JP3246267B2 - Manufacturing method of grain boundary insulated multilayer ceramic component - Google Patents

Manufacturing method of grain boundary insulated multilayer ceramic component

Info

Publication number
JP3246267B2
JP3246267B2 JP10925095A JP10925095A JP3246267B2 JP 3246267 B2 JP3246267 B2 JP 3246267B2 JP 10925095 A JP10925095 A JP 10925095A JP 10925095 A JP10925095 A JP 10925095A JP 3246267 B2 JP3246267 B2 JP 3246267B2
Authority
JP
Japan
Prior art keywords
sheath
laminate
fired
grain boundary
multilayer ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10925095A
Other languages
Japanese (ja)
Other versions
JPH08306573A (en
Inventor
彰仁 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP10925095A priority Critical patent/JP3246267B2/en
Publication of JPH08306573A publication Critical patent/JPH08306573A/en
Application granted granted Critical
Publication of JP3246267B2 publication Critical patent/JP3246267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、各種電子機器に使用さ
れる粒界絶縁型積層セラミック部品の製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain boundary insulating multilayer ceramic component used for various electronic devices.

【0002】[0002]

【従来の技術】近年、電子機器は小型化、高性能化を図
る為にIC、LSIなどが多く使用されており、それに
伴って電子機器のノイズ耐力を確保するために使用され
てきたフィルムコンデンサ、積層型セラミックコンデン
サ、半導体セラミックコンデンサなどにも、小型化、高
性能化の要請が強まっている。
2. Description of the Related Art In recent years, ICs, LSIs, and the like have been widely used for miniaturization and high performance of electronic equipment, and accordingly, film capacitors which have been used for securing noise immunity of electronic equipment. Also, demands for miniaturization and high performance of multilayer ceramic capacitors, semiconductor ceramic capacitors, and the like are increasing.

【0003】なかでも、SrTiO3を主成分とする粒
界絶縁型セラミックスは、ノイズ吸収性が良好で温度や
周波数に対しても安定していることに加えて、パルスや
静電気に対するバリスタ機能を有するものも有り、その
使用はますます拡大されている。
Above all, grain boundary insulating ceramics containing SrTiO 3 as a main component have good noise absorption, are stable with respect to temperature and frequency, and have a varistor function against pulses and static electricity. Some are available, and their use is expanding.

【0004】従来より粒界絶縁型積層セラミック部品
は、図1に示すようにSrTiO3を主成分とするセラ
ミック層1と半導体化を促進する元素を含んだ内部電極
2とを交互に積層し、上、下にセラミック層1と同一成
分の無効層3を形成し、内側外部電極4を形成した後、
脱脂し、これらの積層体をランダムにサヤ詰めして還元
焼成を行い、その後再酸化して、外側外部電極5を形成
して、図1に示す様な粒界絶縁型積層セラミック部品を
得ていた。
Conventionally, a grain boundary insulated multilayer ceramic component has, as shown in FIG. 1, a ceramic layer 1 containing SrTiO 3 as a main component and an internal electrode 2 containing an element which promotes semiconductor conversion are alternately laminated. After forming an ineffective layer 3 having the same composition as the ceramic layer 1 above and below, and forming an inner external electrode 4,
After degreasing, these laminates are randomly packed and subjected to reduction firing, and then re-oxidized to form outer external electrodes 5 to obtain a grain boundary insulated multilayer ceramic component as shown in FIG. Was.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記の従
来の方法では、内部電極2付近のセラミック層1は、緻
密化が容易であったが、サヤ内の積層体同士のランダム
な重なりや、不均一な残留酸素の影響があり、特に高積
層品や大形状品では、還元焼成時に内部電極2から離れ
ている積層体外層部、特に無効層3の組織の制御が困難
となり、緻密性に斑を生じていた。そのため、再酸化後
の酸化状態にばらつきが生じ、電気特性もばらつきがあ
り、所望の電気特性が得られないという問題点を有して
いた。
However, in the above-mentioned conventional method, the ceramic layer 1 near the internal electrode 2 can be easily densified. In particular, in the case of highly laminated products and large-sized products, it is difficult to control the structure of the outer layer portion of the laminate separated from the internal electrode 2, particularly the structure of the ineffective layer 3, resulting in unevenness in the denseness. Had occurred. Therefore, the oxidation state after re-oxidation varies, and the electrical characteristics also vary, so that there is a problem that desired electrical characteristics cannot be obtained.

【0006】本発明は上記従来の問題点を解決するもの
で、電気特性のばらつきが少なく、特性再現性の高い粒
界絶縁型積層セラミック部品を提供することを目的とす
る。
An object of the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide a grain boundary insulated multilayer ceramic component having small variations in electrical characteristics and high reproducibility of characteristics.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明では、SrTiO3を主成分とする複数のセラ
ミック層と、複数の内部電極とを交互に、且つ上層と下
層に前記セラミック層が配置される様に積層した積層体
密閉状態で通気性をもつ見かけ気孔率が50〜70%
の焼成サヤを利用して、この焼成サヤ内に前記積層体が
重なり合わない様にサヤ詰めし、次に前記積層体を詰め
た焼成サヤを多段階に積み重ねてサヤ内の不均一な残留
酸素をサヤの気孔を介して還元ガスで置換しながら還元
焼成して積層体の外層部分のセラミック組織の均一な焼
結を行い、次に前記積層体を再酸化し、その後前記積層
体の前記内部電極が露出した端面に外部電極を形成する
ものである。
According to the present invention, a plurality of ceramic layers containing SrTiO 3 as a main component and a plurality of internal electrodes are alternately provided in an upper layer and a lower layer. The apparent porosity is 50 to 70%, which is air-permeable in a sealed state by laminating the laminated bodies so that
Using the sinter of the above, the laminate is placed in the sinter.
Fill with a sheath so that they do not overlap, and then pack the laminate
Piled fired sheaths in multiple stages and uneven residue in the sheaths
Reduction while replacing oxygen with reducing gas through pores of sheath
Firing to uniformly fire the ceramic structure in the outer layer of the laminate
Knotting is performed, and then the laminate is reoxidized. Thereafter, an external electrode is formed on an end surface of the laminate where the internal electrode is exposed.

【0008】[0008]

【作用】上記方法を用いることにより、焼成雰囲気が均
一になり再酸化を行う際、積層体内部の酸素の吸着反応
が均一に行われるので、高積層品や大形状品を問わずに
無効層の緻密性の群らによる再酸化ばらつきを抑制する
ことができ、電気特性のばらつきが少なく、特性再現性
の高い粒界絶縁型積層セラミック部品を提供することが
できる。
By using the above method, when the firing atmosphere is uniform and reoxidation is performed, the oxygen adsorption reaction inside the laminate is performed uniformly, so that the reactive layer is effective regardless of the high laminate product or the large product. Can suppress re-oxidation variation due to the group of denseness, and can provide a grain boundary insulated multilayer ceramic component with small variation in electrical characteristics and high reproducibility of characteristics.

【0009】[0009]

【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。図1は粒界絶縁型積層セラミック部
品の断面図、図2はその製造工程を示す図である。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a grain boundary insulated multilayer ceramic component, and FIG. 2 is a view showing a manufacturing process thereof.

【0010】次に、以下に製造方法について説明する。
まず、主成分であるSrTiO397.1mol%に半
導体化物質であるNb25を0.5mol%、Ta25
を0.5mol%、焼結助剤であるMnO2を0.4m
ol%、SiO2を1.0mol%、酸化促進剤として
Na2SiO3を0.5mol%それぞれ配合(7)し、
これらを混合(8)して粉砕(9)する。その後、11
00℃で仮焼(10)して再び粉砕(11)を行う。こ
のようにして得られた粉体に有機溶剤とバインダーを混
合し、スラリーを作製する。更に、ドクターブレード法
でシート成形(12)を実施し、所定の大きさに切断す
る。
Next, the manufacturing method will be described below.
First, Nb 2 O 5 , which is a semiconducting substance, was added to 97.1 mol% of SrTiO 3 as a main component, and 0.5 mol% of Ta 2 O 5
0.5 mol%, and 0.4 m of sintering aid MnO 2
ol%, 1.0 mol% of SiO 2 and 0.5 mol% of Na 2 SiO 3 as an oxidation promoter (7),
These are mixed (8) and ground (9). Then, 11
The calcination (10) is performed at 00 ° C. and the pulverization (11) is performed again. The powder thus obtained is mixed with an organic solvent and a binder to prepare a slurry. Further, sheet forming (12) is performed by a doctor blade method, and the sheet is cut into a predetermined size.

【0011】この切断したグリーンシートに内部電極2
として、主成分がNiOからなるペーストを用いて、内
部電極2が交互に相対向する端面に露出するように所定
の層数を印刷(13)、積層(14)し、加圧圧着す
る。このとき積層体の上層と下層には内部電極2を形成
していないグリーンシートを所定枚数積層して無効層3
を形成している。その後、切断し、脱脂(15)を行
う。脱脂(15)後面取りを行い、内部電極2と同じペ
ーストで内側外部電極4を形成し(16)、還元焼成
(17)を行う。
The cut green sheet is provided with an internal electrode 2
Then, a predetermined number of layers are printed (13) and laminated (14) using a paste whose main component is NiO so that the internal electrodes 2 are alternately exposed at the end faces facing each other, and then pressure-bonded. At this time, a predetermined number of green sheets on which the internal electrodes 2 are not formed are laminated on the upper layer and the lower layer
Is formed. After that, it is cut and degreased (15). After degreasing (15), chamfering is performed, the inner outer electrode 4 is formed with the same paste as the inner electrode 2 (16), and reduction firing (17) is performed.

【0012】還元焼成(17)は、1200℃でN2
2との混合ガス中で焼成を行うわけであるが、このと
き前記のようにして製造した積層体を、密閉状態で見か
け気孔率が50〜70%の焼成サヤを利用し、サヤ内に
積層体が重なり合わない様にサヤ詰めして、これを多段
階に積み重ねてから、還元ガスのフロー条件をコントロ
ールしながら還元焼成(17)を実施する。この場合、
還元ガスを均一にグリーンチップの表面に当てることに
より、焼成体の表面部、即ち、無効層3への酸素供給が
均一にコントロールでき、これによって無効層3の表面
層付近でのセラミックスの緻密化が抑制され、無効層3
の外層部6のほぼ均一なセラミックの組織化を実現し
た。この時、密閉状態で、且つ、見かけ気孔率が50〜
70%の焼成サヤを使用して還元焼成することで、焼成
サヤ内の還元ガスのフロー状態を均一化している。その
後、空気中で850℃で再酸化(18)を行い、Agか
らなる外側外部電極5を形成した(19)後、焼き付け
を行う。
In the reduction calcination (17), calcination is performed at 1200 ° C. in a mixed gas of N 2 and H 2. At this time, the laminate produced as described above is sealed in a closed state with apparent pores. Using a baking sheath having a rate of 50 to 70%, the layers are packed in a sheath so that the laminates do not overlap each other, stacked in multiple stages, and then reduced and fired while controlling the flow conditions of the reducing gas ( 17) is performed. in this case,
By uniformly applying the reducing gas to the surface of the green chip, the supply of oxygen to the surface portion of the fired body, that is, the supply of oxygen to the ineffective layer 3 can be uniformly controlled, thereby densifying the ceramics near the surface layer of the ineffective layer 3. Is suppressed, the invalid layer 3
Of the outer layer portion 6 was substantially uniform. At this time, in an airtight state, and apparent porosity is 50 to
By performing reduction firing using a 70% firing sheath, the flow state of the reducing gas in the firing sheath is made uniform. Thereafter, re-oxidation (18) is performed at 850 ° C. in the air to form the outer external electrode 5 made of Ag (19), and then baking is performed.

【0013】そして最後に、0.1mAにおけるバリス
タ電圧(V0.1mA)と1KHzにおける容量(C1KHz)
を測定する。
Finally, the varistor voltage at 0.1 mA (V 0.1 mA ) and the capacitance at 1 KHz (C1 KHz)
Is measured.

【0014】このようにして製造された粒界絶縁型積層
セラミック部品について、サヤ内への積層体のサヤ詰め
形態を変化させたときのバリスタ電圧、電圧ばらつき、
容量、容量ばらつきの各電気特性(表1)に示す。
The varistor voltage, the voltage variation, and the varistor of the grain boundary insulated multilayer ceramic component manufactured as described above are changed when the shape of the laminated body in the sheath is changed.
The respective electric characteristics of capacitance and capacitance variation (Table 1) are shown.

【0015】[0015]

【表1】 [Table 1]

【0016】この(表1)から明らかなように、ランダ
ムにサヤ詰めを行い積層体同士に重なりがある場合に比
べ、サヤ内に積層体が重なり合わない様にサヤ詰めし
て、得られた素子は、各電気特性とも従来の場合よりも
大幅に向上する。このとき、ランダムにサヤ詰めして得
られた素子では、容量ばらつきが拡大していることか
ら、個々の焼成体の還元状態のばらつきが大きくなって
いることがわかる。
As is clear from Table 1, as compared with a case where the laminated bodies are randomly overlapped with each other and the laminated bodies are overlapped with each other, the laminated bodies are molded so that the laminated bodies do not overlap each other. In the element, each of the electrical characteristics is significantly improved as compared with the conventional case. At this time, in the element obtained by random padding, the variation in the capacity is increased, which indicates that the variation in the reduction state of each fired body is large.

【0017】また、上記実施例で使用した密閉状態で見
かけ気孔率が50〜70%の焼成サヤと、上端に開口部
が設けられた見かけ気孔率が50〜70%の焼成サヤと
を利用し、このうち密閉サヤ内に積層体が重なり合わな
い様にサヤ詰めして、これらを交互に多段階に積み重ね
てから還元焼成(17)を実施することで、更に、ばら
つき低減効果が確認された。この効果も(表1)に示
す。
Further, the fired sheath having an apparent porosity of 50 to 70% in a sealed state and the fired sheath having an opening at an upper end and having an apparent porosity of 50 to 70% used in the above embodiment are used. Of these, the sheath was packed in a sealed sheath so as not to overlap, and these were alternately stacked in multiple stages, and then reduction firing (17) was carried out, further confirming the variation reduction effect. . This effect is also shown in (Table 1).

【0018】この場合、サヤ詰めされた密閉サヤの底面
部と上面部の還元状態がより均一化されることで、この
効果が得られている。
In this case, this effect is obtained by making the reduced state of the bottom surface and the upper surface of the sealed sheath filled with the sheath more uniform.

【0019】なお、本実施例においては焼成サヤを積み
重ねることにより、上段に配置した焼成サヤの底部が下
段に配置された焼成サヤのふたの役割を果たすようにし
ている。そして、最上段の焼成サヤにはふたをしている
が、このふたの材質と厚みは、焼成サヤの材質および底
部の厚みと同じほうが雰囲気を均一に保つことができる
ので好ましい。
In this embodiment, by stacking the fired sheaves, the bottom of the fired shed arranged in the upper stage serves as a lid of the fired shed arranged in the lower stage. Although the top of the firing sheath is covered with a lid, the material and the thickness of the lid are preferably the same as the material of the firing sheath and the thickness of the bottom portion because the atmosphere can be kept uniform.

【0020】また、本実施例において焼成サヤに設けた
開口部は対向する上端部を凹状にしたものであるが、こ
れ以外にもガス雰囲気が均一になるような形状であれば
上端部に限らずどの部分に開口部を設けたとしても同様
の効果が得られる。
In the present embodiment, the opening provided in the firing sheath has a concave upper end portion, but other than the upper end portion as long as the gas atmosphere becomes uniform. The same effect can be obtained regardless of which part the opening is provided.

【0021】[0021]

【発明の効果】以上、本発明によると、還元焼成の際、
使用する焼成サヤを密閉状態で、且つ、見かけ気孔率が
50〜70%のものを使用し、積層体同士の重なりが無
いようにランダムにサヤ詰めし、これを多段階に積み重
ねて還元焼成することで、焼成後のセラミック組織の均
一化を実現している。
As described above, according to the present invention, during reduction firing,
The fired sheath to be used is used in a sealed state and has an apparent porosity of 50 to 70%, and is randomly packed so that the laminated bodies do not overlap with each other. This realizes a uniform ceramic structure after firing.

【0022】その結果、高積層品や大形状品を問わず
に、再酸化ばらつきを抑制することができ、電気特性の
ばらつきの少ない、特性再現性の高い粒界絶縁型積層セ
ラミック部品を提供することができるものである。
As a result, regardless of whether the product is a high-lamination product or a large-sized product, a re-oxidation variation can be suppressed, and a grain boundary insulated multilayer ceramic component with little variation in electrical characteristics and high reproducibility of the characteristics is provided. Is what you can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一般的な粒界絶縁型積層セラミック部品の断面
FIG. 1 is a cross-sectional view of a general grain boundary insulating multilayer ceramic component.

【図2】本発明の一実施例における粒界絶縁型積層セラ
ミック部品の製造工程図
FIG. 2 is a manufacturing process diagram of a grain boundary insulating type multilayer ceramic component according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 セラミック層 2 内部電極 3 無効層 4 内側外部電極 5 外側外部電極 6 無効層の外層部 DESCRIPTION OF SYMBOLS 1 Ceramic layer 2 Internal electrode 3 Invalid layer 4 Inner external electrode 5 Outer external electrode 6 Outer layer part of invalid layer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01G 4/12 H01G 13/00 - 13/06 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01G 4/12 H01G 13/00-13/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】SrTiO3を主成分とする複数のセラミ
ック層と、複数の内部電極とを交互に、且つ上層と下層
に前記セラミック層が配置される様に積層した積層体を
密閉状態で通気性をもつ見かけ気孔率が50〜70%の
焼成サヤを利用し、この焼成サヤ内に前記積層体が重な
り合わない様にサヤ詰めし、次に前記積層体を詰めた焼
成サヤを多段階に積み重ねてサヤ内の不均一な残留酸素
をサヤの気孔を介して還元ガスで置換しながら還元焼成
して積層体の外層部分のセラミック組織の均一な焼結を
行い、次に前記積層体を再酸化しその後前記積層体の前
記内部電極が露出した端面に外部電極を形成することを
特徴とする粒界絶縁型積層セラミック部品の製造方法。
1. A laminated body in which a plurality of ceramic layers containing SrTiO 3 as a main component and a plurality of internal electrodes are alternately laminated so that the ceramic layers are arranged in an upper layer and a lower layer.
A fired sagger having an apparent porosity of 50 to 70%, which is air-permeable in a closed state, is stuffed into the sinter so that the laminates do not overlap, and then the sinter is filled with the laminate. Is accumulated in multiple stages, resulting in uneven residual oxygen in the sheath.
Calcination while replacing with the reducing gas through the pores of the sheath
To uniformly sinter the ceramic structure of the outer layer of the laminate.
And then re-oxidizing the laminate, and thereafter forming an external electrode on an end surface of the laminate where the internal electrode is exposed.
【請求項2】密閉状態で通気性をもつ見かけ気孔率が5
0〜70%の第1の焼成サヤと、開口部が設けられた見
かけ気孔率が50〜70%の第2の焼成サヤとを利用
し、前記第1の焼成サヤ内に前記積層体が重なり合わな
い様にサヤ詰めした後これらを交互に多段階に積み重ね
サヤ内の不均一な残留酸素をサヤの気孔を介して還元
ガスで置換しながら還元焼成する請求項1記載の粒界絶
縁型積層セラミック部品の製造方法。
2. An apparent porosity of 5 having air permeability in a sealed state.
The laminated body is overlapped in the first fired sheath by utilizing a first fired sheath having an opening of 0 to 70% and a second fired sheath having an opening having an apparent porosity of 50 to 70%. After stuffing so that they do not fit together, they are alternately stacked in multiple stages to reduce the uneven residual oxygen in the pod through the pores of the pod.
2. The method for producing a grain boundary insulated multilayer ceramic component according to claim 1, wherein reduction firing is performed while replacing with a gas .
JP10925095A 1995-05-08 1995-05-08 Manufacturing method of grain boundary insulated multilayer ceramic component Expired - Fee Related JP3246267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10925095A JP3246267B2 (en) 1995-05-08 1995-05-08 Manufacturing method of grain boundary insulated multilayer ceramic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10925095A JP3246267B2 (en) 1995-05-08 1995-05-08 Manufacturing method of grain boundary insulated multilayer ceramic component

Publications (2)

Publication Number Publication Date
JPH08306573A JPH08306573A (en) 1996-11-22
JP3246267B2 true JP3246267B2 (en) 2002-01-15

Family

ID=14505423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10925095A Expired - Fee Related JP3246267B2 (en) 1995-05-08 1995-05-08 Manufacturing method of grain boundary insulated multilayer ceramic component

Country Status (1)

Country Link
JP (1) JP3246267B2 (en)

Also Published As

Publication number Publication date
JPH08306573A (en) 1996-11-22

Similar Documents

Publication Publication Date Title
JP7227690B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP7290914B2 (en) Manufacturing method of multilayer ceramic capacitor
JP6570478B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP7231340B2 (en) Ceramic electronic component and manufacturing method thereof
JP2018032788A (en) Multilayer ceramic capacitor and method for manufacturing the same
TW200401315A (en) Stack capacitor and the manufacturing method thereof
JP2019201161A (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2012169620A (en) Multilayer ceramic electronic component and method for manufacturing the same
JP3506964B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2018139253A (en) Multilayer ceramic capacitor and manufacturing method thereof
JP3944144B2 (en) Ceramic electronic component and method for manufacturing the same
JP3064659B2 (en) Manufacturing method of multilayer ceramic element
JP3246267B2 (en) Manufacturing method of grain boundary insulated multilayer ceramic component
JP3982267B2 (en) Manufacturing method of multilayer piezoelectric ceramic element
JP4803854B2 (en) Manufacturing method of multilayer ceramic capacitor
JP3239666B2 (en) Manufacturing method of grain boundary insulated multilayer ceramic component
JP3725352B2 (en) Manufacturing method of ceramic electronic components
JP2756745B2 (en) Manufacturing method of multilayer ceramic capacitor
JPH0878284A (en) Composite electronic device and its production
JP4513388B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2020113575A (en) Ceramic electronic component and manufacturing method of the same
JP2970110B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2019067827A (en) Laminate electronic component
JP2000091149A (en) Manufacture of grain boundary insulation type laminated ceramic component
JP3414123B2 (en) Method for manufacturing grain boundary insulating multilayer ceramic element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees