JP4513388B2 - Manufacturing method of multilayer ceramic electronic component - Google Patents

Manufacturing method of multilayer ceramic electronic component Download PDF

Info

Publication number
JP4513388B2
JP4513388B2 JP2004115286A JP2004115286A JP4513388B2 JP 4513388 B2 JP4513388 B2 JP 4513388B2 JP 2004115286 A JP2004115286 A JP 2004115286A JP 2004115286 A JP2004115286 A JP 2004115286A JP 4513388 B2 JP4513388 B2 JP 4513388B2
Authority
JP
Japan
Prior art keywords
barium titanate
weight
multilayer ceramic
metal paste
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004115286A
Other languages
Japanese (ja)
Other versions
JP2004336023A (en
Inventor
謙次 岡
和希 平田
淳夫 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004115286A priority Critical patent/JP4513388B2/en
Publication of JP2004336023A publication Critical patent/JP2004336023A/en
Application granted granted Critical
Publication of JP4513388B2 publication Critical patent/JP4513388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、例えば積層セラミックコンデンサなどの積層セラミック電子部品の製造方法に関するものである。   The present invention relates to a method for manufacturing a multilayer ceramic electronic component such as a multilayer ceramic capacitor.

従来の積層セラミック電子部品の製造方法について積層セラミックコンデンサを例に説明する。   A conventional method for manufacturing a multilayer ceramic electronic component will be described by taking a multilayer ceramic capacitor as an example.

まず、チタン酸バリウムを主成分とする無機粉末に溶剤、バインダ、可塑剤などを混合してセラミックシートを作製する。   First, a ceramic sheet is prepared by mixing a solvent, a binder, a plasticizer, and the like with inorganic powder mainly composed of barium titanate.

次に、セラミックシート上に金属ペーストを所望の内部電極形状に印刷する。   Next, a metal paste is printed on the ceramic sheet in a desired internal electrode shape.

金属ペーストは、Ni粉末、セラミックシートを構成する無機粉末と同じ無機粉末、バインダ、溶剤などの有機物を混合したものである。   The metal paste is a mixture of Ni powder, the same inorganic powder as the inorganic powder constituting the ceramic sheet, and an organic substance such as a binder and a solvent.

次いで、金属ペーストを印刷したセラミックシートを積層して、積層体を作製し、焼成する。   Next, the ceramic sheets on which the metal paste is printed are laminated to produce a laminated body and fired.

その後、外部電極を形成し、積層セラミックコンデンサを得る。   Thereafter, external electrodes are formed to obtain a multilayer ceramic capacitor.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
特開平9−69467号公報
For example, Patent Document 1 is known as prior art document information related to the invention of this application.
JP-A-9-69467

内部電極にセラミックシートと同様の無機粉末を添加することにより、両者の接着性を向上させることができる。   By adding the same inorganic powder as the ceramic sheet to the internal electrode, the adhesion between them can be improved.

しかしながら、上記従来の方法において金属ペーストに添加するチタン酸バリウムはセラミックシートに用いるチタン酸バリウムと同じものが使用される。   However, the barium titanate added to the metal paste in the conventional method is the same as the barium titanate used for the ceramic sheet.

そのため、金属ペースト中のチタン酸バリウムとセラミックシート中のチタン酸バリウムが同時に焼結するため、両者が反応し、粒成長することにより内部電極に欠陥が発生しやすくなるという問題点を有していた。   Therefore, since the barium titanate in the metal paste and the barium titanate in the ceramic sheet are sintered at the same time, there is a problem that defects are likely to occur in the internal electrode due to the reaction between both of them and grain growth. It was.

そこで、本発明は、内部電極の欠陥を抑制し、所望の静電容量値などの電気特性を有する積層セラミック電子部品を提供することを目的とするものである。   Accordingly, an object of the present invention is to provide a multilayer ceramic electronic component that suppresses defects in internal electrodes and has electrical characteristics such as a desired capacitance value.

この目的を達成するために本発明は以下の構成を有するものである。   In order to achieve this object, the present invention has the following configuration.

本発明は、第1のチタン酸バリウムを主成分とするセラミックシートと、結晶格子定数のc軸とa軸の比c/aが第1のチタン酸バリウムよりも大きい第2のチタン酸バリウムを含有した内部電極ペーストとを交互に積層して積層体を作製するものであり、金属ペースト中のチタン酸バリウムの方がセラミックシート中のチタン酸バリウムよりも焼結温度が高く、両者の間での反応が起こりにくいため、内部電極の欠陥の発生を抑制することができる。   The present invention provides a ceramic sheet mainly composed of a first barium titanate, and a second barium titanate in which the ratio c / a of the c-axis to a-axis of the crystal lattice constant is larger than that of the first barium titanate. The internal electrode paste contained is alternately laminated to produce a laminate, and the barium titanate in the metal paste has a higher sintering temperature than the barium titanate in the ceramic sheet. Therefore, the occurrence of defects in the internal electrode can be suppressed.

本発明による積層セラミック電子部品の製造方法では、内部電極となる金属ペースト中に添加するチタン酸バリウムの結晶格子定数のc/aの値を、誘電体層となるセラミックシート中の主成分であるチタン酸バリウムのc/a値よりも大きいものを用い、かつ前記金属ペースト中に添加するチタン酸バリウムを、金属粉末重量を100重量部としたとき15重量部〜25重量部であるものを用いたので、焼成時のチタン酸バリウムの焼結を制御し、内部電極の欠陥を抑制し、所望の電気特性を有する積層セラミック電子部品を提供することができる。 In the method for producing a multilayer ceramic electronic component according to the present invention, the value of c / a of the crystal lattice constant of barium titanate added to the metal paste serving as the internal electrode is the main component in the ceramic sheet serving as the dielectric layer. A barium titanate having a c / a value larger than that of barium titanate is used , and the barium titanate added to the metal paste is 15 parts by weight to 25 parts by weight when the metal powder weight is 100 parts by weight. since had, it is possible to control the sintering of the barium titanate during firing, to suppress the defects of the internal electrodes, to provide a laminated ceramic electronic component having the desired electrical characteristics.

以下、積層セラミックコンデンサを例に、一実施の形態を用いて本発明について説明する。 Hereinafter, the present invention will be described with reference to an embodiment using a multilayer ceramic capacitor as an example.

図1は、積層セラミックコンデンサの一部切欠斜視図であり、誘電体層10と内部電極11とが交互に積層されて積層体を構成し、内部電極11はその端部が積層体の対向する両端面に交互に露出するよう積層されており、積層体の両端面に形成された一対の外部電極12に交互に接続されている。   FIG. 1 is a partially cutaway perspective view of a multilayer ceramic capacitor. Dielectric layers 10 and internal electrodes 11 are alternately stacked to form a multilayer body, and the internal electrode 11 has an end facing the multilayer body. They are laminated so as to be alternately exposed on both end faces, and are alternately connected to a pair of external electrodes 12 formed on both end faces of the laminate.

まず、主成分である第1のチタン酸バリウムとして(表1)に示す3種類のc/aを持つものと、副成分としてDy23などの希土類元素化合物と、MgO、MnO2などを添加して混合し、仮焼、粉砕を行ってセラミック粉体を作製する。ここでc/aは、チタン酸バリウムの結晶格子におけるc軸とa軸の結晶格子定数の比を示す。 First, as the main component, the first barium titanate having three kinds of c / a shown in (Table 1), a rare earth element compound such as Dy 2 O 3 as an auxiliary component, MgO, MnO 2, etc. Add and mix, calcine and pulverize to produce ceramic powder. Here, c / a represents the ratio of the crystal lattice constant of the c-axis to the a-axis in the barium titanate crystal lattice.

その後このセラミック粉体と、有機バインダとしてポリビニルブチラール樹脂、溶剤としてn−酢酸ブチル、可塑剤としてフタル酸エステルなどを混合してセラミックスラリーを得る。そしてドクターブレード法などを用いて、焼成により誘電体層10となるセラミックシートを作製する。   Thereafter, this ceramic powder is mixed with polyvinyl butyral resin as an organic binder, n-butyl acetate as a solvent, phthalate ester as a plasticizer, and the like to obtain a ceramic slurry. And the ceramic sheet used as the dielectric material layer 10 by baking is produced using a doctor blade method etc.

一方、第2のチタン酸バリウムとして(表1)に示す3種類のc/a値を持つものを、Ni粉末100重量部に対して15,25,30重量部と変え、所定量のDy23などの希土類化合物、有機バインダとしてポリビニルブチラール樹脂、溶剤としてn−酢酸ブチル、可塑剤としてフタル酸エステルを混合して、焼成により内部電極11となる金属ペーストを作製する。 On the other hand, the second barium titanate having three kinds of c / a values shown in (Table 1) is changed to 15, 25, 30 parts by weight with respect to 100 parts by weight of Ni powder, and a predetermined amount of Dy 2 is obtained. A rare earth compound such as O 3 , polyvinyl butyral resin as an organic binder, n-butyl acetate as a solvent, and a phthalate ester as a plasticizer are mixed, and a metal paste that becomes the internal electrode 11 is prepared by firing.

ここで、セラミックシートに添加した第1のチタン酸バリウムと金属ペーストに添加した第2のチタン酸バリウムについて説明する。   Here, the first barium titanate added to the ceramic sheet and the second barium titanate added to the metal paste will be described.

チタン酸バリウム結晶格子のa軸とc軸の長さの比であるc/aの値は、1〜1.01の間の値をとるが、この値が第1のチタン酸バリウムより第2のチタン酸バリウムの方が大きく、両者の差が大きいほど、焼成工程において両者の間での反応が起こりにくく、内部構造欠陥の抑制に寄与できるため好ましい。   The value of c / a, which is the ratio of the lengths of the a-axis and c-axis of the barium titanate crystal lattice, takes a value between 1 and 1.01, but this value is less than that of the first barium titanate. The larger the barium titanate, the larger the difference between the two is more preferable because the reaction between the two is less likely to occur in the firing step and can contribute to the suppression of internal structural defects.

なお、c/aの値が1.01を越えるチタン酸バリウムは、結晶構造が異なるため積層セラミックコンデンサなどの誘電体層として用いることができない。   Note that barium titanate having a c / a value exceeding 1.01 cannot be used as a dielectric layer of a multilayer ceramic capacitor or the like because of a different crystal structure.

Figure 0004513388
Figure 0004513388

本実施の形態では、(表1)に示すように1.006〜1.008のc/a値を持つチタン酸バリウムを第1、第2のチタン酸バリウムとして用いた。   In the present embodiment, as shown in Table 1, barium titanate having a c / a value of 1.006 to 1.008 was used as the first and second barium titanates.

上記第1のチタン酸バリウム、第2のチタン酸バリウムの平均粒径は0.4μmである。ただし、内部電極の欠陥を防止するため第2のチタン酸バリウムの粒径は、内部電極11の厚みよりも大きくならないようにすることが重要である。   The average particle diameter of the first barium titanate and the second barium titanate is 0.4 μm. However, it is important that the particle diameter of the second barium titanate is not larger than the thickness of the internal electrode 11 in order to prevent defects in the internal electrode.

さらに、第1のチタン酸バリウムと第2のチタン酸バリウムは、固相法で作製したものである。この方法で作製すると、c/aの大きなチタン酸バリウムを容易に得ることができるからである。   Further, the first barium titanate and the second barium titanate are produced by a solid phase method. This is because barium titanate having a large c / a can be easily obtained by this method.

(表1)に示したc/aの値を持つチタン酸バリウムの焼結開始温度について、熱分析を用いて測定した結果、c/a値が1.006のものは1050℃であり、c/a値が1.007のものは1150℃であり、またc/aが1.008のものは1200℃であった。   The sintering start temperature of barium titanate having the value of c / a shown in Table 1 was measured using thermal analysis. As a result, a sample having a c / a value of 1.006 was 1050 ° C., and c The / a value of 1.007 was 1150 ° C., and the c / a of 1.008 was 1200 ° C.

また、金属ペースト中の第2のチタン酸バリウムの重量は、金属粉末重量を100重量部としたとき25重量部以下(0を除く)、好ましくは10〜25重量部とするものであり、内部電極の欠陥の発生を抑制しつつ、誘電体層10と内部電極11の接着性を向上させることができる。ただし、25重量部を越えると、このチタン酸バリウムによる内部電極11の欠陥が顕著になり好ましくない。   The weight of the second barium titanate in the metal paste is 25 parts by weight or less (excluding 0), preferably 10 to 25 parts by weight when the weight of the metal powder is 100 parts by weight. The adhesiveness between the dielectric layer 10 and the internal electrode 11 can be improved while suppressing the occurrence of electrode defects. However, when the amount exceeds 25 parts by weight, the defect of the internal electrode 11 due to the barium titanate becomes remarkable, which is not preferable.

次に、セラミックシートの上に上記の金属ペーストを所望の内部電極形状にスクリーン印刷する。   Next, the above metal paste is screen-printed on the ceramic sheet in a desired internal electrode shape.

次いで、セラミックシートのみを複数枚積層したものの上に、金属ペーストを印刷したセラミックシートを所望の枚数積層し、さらにセラミックシートのみを複数枚積層し、積層体を得る。   Next, a desired number of ceramic sheets printed with a metal paste are laminated on a laminate of only a plurality of ceramic sheets, and a plurality of ceramic sheets alone are further laminated to obtain a laminate.

次に、積層体を所望の形状に切断した後、ジルコニア粉末を敷いたジルコニア質のサヤに入れ、350℃まで窒素中で加熱し、有機バインダを燃焼させ、その後N2+H2中、最高温度1250℃で2時間焼成して焼結体を得る。 Next, after cutting the laminate into a desired shape, it is placed in a zirconia sheath with zirconia powder and heated to 350 ° C. in nitrogen to burn the organic binder, and then the maximum temperature in N 2 + H 2 Firing is performed at 1250 ° C. for 2 hours to obtain a sintered body.

この焼成過程について説明する。   This firing process will be described.

まず500〜600℃で金属ペースト中のNiの焼結が開始するが、添加したチタン酸バリウムにより、Ni金属粉末同士が反応し、過度に焼結が進みすぎて表面張力によりNiが粒状になり、内部電極の連続性が損なわれるのを抑制する。   First, the sintering of Ni in the metal paste starts at 500 to 600 ° C., but the Ni metal powder reacts with the added barium titanate, and the sintering proceeds excessively, and Ni becomes granular due to surface tension. This prevents the continuity of the internal electrodes from being impaired.

続いて、約1100℃からセラミックシートの焼結が開始する。しかしながら、金属ペースト中のチタン酸バリウムのc/aが1.007の場合には、約1150℃以上にならなければ焼結を開始しない。   Subsequently, the sintering of the ceramic sheet starts from about 1100 ° C. However, when the c / a of barium titanate in the metal paste is 1.007, sintering does not start unless the temperature is about 1150 ° C. or higher.

つまり、セラミックシートの焼結がほとんど完了した後、金属ペースト中のチタン酸バリウムが焼結することとなる。   That is, barium titanate in the metal paste is sintered after sintering of the ceramic sheet is almost completed.

その結果、金属ペーストとセラミックシート中のチタン酸バリウムが反応し、粒成長することによって誘起される内部電極11の欠陥の発生を抑制することができるのである。   As a result, the metal paste and barium titanate in the ceramic sheet react with each other, and the generation of defects in the internal electrode 11 induced by grain growth can be suppressed.

次に、得られた焼結体の内部電極11の露出した端面に外部電極12として、900℃、窒素雰囲気焼成用銅ペーストを塗布、焼付け、図1に示すような積層セラミックコンデンサを得る。   Next, a copper paste for firing at 900 ° C. in a nitrogen atmosphere is applied as the external electrode 12 to the exposed end face of the internal electrode 11 of the obtained sintered body and baked to obtain a multilayer ceramic capacitor as shown in FIG.

これらの試料番号1〜5について、各々100個の試料の断面を観察し、デラミネーションが発生している試料数をデラミネーション発生数として(表1)に示した。   With respect to these sample numbers 1 to 5, the cross sections of 100 samples were observed, and the number of samples in which delamination was generated is shown in (Table 1) as the number of delamination generation.

(表1)に示したように、試料番号2〜4の積層セラミックコンデンサは、内部電極11の欠陥であるデラミネーションの発生がなく、その結果所望の静電容量が得られている。   As shown in Table 1, the multilayer ceramic capacitors of sample numbers 2 to 4 do not generate delamination, which is a defect of the internal electrode 11, and as a result, a desired capacitance is obtained.

本実施の形態においては、金属ペースト中にセラミックシート中のチタン酸バリウムよりc/a(チタン酸バリウム結晶格子のa軸とc軸の長さの比)の大きなチタン酸バリウムを添加する。温度変化に伴う相転移を行うチタン酸バリウムのc/aは1〜1.01の範囲で変動し、c/aが大きいほど焼結温度が高くなる。より好ましくは、内部電極11に添加するチタン酸バリウムは、セラミックシートに添加するチタン酸バリウムより焼結温度が50℃以上高いものを用いる。   In the present embodiment, barium titanate having a larger c / a (ratio between the lengths of the a-axis and the c-axis of the barium titanate crystal lattice) than barium titanate in the ceramic sheet is added to the metal paste. The c / a of barium titanate that undergoes a phase transition accompanying a temperature change varies in the range of 1 to 1.01, and the sintering temperature increases as c / a increases. More preferably, barium titanate added to the internal electrode 11 is one having a sintering temperature higher by 50 ° C. or more than barium titanate added to the ceramic sheet.

この結果、金属ペーストとセラミックシートに添加したチタン酸バリウムの反応による異常粒成長を抑制し、内部電極11の欠陥の発生を防止できる。   As a result, abnormal grain growth due to the reaction between the metal paste and barium titanate added to the ceramic sheet can be suppressed, and the occurrence of defects in the internal electrode 11 can be prevented.

なお、本発明の実施の形態においては、c/a値の異なるチタン酸バリウムを用いて内部電極となる金属ペーストの過焼結を抑制し、内部構造欠陥の発生を抑えたが、c/a値を利用する代わりに結晶粒径の異なるチタン酸バリウムを用いて金属ペースト中のチタン酸バリウムの焼結開始温度をずらせることによっても上記と同様の効果が得られる。   In the embodiment of the present invention, barium titanate having a different c / a value was used to suppress oversintering of the metal paste serving as the internal electrode, thereby suppressing the occurrence of internal structural defects. The same effect as described above can be obtained by shifting the sintering start temperature of barium titanate in the metal paste using barium titanate having a different crystal grain size instead of using the value.

本発明による積層セラミック電子部品の製造方法では、内部電極となる金属ペースト中に添加するチタン酸バリウムの結晶格子のc/aの値を、誘電体層となるセラミックシート中の主成分であるチタン酸バリウムのc/a値よりも大きいものを用い、かつ前記金属ペースト中に添加するチタン酸バリウムを、金属粉末重量を100重量部としたとき15重量部〜25重量部であるものを用いたので、焼成時のチタン酸バリウムの焼結を制御することができ、内部電極の欠陥を抑制し、所望の電気特性を有する積層セラミック電子部品を提供することができるという効果を奏し積層セラミックコンデンサなどの積層セラミック電子部品の製造方法等に有用である。 In the method for manufacturing a multilayer ceramic electronic component according to the present invention, the value of c / a of the crystal lattice of barium titanate added to the metal paste serving as the internal electrode is set to titanium which is the main component in the ceramic sheet serving as the dielectric layer. A barium titanate having a value larger than the c / a value of barium oxide was used , and the barium titanate added to the metal paste was 15 to 25 parts by weight when the metal powder weight was 100 parts by weight. Therefore, it is possible to control the sintering of barium titanate during firing, to suppress the defects of the internal electrodes, and to provide a multilayer ceramic electronic component having desired electrical characteristics. It is useful for the manufacturing method of multilayer ceramic electronic parts.

本発明の実施の形態1における積層セラミックコンデンサの一部切欠斜視図1 is a partially cutaway perspective view of a multilayer ceramic capacitor according to a first embodiment of the present invention.

符号の説明Explanation of symbols

10 誘電体層
11 内部電極
12 外部電極
10 Dielectric layer 11 Internal electrode 12 External electrode

Claims (2)

第1のチタン酸バリウムを主成分とするセラミックシートと金属粉末と第2のチタン酸バリウムを含有した金属ペーストとを交互に積層して積層体を作製する第1の工程と、前記積層体を焼成する第2の工程とを備え、前記第1のチタン酸バリウムの結晶格子のc軸とa軸の比(c/a)の値より前記第2のチタン酸バリウムの結晶格子のc軸とa軸の比(c/a)の値が大きい値であり、第2のチタン酸バリウムは、金属粉末重量を100重量部としたとき15重量部〜25重量部であるものを用いる積層セラミック電子部品の製造方法。 A first step of producing a laminate by alternately laminating a ceramic sheet mainly composed of a first barium titanate, a metal powder, and a metal paste containing a second barium titanate; A second step of firing, and the c-axis of the second barium titanate crystal lattice from the value of the ratio of the c-axis to the a-axis (c / a) of the first barium titanate crystal lattice; Ri Nedea large value of the ratio of a-axis (c / a), a second barium titanate, laminated ceramics used as a 15 weight parts to 25 parts by weight when the metal powder by weight and 100 parts by weight Manufacturing method of electronic components. 第2のチタン酸バリウムは、固相法で作製したものを用いる請求項1に記載の積層セラミック電子部品の製造方法。 The method for producing a multilayer ceramic electronic component according to claim 1, wherein the second barium titanate is produced by a solid phase method.
JP2004115286A 2003-04-14 2004-04-09 Manufacturing method of multilayer ceramic electronic component Expired - Fee Related JP4513388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004115286A JP4513388B2 (en) 2003-04-14 2004-04-09 Manufacturing method of multilayer ceramic electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003108829 2003-04-14
JP2004115286A JP4513388B2 (en) 2003-04-14 2004-04-09 Manufacturing method of multilayer ceramic electronic component

Publications (2)

Publication Number Publication Date
JP2004336023A JP2004336023A (en) 2004-11-25
JP4513388B2 true JP4513388B2 (en) 2010-07-28

Family

ID=33513117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004115286A Expired - Fee Related JP4513388B2 (en) 2003-04-14 2004-04-09 Manufacturing method of multilayer ceramic electronic component

Country Status (1)

Country Link
JP (1) JP4513388B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4587924B2 (en) * 2005-09-27 2010-11-24 京セラ株式会社 Multilayer ceramic capacitor
JP4635936B2 (en) * 2006-03-29 2011-02-23 Tdk株式会社 Dielectric element and manufacturing method thereof
JP5157799B2 (en) * 2008-10-02 2013-03-06 住友金属鉱山株式会社 Conductive paste, and dry film and multilayer ceramic capacitor using the conductive paste
TWI421882B (en) * 2009-06-08 2014-01-01 Daiken Chemical Co Ltd Barium titanate powder, nickel paste, preparation method and laminated ceramic capacitors

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0969467A (en) * 1995-08-31 1997-03-11 Kyocera Corp Temperature compensating multilayer ceramic capacitor and manufacture thereof
JPH10172855A (en) * 1996-12-05 1998-06-26 Taiyo Yuden Co Ltd Laminated layer chip parts and conductive paste used for the parts
JPH11273986A (en) * 1998-01-20 1999-10-08 Murata Mfg Co Ltd Dielectric ceramic and its manufacture and laminated ceramic electronic part and its manufacture
JP2001185437A (en) * 1999-12-24 2001-07-06 Taiyo Yuden Co Ltd Laminated ceramic capacitor
JP2002075771A (en) * 2000-08-30 2002-03-15 Kyocera Corp Laminated electronic component and conductive paste
JP2002265278A (en) * 2001-03-12 2002-09-18 Murata Mfg Co Ltd Titanium oxide powder, method for producing the same, method for producing barium titanate powder, dielectric ceramic and multilayer ceramic capacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0969467A (en) * 1995-08-31 1997-03-11 Kyocera Corp Temperature compensating multilayer ceramic capacitor and manufacture thereof
JPH10172855A (en) * 1996-12-05 1998-06-26 Taiyo Yuden Co Ltd Laminated layer chip parts and conductive paste used for the parts
JPH11273986A (en) * 1998-01-20 1999-10-08 Murata Mfg Co Ltd Dielectric ceramic and its manufacture and laminated ceramic electronic part and its manufacture
JP2001185437A (en) * 1999-12-24 2001-07-06 Taiyo Yuden Co Ltd Laminated ceramic capacitor
JP2002075771A (en) * 2000-08-30 2002-03-15 Kyocera Corp Laminated electronic component and conductive paste
JP2002265278A (en) * 2001-03-12 2002-09-18 Murata Mfg Co Ltd Titanium oxide powder, method for producing the same, method for producing barium titanate powder, dielectric ceramic and multilayer ceramic capacitor

Also Published As

Publication number Publication date
JP2004336023A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
KR101729284B1 (en) Multilayer ceramic capacitor and method for producing multilayer ceramic capacitor
JP5804064B2 (en) Manufacturing method of multilayer ceramic capacitor
JP4587924B2 (en) Multilayer ceramic capacitor
JP5590224B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
WO2012043208A1 (en) Dielectric ceramic, multilayer ceramic electronic component, and methods for producing same
JP6922701B2 (en) Dielectric compositions, electronic components and laminated electronic components
JP4513388B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2006041392A (en) Multilayer ceramic capacitor
JP2011155123A (en) Laminated ceramic capacitor
JP2003309039A (en) Multilayered ceramic electronic parts and method of manufacturing the same
JP3142014B2 (en) Manufacturing method of multilayer ceramic capacitor
JP5037009B2 (en) Sintered body, ceramic capacitor and manufacturing method thereof
JP2008179493A (en) Dielectric porcelain composition and electronic component
JP2005101317A (en) Ceramic electronic component and its manufacturing method
JP3982267B2 (en) Manufacturing method of multilayer piezoelectric ceramic element
JP2010212503A (en) Laminated ceramic capacitor
JP6226078B2 (en) Multilayer ceramic capacitor
JP2007169088A (en) Sintered compact, ceramic capacitor, and their production method
JP3019854B1 (en) Dielectric ceramic composition, multilayer ceramic capacitor using the same, and method of manufacturing the same
JP3317246B2 (en) Composite ceramic and composite ceramic element
JP2004079686A (en) Dielectric ceramic and stacked ceramic capacitor using the same
JP5000088B2 (en) Method for manufacturing dielectric ceramic composition and method for manufacturing ceramic capacitor
JP4165434B2 (en) Multilayer ceramic capacitor
JP2012036083A (en) Sintered compact, ceramic capacitor, and method of manufacturing the same
JP2001080954A (en) Laminated ceramic composite capacitor and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070405

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100503

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees