are respectively stacked on the upper and lower surfaces of this laminated material to press and pressure bond. Then, this laminated material is cut into the shapes of grain-boundary insulated laminated ceramic elements, decreasing of the elements is conducted, a chamfering of the elements is conducted and external electrodes 4 are respectively applied on the end surfaces of the elements with the same electrode paste as that used for printing the electrodes 2 on the sheets. Then, the elements are uniformly mixed with powdered particles of the same material as that for the elements in box-shaped and porous sheaths having an apparent volume porosity of 50 to 70% to ensheathe and a plurality of sheaths are stacked and are subjected to firing in a reducing atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種電子機器等に
使用される粒界絶縁型積層セラミック素子の製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain boundary insulation type multilayer ceramic element used in various electronic devices and the like.

【0002】[0002]

【従来の技術】近年、電子機器は小型化、高性能化を図
る為にIC,LSIなどの半導体が多く使用されてい
る。しかしそれら半導体は異常サージ電流や、静電気サ
ージノイズにより、電子機器の誤動作を起こしたり、ま
た破壊されるケースが発生する場合があった。このため
これら電子機器のノイズ耐力を確保するために高性能の
ノイズ吸収器が必要とされてきた。これら要求の中でチ
タン酸ストロンチウムを主成分とする粒界絶縁型積層セ
ラミックス素子は、ノイズ吸収性が良好で温度や周波数
に対しても安定した、バリスタ機能を有するものとして
その使用用途はますます拡大されている。
2. Description of the Related Art In recent years, semiconductors such as ICs and LSIs have been widely used for electronic devices in order to reduce their size and improve their performance. However, in some cases, semiconductors may malfunction or be destroyed due to abnormal surge current or electrostatic surge noise. Therefore, a high-performance noise absorber has been required to ensure the noise resistance of these electronic devices. Among these requirements, the grain boundary insulation type multilayer ceramic element containing strontium titanate as a main component has good noise absorption, is stable against temperature and frequency, and has a varistor function. Has been expanded.

【0003】従来品の粒界絶縁型積層セラミック素子、
及びその製造方法を図1を用いて説明する。
A conventional grain boundary insulation type laminated ceramic element,
And the manufacturing method thereof will be described with reference to FIG.

【0004】図1は粒界絶縁型積層セラミック素子、図
2はその製造工程図である。図1において、1はセラミ
ック層、2は内部電極、3は無効層、4は内方の外部電
極、5は外方の外部電極である。
FIG. 1 is a grain boundary insulation type multilayer ceramic element, and FIG. 2 is a manufacturing process diagram thereof. In FIG. 1, 1 is a ceramic layer, 2 is an internal electrode, 3 is an ineffective layer, 4 is an inner outer electrode, and 5 is an outer outer electrode.

【0005】前記構成の粒界絶縁型積層セラミック素子
は、セラミック層1、内部電極2を交互に積層し、さら
にその積層体の上、下面にセラミック層1と同一成分か
らなる無効層3を積層し、加圧圧着した後、所定形状の
粒界絶縁型積層セラミック素子片に切断、次いで内部電
極2の露出した両端面に外部電極4を形成する。次に、
これを脱脂後、粒界絶縁型積層セラミック素子をランダ
ムにサヤ詰めし還元雰囲気内で焼成を行う。その後焼結
体を再酸化処理を行い、さらに外部電極5を外部電極4
の上に形成して、図1に示す様な粒界絶縁型積層セラミ
ック素子を得ていた。
In the grain boundary insulation type laminated ceramic element having the above structure, the ceramic layers 1 and the internal electrodes 2 are alternately laminated, and the ineffective layer 3 made of the same component as the ceramic layer 1 is laminated on the upper and lower surfaces of the laminated body. Then, after pressure-bonding, the grain boundary insulation type laminated ceramic element piece having a predetermined shape is cut, and then the external electrodes 4 are formed on both exposed end surfaces of the internal electrode 2. next,
After degreasing, the grain boundary insulation type multilayer ceramic elements are randomly packed and fired in a reducing atmosphere. After that, the sintered body is reoxidized, and the external electrode 5 is further connected to the external electrode 4.
To obtain a grain boundary insulation type laminated ceramic element as shown in FIG.

【0006】[0006]

【発明が解決しようとする課題】しかしながら前記従来
の焼成方法では、サヤ内で粒界絶縁型積層セラミック素
子同士の重なりや、サヤ内の残留酸素の影響を受け、特
に高積層品や大型形状品では、焼成時に重なった面及
び、素子の表面層と中央部で均一な還元、焼結反応制御
が困難で、素子の焼結状態にむらを生じていた。そのた
め、焼結素子の再酸化処理の際、焼結粒子界面の再酸化
状態が不均一となり、その結果電気特性にバラツキを生
じ、所望の電気特性が得られないという問題を有してい
た。
However, in the above-mentioned conventional firing method, there is an influence of overlapping of grain boundary insulation type laminated ceramic elements in the sheath and residual oxygen in the sheath, and thus, particularly high-laminated products and large-sized products are obtained. However, it was difficult to control the reduction reaction and the sintering reaction uniformly on the surfaces which were overlapped at the time of firing, and on the surface layer and the central portion of the element, and the element was uneven in the sintered state. Therefore, during the reoxidation treatment of the sintered element, the reoxidation state at the interface of the sintered particles becomes non-uniform, and as a result, the electrical characteristics vary, and the desired electrical characteristics cannot be obtained.

【0007】本発明は前記従来品の問題を解決するもの
で、電気特性のバラツキが少なく、特性再現性の高い粒
界絶縁型積層セラミック素子の製造方法を提供すること
を目的とする。
An object of the present invention is to solve the above-mentioned problems of the conventional products, and to provide a method for manufacturing a grain boundary insulation type laminated ceramic element having a small variation in electric characteristics and a high characteristic reproducibility.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に本発明では、焼成に使用する焼成サヤとして箱形で、
かつ見掛け気孔率が50%〜70%のものを使用し、さ
らに粒界絶縁型積層セラミック素子と同材質の共生地粉
末と均一に混合してサヤ詰めし、これを複数段積み重ね
て還元雰囲気内で焼成するものであり、これにより素子
同士の重なりを防ぐとともに還元雰囲気用ガスと残留酸
素のサヤ内の置換も速やかに行われ、さらに還元雰囲気
ガスがサヤ内に均一に行きわたり、均質に還元された焼
結体を得ることができるものである。
In order to achieve this object, the present invention has a box shape as a firing sheath used for firing.
In addition, a material having an apparent porosity of 50% to 70% is used, which is further uniformly mixed with a co-dough powder of the same material as the grain boundary insulation type multilayer ceramic element and packed in a sheath, which is stacked in a plurality of stages and placed in a reducing atmosphere. This prevents the elements from overlapping each other and replaces the reducing atmosphere gas with the residual oxygen in the sheath promptly.Furthermore, the reducing atmosphere gas is evenly distributed in the sheath and reduced uniformly. The obtained sintered body can be obtained.

【0009】[0009]

【発明の実施の形態】本発明の請求項1に記載の粒界絶
縁型積層セラミック素子の製造方法は、チタン酸ストロ
ンチウムを主成分とするセラミック層と、内部電極層と
を交互に複数層積層し、所定形状の粒界絶縁型積層セラ
ミック素子片に切断し、その後一方の面が開放された箱
状の見掛け気孔率が50〜70%の焼成サヤ内に前記粒
界絶縁型積層セラミック素子を、素子と同一組成の共生
地と均一に混ぜ合わせてサヤ詰めし、その焼成サヤを複
数段積み重ねて最上部サヤには同材質の蓋をして還元雰
囲気内で焼成する。次に前記焼結体を再酸化処理し、そ
の後両端面に外部電極を形成するものであり、共生地は
素子同士の重なりを防ぎ、サヤの見掛け気孔率の大きさ
は還元雰囲気ガスと残留酸素のサヤ内の置換を速やかに
行うとともに、還元雰囲気ガスのサヤ内への流出入が容
易となり、均質に還元された焼結体を得ることができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION A method of manufacturing a grain boundary insulating type laminated ceramic element according to claim 1 of the present invention is a method of laminating a plurality of layers in which a ceramic layer containing strontium titanate as a main component and an internal electrode layer are alternately laminated. Then, the grain boundary insulation type laminated ceramic element is cut into a grain boundary insulation type laminated ceramic element piece having a predetermined shape, and then the grain boundary insulation type laminated ceramic element is placed in a box-shaped firing sheath having an open porosity of 50 to 70%. , And evenly mix with the co-dough having the same composition as the device and pack in the sheath, stack the firing sheaths in multiple stages, cover the uppermost sheath with the same material, and fire in a reducing atmosphere. Next, the sintered body is reoxidized, and then external electrodes are formed on both end surfaces, the co-material prevents the elements from overlapping, and the apparent porosity of the sheath is determined by the reducing atmosphere gas and residual oxygen. The inside of the sheath can be replaced promptly, and the reducing atmosphere gas can easily flow into and out of the sheath, so that a uniformly reduced sintered body can be obtained.

【0010】本発明の請求項2に記載の発明は、粒界絶
縁型積層セラミック素子を入れた、箱形で見掛け気孔率
が50〜70%の第1のサヤと、素子を入れていない、
側面の一部に切欠き開口部を設けた箱形で見掛け気孔率
が50〜70%の第2のサヤとを交互に複数段積み重ね
て還元雰囲気内で焼成するものであり、これにより素子
の入ったサヤの四方向側面及び上下面から残留酸素の置
換と還元ガスの流出入が容易になり素子が詰められたサ
ヤ内の雰囲気がより均質となる。
According to a second aspect of the present invention, a box-shaped first sheath having an apparent porosity of 50 to 70%, in which a grain boundary insulating type laminated ceramic element is inserted, and no element is inserted,
A plurality of second sheaths, each having a box shape with a cutout opening provided in a part of its side surface and having an apparent porosity of 50 to 70%, are alternately stacked and fired in a reducing atmosphere. Substitution of residual oxygen and inflow and outflow of reducing gas are facilitated from the four side surfaces and the upper and lower surfaces of the entered sheath, and the atmosphere in the sheath filled with the elements becomes more uniform.

【0011】本発明の請求項3に記載の発明は、使用す
る共生地が焼成する素子と同一組成で、尚かつ予め還元
雰囲気内で焼結したものを粒状粉末にしたものであり、
これにより焼成する粒界絶縁型積層セラミック素子同士
の重なりを防止するとともに、還元処理をした粉末であ
るために焼成する素子へ影響を与える事なく、しかも個
々の素子への還元ガスの接触を容易にすることができ素
子全体を均質に還元焼結ができる。
According to a third aspect of the present invention, the co-dough used has the same composition as that of the element to be fired, and is a powder which is previously sintered in a reducing atmosphere into a granular powder,
This prevents overlapping of the grain boundary insulation type multilayer ceramic elements to be fired, and because the reduced powder does not affect the firing elements, it is easy for the reducing gas to come into contact with the individual elements. Therefore, the entire element can be uniformly reduced and sintered.

【0012】前記製造方法を用いることにより、焼結素
子を再酸化処理をする際、素子内の粒子界面への酸素の
吸着反応が均一に行われ、高積層品や大型形状品を問わ
ず電気特性のバラツキが少なくなり、また特性再現性の
高い粒界絶縁型積層セラミック素子を提供することがで
きる。
By using the above-mentioned manufacturing method, when the sintered element is reoxidized, the adsorption reaction of oxygen to the particle interfaces in the element is uniformly carried out, and it is possible to obtain an electric property regardless of whether it is a highly laminated product or a large shaped product. It is possible to provide a grain boundary insulation type multilayer ceramic element in which variations in characteristics are reduced and which are highly reproducible in characteristics.

【0013】(実施の形態1)以下本発明の一実施形態
について説明する。
(Embodiment 1) An embodiment of the present invention will be described below.

【0014】使用する図面及び構成部材名は従来品と基
本的に同じであるため同じものを用い説明は簡略化す
る。
Since the drawings and the names of the components used are basically the same as those of the conventional product, the same components are used and the description thereof is simplified.

【0015】まず主成分であるチタン酸ストロンチウム
97.1mol%に半導体化物質として酸化ニオブを
0.5mol%、酸化タンタルを0.5mol%と焼結
助剤として酸化マンガンを0.4mol%、酸化硅素を
1.0mol%、さらに酸化促進剤として硅酸ナトリウ
ム(Na2SiO3)を0.5mol%を秤量し、図2に
示す工程にしたがって、配合(6)、混合(7)、乾燥
(8)後、1100℃の温度で仮焼(9)し、粉砕(1
0)を行う。得られた粉体に有機溶剤とバインダーを混
合し、スラリー(11)を作製する。次いでドクターブ
レード法で25μm厚さのグリーンシートを成形した
後、所定寸法の大きさに切断(12)する。この切断し
たグリーンシートに主成分が酸化ニッケルからなる電極
ペーストを用いて、内部電極2を印刷(13)する。こ
れを複数層積層して積層体とするが、積層体を粒界絶縁
型積層セラミック素子形状に切断した際に、内部電極2
が素子の異なった対向する端面に交互に露出するように
内部電極2を印刷し積層(14)する。その後前記積層
体の上、下面に無効層3を積み重ねて加圧圧着する。次
に前記積層体を粒界絶縁型積層セラミック素子形状に切
断(15)し、脱脂(16)を行う。脱脂後の素子の面
取りを行い、内部電極2と同じ電極ペーストで外部電極
4を素子端面に塗布(17)した後、箱形で見掛け気孔
率が50〜70%の多孔質のサヤ内に前記素子を同材質
の粉末粒子と均一に混ぜ合わせてサヤ詰め(18)を
し、これを複数段積み重ねその最上部に箱形サヤと同材
質の蓋をし焼成炉内に挿入して、1200℃の温度で還
元雰囲気用の窒素と水素との混合ガスを一定量流入させ
ながら還元雰囲気焼成(19)を行った。この場合流入
した還元ガスはサヤの気孔を通じてサヤ内に拡散すると
ともに、サヤ内の残留酸素と容易に置換されまた素子と
均一に混合された共生地の空間を通して焼成中の素子全
体に均等に作用する。これによって素子全体の均一な焼
結と還元反応が実現される。その後焼結素子を空気中に
おいて850℃の温度で再酸化処理(20)を行い、次
いで銀を主成分とした外部電極5を外部電極4の上に塗
布(21)し焼付を行い完成品とした。その電気特性と
して0.1mAの電流を印加したときのバリスタ電圧(V
0.1mA)と周波数1KHzにおける静電容量(C1KHz)を
測定した。その結果を従来工法による完成品と併せて
(表1)に示した。
First, 97.1 mol% of strontium titanate, which is the main component, contains 0.5 mol% of niobium oxide as a semiconducting substance, 0.5 mol% of tantalum oxide, and 0.4 mol% of manganese oxide as a sintering aid. 1.0 mol% of silicon and 0.5 mol% of sodium silicate (Na 2 SiO 3 ) as an oxidation promoter were weighed out, and according to the process shown in FIG. 2, compounding (6), mixing (7) and drying ( 8) After that, calcination (9) at a temperature of 1100 ° C. and crushing (1)
Perform 0). The obtained powder is mixed with an organic solvent and a binder to prepare a slurry (11). Then, after forming a 25 μm thick green sheet by the doctor blade method, it is cut (12) into a predetermined size. The internal electrode 2 is printed (13) on the cut green sheet by using an electrode paste whose main component is nickel oxide. A plurality of layers are laminated to form a laminated body, and when the laminated body is cut into a grain boundary insulation type laminated ceramic element shape, the internal electrode 2
The internal electrodes 2 are printed and laminated (14) so that the electrodes are alternately exposed on different end faces of the device. After that, the ineffective layers 3 are stacked on the upper surface and the lower surface of the laminated body and pressure-bonded. Next, the laminated body is cut (15) into a grain boundary insulation type laminated ceramic element shape and degreased (16). After degreasing, the element is chamfered, and the external electrode 4 is applied (17) to the element end face with the same electrode paste as the internal electrode 2, and then the box-shaped porous sheath having an apparent porosity of 50 to 70% is used. The element is uniformly mixed with powder particles of the same material and packed in a sheath (18), and a plurality of these are stacked and a lid of the same material as the box-shaped sheath is placed on the top of the stack and inserted into a firing furnace at 1200 ° C. The reducing atmosphere firing (19) was performed while flowing a fixed amount of a mixed gas of nitrogen and hydrogen for the reducing atmosphere at the temperature. In this case, the inflowing reducing gas diffuses into the sheath through the pores of the sheath, is easily replaced with the residual oxygen in the sheath, and acts evenly on the entire element during firing through the space of the co-dough uniformly mixed with the element. To do. This realizes uniform sintering and reduction reaction of the entire device. Then, the sintered element is subjected to reoxidation treatment (20) in air at a temperature of 850 ° C., and then the external electrode 5 containing silver as a main component is applied (21) on the external electrode 4 and baked to obtain a finished product. did. As its electrical characteristics, the varistor voltage (V
0.1 mA ) and the electrostatic capacitance (C 1 KHz ) at a frequency of 1 KHz were measured. The results are shown in (Table 1) together with the finished product manufactured by the conventional method.

【0016】[0016]

【表1】 [Table 1]

【0017】(表1)から明らかなように、本発明品は
従来工法によるものより、バリスタ電圧、静電容量とも
バラツキが大幅に減少していることが判る。これは、多
孔質のサヤを使用し、なおかつ素子を共生地で均一に混
合する焼成方法により素子が還元ガスと均一に反応した
結果、その後の再酸化処理で焼結素子の粒界界面に酸素
吸着が均質に行われたことを示していると思われる。一
方従来工法は焼成サヤ内の残留酸素の置換が不十分であ
ったこと、素子の面同士が重なりあったために十分な焼
結、還元反応が行われなかったことが原因と思われる。
As is clear from (Table 1), the product of the present invention has much smaller variations in both varistor voltage and electrostatic capacitance than those produced by the conventional method. This is because the element uniformly reacts with the reducing gas by the firing method in which the element is uniformly mixed with the co-dough using a porous sheath, and oxygen is generated at the grain boundary interface of the sintered element in the subsequent reoxidation treatment. It seems to indicate that the adsorption was carried out homogeneously. On the other hand, in the conventional method, it is considered that the replacement of residual oxygen in the firing sheath was insufficient and that the sufficient sintering and reduction reaction were not performed because the surfaces of the elements were overlapped.

【0018】(実施の形態2)実施形態1と同様に素子
をサヤ詰めした第一の焼成サヤと、同材質で側面の一部
に切欠き部を設けた第二の焼成サヤとを交互に複数積み
重ねて炉内に挿入し、実施形態1と同様な条件で還元雰
囲気焼成し、次いで焼結素子の再酸化処理及び外部電極
5を形成した。得られた焼結素子の電気性能の評価結果
を(表1)に示した。
(Embodiment 2) As in Embodiment 1, a first firing sheath in which an element is packed in a sheath and a second firing sheath in which a notch portion is provided in a part of the side surface are alternately formed. A plurality of them were stacked and inserted into a furnace, and fired in a reducing atmosphere under the same conditions as in the first embodiment. Then, the reoxidation treatment of the sintered element and the external electrode 5 were formed. The evaluation results of the electrical performance of the obtained sintered element are shown in (Table 1).

【0019】(表1)から明らかなように、実施形態2
の本発明品は実施形態1の場合よりさらに電気性能のバ
ラツキが小さくなっていることが判る。このことは素子
の詰まったサヤを複数段積み重ねた場合より、一段おき
に側面に切欠き部を設けた空サヤを挿入することによ
り、素子の詰まったサヤ内の残留酸素の置換及び還元ガ
スの流出入がサヤの4側面の他に上下面からも行われる
ため、素子の焼結及び還元反応が一層均質化されたこと
を示している。
As is clear from (Table 1), the second embodiment
It can be seen that the product of the present invention has a smaller variation in electrical performance than that of the first embodiment. This means that by inserting empty sheaths with notches on the side surface at every other stage, it is possible to replace residual oxygen and reduce the reducing gas in the sheaths packed with elements, rather than stacking the sheaths packed with elements. Since the inflow and outflow are performed from the upper and lower surfaces in addition to the four side surfaces of the sheath, it shows that the sintering and reduction reactions of the element were further homogenized.

【0020】また、実施形態2において側面の一部に切
欠き部を設けた空サヤを用いたが、素子の詰まったサヤ
の上下面に還元ガスが自由に通過できる空間が設けられ
れば他の手段を用いても同じ効果が得られる。
In the second embodiment, the empty sheath having a notch in a part of the side surface is used. However, if a space through which the reducing gas can freely pass is provided on the upper and lower surfaces of the sheath in which the element is clogged, other empty sheaths are provided. The same effect can be obtained by using the means.

【0021】尚、実施形態の1及び2において箱形のサ
ヤを使用したのは、板状のサヤの場合、サヤ詰めされた
素子群に直接還元ガス及び炉の輻射熱が作用し、素子群
の表層部と内部で焼結及び還元反応にむらが生じ、その
結果として素子の電気性能にバラツキが生じるのを防ぐ
ためである。さらに焼成サヤの見掛け気孔率を50%〜
70%としたのは、側面に切欠き開口部を設けたサヤを
使用した場合の還元ガスや炉の熱輻射が直接焼成する素
子に作用するのを防ぎ、尚かつ還元ガスのサヤ内への流
出入を妨げない程度のオープンポアーを得るためと、ま
た焼成サヤを多段積み重ねたときその荷重に耐える機械
的強度を得るためである。
In the first and second embodiments, the box-shaped sheath is used. In the case of a plate-shaped sheath, the reducing gas and the radiant heat of the furnace act directly on the packed sheath to reduce the element This is to prevent unevenness in the sintering and reduction reaction between the surface layer portion and the inside, resulting in variations in the electrical performance of the element. Furthermore, the apparent porosity of the baked sheath is 50% ~
70% means that the reducing gas and thermal radiation of the furnace in the case of using the sheath having the cutout opening on the side surface are prevented from directly acting on the element to be fired, and the reducing gas is prevented from entering the sheath. This is to obtain open pores that do not hinder the inflow and outflow, and to obtain mechanical strength that can withstand the load when the fired sheaths are stacked in multiple stages.

【0022】またさらに還元処理した共生地を素子と均
一に混合してサヤ詰めをするのは実施形態1に示した理
由によるものである。
Further, the reason why the reduced co-material is uniformly mixed with the element to fill the sheath is for the reason shown in the first embodiment.

【0023】[0023]

【発明の効果】以上、本発明の焼成の際、使用する焼成
サヤを箱形で、見掛け気孔率が50%〜70%の多孔質
サヤを使用し、素子を同材質の共生地粉末と均一に混合
してサヤ詰めし、これを複数段に積み重ねて還元雰囲気
内で焼成することにより、素子の焼結及び還元反応の均
質化が図れ、その結果、高積層品や大型形状品を問わず
に、焼結素子の再酸化処理における素子粒界への酸素吸
着反応が均質にでき電気特性のバラツキの少ない、特性
再現性の高い粒界絶縁型積層セラミック素子を提供する
ことができるものである。
As described above, when the firing of the present invention is performed, a box-shaped firing sheath is used and a porous sheath having an apparent porosity of 50% to 70% is used. By mixing and packing in a mixture, stacking them in multiple stages and firing in a reducing atmosphere, the element can be sintered and the reduction reaction can be homogenized, and as a result, regardless of whether it is a highly laminated product or a large-sized product. In addition, it is possible to provide a grain boundary insulation type monolithic ceramic element which has a uniform oxygen adsorption reaction to the element grain boundaries in the reoxidation treatment of the sintered element and has little variation in electrical characteristics and high characteristic reproducibility. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態の粒界絶縁型積層セラミッ
ク素子の断面図
FIG. 1 is a cross-sectional view of a grain boundary insulation type monolithic ceramic element according to an embodiment of the present invention.

【図2】同粒界絶縁型セラミック部品の製造工程図[Fig. 2] Manufacturing process drawing of the same grain boundary insulation type ceramic component

【符号の説明】[Explanation of symbols]

1 セラミック層 2 内部電極 3 無効層 4 内側の外部電極 5 外側の外部電極 1 Ceramic Layer 2 Internal Electrode 3 Ineffective Layer 4 Inner External Electrode 5 Outer External Electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 チタン酸ストロンチウムを主成分とする
セラミック層と、内部電極層とを交互に複数層積層した
積層体を所定形状の粒界絶縁型積層セラミック素子に切
断し、その後一面が開放された箱状で、かつ見掛け気孔
率が50〜70%の焼成サヤを用い粒界絶縁型積層セラ
ミック素子を、前記素子と同一組成の共生地と均一に混
ぜ合わせてサヤ詰めし、その焼成サヤを複数段積み重ね
て最上部サヤには同材質の蓋をして還元雰囲気内で焼成
し、次に前記焼結体を再酸化処理し、その後粒界絶縁型
積層セラミック素子の両端面に外部電極を形成すること
を特徴とする粒界絶縁型積層セラミック素子の製造方
法。
1. A laminated body obtained by alternately laminating a plurality of ceramic layers containing strontium titanate as a main component and internal electrode layers is cut into a grain boundary insulation type laminated ceramic element having a predetermined shape, and then one surface is opened. Using a fired sheath having a box shape and an apparent porosity of 50 to 70%, a grain boundary insulation type multilayer ceramic element is uniformly mixed with a co-dough having the same composition as that of the element and packed into a sheath. A plurality of layers are stacked, the uppermost sheath is covered with the same material and fired in a reducing atmosphere, then the sintered body is reoxidized, and then external electrodes are provided on both end faces of the grain boundary insulation type multilayer ceramic element. A method for manufacturing a grain boundary insulation type multilayer ceramic element, which is characterized by being formed.
【請求項2】 粒界絶縁型積層セラミック素子をサヤ詰
めした、箱状で見掛け気孔率が50〜70%の第1の焼
成サヤと、側面に切欠き開口部を設け、粒界絶縁型積層
セラミック素子を入れていない箱状で見掛け気孔率が5
0〜70%の第2のサヤとを交互に複数段積み重ねて還
元雰囲気内で焼成する請求項1記載の粒界絶縁型積層セ
ラミック素子の製造方法。
2. A grain-boundary insulation-type laminated ceramic device comprising a box-shaped first firing sheath having a grain-boundary insulation-type laminated ceramic element sheathed therein and having an apparent porosity of 50 to 70%, and a cutout opening provided on a side surface thereof. Box-like with no ceramic elements and apparent porosity of 5
2. The method for manufacturing a grain boundary insulation type monolithic ceramic element according to claim 1, wherein a plurality of layers of 0 to 70% of the second sheath are alternately stacked and fired in a reducing atmosphere.
【請求項3】 共生地は、焼成する粒界絶縁型積層セラ
ミック素子と同一組成で、予め還元雰囲気内で焼結した
ものを粒状粉末にしたものであることを特徴とする請求
項1または2に記載の粒界絶縁型積層セラミック素子の
製造方法。
3. The co-dough is a granular powder which has the same composition as the grain boundary insulating type laminated ceramic element to be fired and which has been previously sintered in a reducing atmosphere into a granular powder. A method for manufacturing the grain boundary insulation type monolithic ceramic element as described in 1.
JP10669396A 1996-04-26 1996-04-26 Method for manufacturing grain boundary insulating multilayer ceramic element Expired - Fee Related JP3414123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10669396A JP3414123B2 (en) 1996-04-26 1996-04-26 Method for manufacturing grain boundary insulating multilayer ceramic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10669396A JP3414123B2 (en) 1996-04-26 1996-04-26 Method for manufacturing grain boundary insulating multilayer ceramic element

Publications (2)

Publication Number Publication Date
JPH09293604A true JPH09293604A (en) 1997-11-11
JP3414123B2 JP3414123B2 (en) 2003-06-09

Family

ID=14440123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10669396A Expired - Fee Related JP3414123B2 (en) 1996-04-26 1996-04-26 Method for manufacturing grain boundary insulating multilayer ceramic element

Country Status (1)

Country Link
JP (1) JP3414123B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010642A1 (en) * 2006-07-19 2008-01-24 Joinset Co., Ltd Ceramic component and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010642A1 (en) * 2006-07-19 2008-01-24 Joinset Co., Ltd Ceramic component and method of manufacturing the same
KR100821274B1 (en) * 2006-07-19 2008-04-10 조인셋 주식회사 Chip Ceramic Electronic component
US7791450B2 (en) 2006-07-19 2010-09-07 Joinset Co., Ltd. Ceramic component and method of manufacturing the same

Also Published As

Publication number Publication date
JP3414123B2 (en) 2003-06-09

Similar Documents

Publication Publication Date Title
TWI283419B (en) Laminated ceramic capacitor
JP3453857B2 (en) Manufacturing method of multilayer varistor
TW579532B (en) Ceramic capacitor with CZT dielectric
JP3064659B2 (en) Manufacturing method of multilayer ceramic element
JP3340003B2 (en) Multilayer wiring board and package for housing semiconductor element
JP3414123B2 (en) Method for manufacturing grain boundary insulating multilayer ceramic element
JPH11340090A (en) Manufacture of grain boundary insulated multilayer ceramic capacitor
JP2727626B2 (en) Ceramic capacitor and method of manufacturing the same
JP2006351639A (en) Stacked electronic component and stacked ceramic capacitor
JPH0878284A (en) Composite electronic device and its production
JP3740184B2 (en) Multi-layer wiring board and package for housing semiconductor element
JP3396973B2 (en) Manufacturing method of multilayer varistor
JP2002118033A (en) Composite electronic component
JPH06176954A (en) Laminated grain insulating type semiconductor ceramic capacitor
JPS63219115A (en) Manufacture of laminated semiconductor porcelain electronic component
JPH07183155A (en) Laminated ceramic electronic component and its manufacture
JPH11176687A (en) Manufacture of grain boundary insulation type of stacked ceramic element
JP2872454B2 (en) Manufacturing method of grain boundary insulated semiconductor laminated ceramic capacitor
JP2735746B2 (en) Dielectric ceramic composition, multilayer alumina-based wiring board, and package for housing semiconductor element
JP3419285B2 (en) Manufacturing method of ceramic electronic components
JP3246267B2 (en) Manufacturing method of grain boundary insulated multilayer ceramic component
JP2722462B2 (en) Manufacturing method of multilayer ceramic capacitor
JPH01187913A (en) Manufacture of laminated semiconductor porcelain capacitor
JPH08222470A (en) Manufacture of grain boundary insulated laminated ceramic component
JP2984115B2 (en) Manufacturing method of grain boundary insulated semiconductor porcelain capacitor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees