JP3725352B2 - Manufacturing method of ceramic electronic components - Google Patents

Manufacturing method of ceramic electronic components Download PDF

Info

Publication number
JP3725352B2
JP3725352B2 JP34123498A JP34123498A JP3725352B2 JP 3725352 B2 JP3725352 B2 JP 3725352B2 JP 34123498 A JP34123498 A JP 34123498A JP 34123498 A JP34123498 A JP 34123498A JP 3725352 B2 JP3725352 B2 JP 3725352B2
Authority
JP
Japan
Prior art keywords
nickel
firing
ceramic electronic
manufacturing
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34123498A
Other languages
Japanese (ja)
Other versions
JP2000169243A (en
Inventor
一誠 小西
晃司 平手
剛 菅野
智 大参
和 高田
鉉 板倉
勉 末原
秀行 沖中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP34123498A priority Critical patent/JP3725352B2/en
Publication of JP2000169243A publication Critical patent/JP2000169243A/en
Application granted granted Critical
Publication of JP3725352B2 publication Critical patent/JP3725352B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Powder Metallurgy (AREA)
  • Furnace Charging Or Discharging (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、チタン酸バリウムを主成分とするセラミックシートとニッケルを内部電極とする積層体を有するセラミック電子部品の製造方法に関するものである。
【0002】
【従来の技術】
従来における焼成用サヤとしては、比較的緻密に焼結したアルミナ質またはアルミナ母材の表面にジルコニアをコートしたものでトレイ状に構成されていた。
【0003】
このような焼成用サヤは、ニッケル金属を入出力内部電極として用いた積層セラミックコンデンサなどのセラミック電子部品の製造に利用されている。すなわち、耐還元性材料を用いたセラミック誘電体のグリーンシートと、ニッケル内部電極層を公知の積層セラミックコンデンサの製造方法と同じ要領で交互に複数層積層し、加圧圧着した積層グリーンブロックを所定の大きさに切断して形成したセラミック電子部品のグリーンチップを融着防止材としてのジルコニア粉末と混合して焼成用サヤに収納し、この焼成用サヤを多段に積み重ねて焼成炉内に入れ、所定の雰囲気に制御した状態で脱脂処理を行い、続いて焼成していた。
【0004】
このように焼成した焼結体は、その両端面に銅を主成分とする電極ペーストを塗布した後、焼付けして外部電極を形成し、その表面にハンダメッキを施してセラミック電子部品を得ていた。
【0005】
【発明が解決しようとする課題】
上記従来の焼成用サヤは、比較的緻密な材料によって構成されているため、焼成用サヤ内の位置によっては焼成するセラミック電子部品の脱脂状態が不均一になったり、焼成状態にバラツキが発生しやすいものであった。その結果、構造的欠陥のデラミネーションや静電容量などの特性バラツキが発生し製品歩留りを悪化させていた。
【0006】
この対策として、多孔質アルミナ磁器の表面をジルコニアでコートした焼成用サヤを用いることも提案されているが、その材質自身および焼成用サヤの気孔にトラップされた酸素が焼成過程で焼成炉内に放出され、焼成中の酸素分圧の制御が困難になる。特にニッケル金属を入出力内部電極に用いた積層セラミックコンデンサのように焼成雰囲気を超還元状態を維持する必要がある場合に大きな課題を有するものであった。
【0007】
また、平板状の焼成用サヤを用いてセラミック電子部品のグリーンチップを平面的に並べることで上記課題の焼成バラツキをある程度改善することはできるが、焼成用サヤへのグリーンチップを並べる工数が大変となり、一度の焼成での処理量が大幅に減少し、生産性が著しく低下するといった課題を有するものであった。
【0008】
本発明は、焼成のバラツキの発生が少なく、生産性に優れたセラミック電子部品の製造方法を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
この目的を達成するために、本発明のセラミック電子部品の製造方法は、チタン酸バリウムを主成分とするセラミックシートとニッケルを主成分とする内部電極とを積層した積層体をニッケルを用いて作製した多数の通気孔を有するトレイに入れて、酸素分圧10 -8 atm以下に制御した雰囲気で焼成するものである。
【0010】
この構成とすることにより、酸素分圧が安定して制御されるため焼成バラツキを抑制し、生産性を向上させることができる。
【0011】
【発明の実施の形態】
本発明の請求項1に記載の発明は、チタン酸バリウムを主成分とするセラミックシートとニッケルを主成分とする内部電極を積層した積層体をニッケルを用いて作製した多数の通気孔を有するトレイに入れて、酸素分圧10 -8 atm以下に制御した雰囲気で焼成するものであり、焼成バラツキを著しく低減することができる。
【0012】
請求項2に記載の発明は、トレイは、ニッケル製の網を用いて作製したものであり、容易に作製することができる。
【0013】
請求項3に記載の発明は、トレイは、ニッケル製の網を二枚重ねて作製したものであり、トレイの強度を向上させることができる。
【0014】
請求項4に記載の発明は、トレイは、多数の孔を有するニッケル板を用いて作製したものであり、大きな形状のものが構成できるとともに強度的に優れたものとなる。
【0015】
請求項5に記載の発明は、トレイは、純度75.0%以上のニッケルを用いて作製したものであり、焼成時においても溶融点が高く安定した形状を保ち、寿命の優れたものとなる。
【0016】
請求項6に記載の発明は、トレイの稜部にニッケル製のフレームを設けたものであり、焼成用サヤの強度を向上し多段に積んでの使用が可能となる。
【0017】
請求項7に記載の発明は、通気孔は、積層体の最小寸法箇所より小さいものであり、積層体が通気孔より脱落するのを防止することができる。
【0020】
以下、本発明の実施の形態について図面を用いて説明する。
本発明の基本とするところは、図1,図2に示すようにニッケル製の網や、ニッケル製の金属板に多数の孔を設けたメッシュ状のもので焼成用サヤを構成した点にある。
【0021】
図1において、1はニッケル製の網でトレイ状に形成されており、2はニッケル製のフレームであり、トレイ状の網1の強度を保つため稜部に設けられている。3は網1による内外間の通気部を示している。
【0022】
また、図2において、4はニッケル製の金属板、5はメッシュ状となるように金属板4に設けた多数の孔で、この孔5は通気部となる。2はトレイ状の稜部に設けたニッケル製のフレームである。
【0023】
このようにトレイを構成する網1や金属板4およびフレーム2にニッケルを用いたのは、融点が1455℃であり、セラミック電子部品の焼成温度は一般的にこの温度より低く、被焼成物であるセラミック電子部品のグリーンチップとの反応は殆んど発生せず、しかも比較的安価で加工性に優れているためである。
【0024】
融点だけを考慮すると、融点3410℃のタングステンや、融点1660℃のチタンの利用も考えられるが、タングステンは焼成時にセラミックと反応しやすく、また高価で加工性に劣り、チタンは高価であるとともにセラミック電子部品が積層セラミックコンデンサの場合、主成分のチタン酸バリウムの組成を変えてしまうことになり、安定した品質のセラミック電子部品を生産できなくなる。
【0025】
また、図1に示すニッケル製の網1を用いる場合には、二枚重ねしたものを用いた方が機械的強度が増し、焼成用サヤを多段に積み重ねて使用しても変形しなくなり、耐久性の優れたものとなる。
【0026】
さらに、網1や孔5を多数設けた金属板4で構成するのは、脱脂または焼成過程で雰囲気の流動性が妨げられないようにして雰囲気を一定に保つためである。
【0027】
また、網1や金属板4の孔5の通気部3は、焼成用サヤに投入して焼成するセラミック電子部品のグリーンチップの最小寸法箇所より小さな寸法として被焼成物の脱落を防止する。
【0028】
さらに、ニッケルとしては純度75%以上のものを用いることが必要で、純度75.0%以下では溶融点が低下し、焼成用サヤとして繰返し使用すると変形してしまい寿命の短いものとなる。また、ニッケルと合金を作製するのに用いられる鉄、マンガン等は焼成過程で被焼成物と反応し、ピンホールを発生し外観不良や特性不良を発生するため好ましくない。
【0029】
次に、本発明の一実施の形態のセラミック電子部品の製造方法について、セラミック電子部品にニッケル金属を入出力内部電極として用いた積層セラミックコンデンサを例に説明する。
【0030】
(実施の形態1)
先ず、公知の積層セラミックコンデンサの製造方法を用い、チタン酸バリウムとバインダーを主成分とする誘電体セラミックグリーンシート面に、ニッケルを主成分とする内部電極ペーストの印刷を行う。
【0031】
内部電極を印刷したグリーンシートを、印刷した内部電極の長手方向に一層ずつ交互に所定寸法ずらしながら所定枚数加圧積層を繰返して積層体グリーンブロックを作製する。
【0032】
次に積層体グリーンブロックを所定寸法形状に切断し積層セラミックコンデンサのグリーンチッブ6を作製する。
【0033】
得られたグリーンチップ6の長手方向の両端面には、グリーンシートを挟んで、内部電極の一方の端部が一層おき交互に対向する異なる端面に露出した構成となっている。また本実施の形態における切断寸法は積層セラミックコンデンサの完成品として3216タイプの素子を作製するために、長さ3.80mm×幅1.90mmとした。また、電気特性は、温度特性がB特性で、静電容量値が1.0Fとなる材料組成物を用いた。
【0034】
次いで、グリーンチップ6の表面に融着防止材のジルコニア粉末を静電気を利用して付着させ、図1に示す焼成用サヤ7にサヤ詰めし、図3に示すように焼成用サヤ7を多段に積み重ね、焼成炉(図示せず)中に投入した後、空気中の300℃の温度で脱脂を行う。続いて酸素分圧を10-8atm以下に制御した雰囲気中の1300℃の温度で焼成を行い焼結体を得た。尚、焼成用サヤ7はニッケルの純度が99.5%以上のニッケル網及びニッケル金属棒を用い、網のメッシュ径は25メッシュのものを2枚重ねしたものを使用した。また更に焼成用サヤ7の一サヤ当たり3000個、5000個、10000個、15000個とサヤ詰め数を変動させて行った。
【0035】
得られた焼成体の面取りを行い、内部電極の一方の端部を焼結体の端面に確実に露出させた後、銅を主成分とする電極ペーストを塗布、焼付けを行い外部電極を形成し、さらに外部電極表面にハンダメッキを施し積層セラミックコンデンサを完成させた。
【0036】
得られた積層セラミックコンデンサについて、夫々のサヤ詰め毎に静電容量、tanδ及び絶縁抵抗値の評価と、デラミネーション等の内部構造不良の発生数を調査し、その結果を(表1)に示した。また、比較例として従来のアルミナ質セラミック焼結体の表面をジルコニアコートした焼成用サヤを用い、サヤ詰め数を前記同様に変動させて焼成した積層セラミックコンデンサの評価結果も併せて(表1)に示した。
【0037】
【表1】

Figure 0003725352
【0038】
(表1)に示すように、本発明の製造方法で作製した積層セラミックコンデンサは、サヤ詰め数量が増えるに従って、静電容量、tanδのバラツキが大きくなる傾向があるものの、従来の製造方法のものに比べ何れも小さく、特に、一サヤ当たりのサヤ詰め数が増えるに従って、本発明の優位性が顕著になる。また、従来の製造方法ではサヤ詰め数が増えるに従って、絶縁抵抗が極端に低下し、デラミネーションの発生が見られる。これは本発明のニッケル網を用いた焼成用サヤ7は大量焼成処理においても、網孔径の通気性により脱脂が均一に行われ構造欠陥の発生が防止され、しかも焼結過程で焼成用サヤ7からの酸素放出がなく焼成雰囲気中の酸素分圧が安定して制御されているため、得られた焼結体の特性バラツキが小さく、優れた製造方法であることが分かる。
【0039】
尚、本実施の形態で焼成用サヤ7のニッケル網2を二枚重ねし、稜部にニッケル金属のフレーム2を配したが、焼成時に焼成用サヤ7を多段積みしない場合、網1を一重にし、フレーム2を省いても差し支えがない。
【0040】
(実施の形態2)
実施の形態1と同条件で作製した積層セラミックコンデンサのグリーンチップ6を、ニッケル純度が99.5%、90.0%、80.0%、75.0%、70.0%の厚さ0.8mmのニッケルの金属板に、1.0mmの孔を2.0mm間隔で打抜いた焼成用サヤ7を用い、グリーンチップ6を一サヤに5000個サヤ詰めし、脱脂、焼成は実施の形態1と同条件で処理して作製した積層セラミックコンデンサについて、夫々静電容量、tanδ及び絶縁抵抗値と、デラミネーション等の内部構造不良発生状況を調査し、その結果を(表2)に示した。
【0041】
【表2】
Figure 0003725352
【0042】
(表2)に示すように、ニッケル純度が75.0%以上の場合は、実施の形態1の焼成用サヤ7と静電容量、tanδのバラツキ、絶縁抵抗値及び内部構造不良の発生率に差が認められない。しかしながらニッケル純度が75.0%未満の場合は絶縁抵抗値の小さいものが発生し、また焼成用サヤ7と積層セラミックコンデンサ素子との反応が認められるとともに、焼成用サヤ7の側壁部分からのニッケル膜の部分剥離の発生が認められるため、繰返しの焼成使用には適さないことが解った。
【0043】
【発明の効果】
以上、本発明によれば、一度にセラミック電子部品を大量に焼成する場合、脱脂状態の不均一性を低減し、焼成雰囲気中の酸素分圧を一定条件に維持することが容易になり、焼成バラツキを抑制することができる。その結果、構造欠陥のデラミネーション不良の発生がなく、電気特性のバラツキも小さく、生産性に優れたセラミック電子部品を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態のニッケル網を用いた焼成用サヤの斜視図
【図2】同ニッケル金属板をパンチングした焼成サヤの斜視図
【図3】同セラミック電子部品をサヤ詰めした状態を示す斜視図
【符号の説明】
1 網
2 フレーム
3 通気部
4 金属板
5 孔
6 グリーンチップ
7 焼成用サヤ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a ceramic electronic component having a ceramic sheet mainly composed of barium titanate and a laminate having nickel as an internal electrode.
[0002]
[Prior art]
Conventional firing sheaths have been formed into a tray shape with a relatively densely sintered alumina or alumina base material coated with zirconia.
[0003]
Such a firing sheath is used for manufacturing a ceramic electronic component such as a multilayer ceramic capacitor using nickel metal as an input / output internal electrode. That is, a green sheet of ceramic dielectric using a reduction-resistant material and a nickel internal electrode layer are alternately laminated in the same manner as a known multilayer ceramic capacitor manufacturing method, and a laminated green block that is pressure-bonded is predetermined. The green chip of the ceramic electronic part formed by cutting to the size of γ is mixed with zirconia powder as an anti-fusing material and stored in a firing sheath, and this firing sheath is stacked in multiple stages and placed in a firing furnace. Degreasing treatment was performed in a state controlled to a predetermined atmosphere, followed by firing.
[0004]
The sintered body thus fired is coated with an electrode paste mainly composed of copper on both end faces thereof, then baked to form external electrodes, and solder plating is applied to the surface to obtain a ceramic electronic component. It was.
[0005]
[Problems to be solved by the invention]
Since the conventional firing sheath is made of a relatively dense material, depending on the position within the firing sheath, the degreasing state of the ceramic electronic component to be fired may be uneven or the firing state may vary. It was easy. As a result, structural defects such as delamination of structural defects and capacitance variation occur, which deteriorates the product yield.
[0006]
As a countermeasure, it has also been proposed to use a firing sheath in which the surface of the porous alumina porcelain is coated with zirconia, but the material itself and oxygen trapped in the pores of the firing sheath enter the firing furnace during the firing process. Released, it becomes difficult to control the oxygen partial pressure during firing. In particular, there is a big problem when it is necessary to maintain the firing atmosphere in a super-reduced state like a multilayer ceramic capacitor using nickel metal as input / output internal electrodes.
[0007]
In addition, it is possible to improve the above-mentioned firing variation to some extent by arranging the green chips of ceramic electronic components in a plane using a flat plate-shaped firing sheath, but the number of steps for arranging the green chips on the firing sheath is very large. Thus, there is a problem that the amount of processing in one firing is greatly reduced and the productivity is remarkably lowered.
[0008]
An object of the present invention is to provide a method for producing a ceramic electronic component that is less likely to cause variation in firing and is excellent in productivity.
[0009]
[Means for Solving the Problems]
In order to achieve this object, the method of manufacturing a ceramic electronic component according to the present invention uses a nickel laminate to laminate a ceramic sheet mainly composed of barium titanate and an internal electrode mainly composed of nickel. It is placed in a tray having a large number of vent holes and fired in an atmosphere controlled to an oxygen partial pressure of 10 −8 atm or less.
[0010]
By adopting this configuration, since the oxygen partial pressure is stably controlled, variation in firing can be suppressed and productivity can be improved.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 of the present invention is a tray having a large number of air holes made of a laminate in which a ceramic sheet mainly composed of barium titanate and an internal electrode mainly composed of nickel are laminated using nickel. And firing in an atmosphere controlled to an oxygen partial pressure of 10 −8 atm or less, and firing variation can be significantly reduced.
[0012]
In the invention described in claim 2, the tray is manufactured using a net made of nickel, and can be easily manufactured.
[0013]
In the invention according to claim 3, the tray is produced by stacking two nickel nets, and the strength of the tray can be improved.
[0014]
In the invention according to claim 4, the tray is manufactured using a nickel plate having a large number of holes, and can be formed into a large shape and excellent in strength .
[0015]
In the invention according to claim 5, the tray is manufactured using nickel having a purity of 75.0% or more, and maintains a stable shape with a high melting point even during firing, and has an excellent lifetime. .
[0016]
According to the sixth aspect of the present invention , a nickel frame is provided on the ridge of the tray, and the strength of the firing sheath is improved, and the stacking can be used in multiple stages.
[0017]
In the invention according to claim 7, the vent hole is smaller than the minimum dimension portion of the laminated body, and the laminated body can be prevented from falling off from the vent hole.
[0020]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The basis of the present invention is that the firing sheath is formed of a mesh made of nickel or a metal plate made of nickel with a large number of holes as shown in FIGS. .
[0021]
In FIG. 1, reference numeral 1 denotes a nickel net formed in a tray shape, and reference numeral 2 denotes a nickel frame, which is provided on a ridge portion to maintain the strength of the tray net 1. Reference numeral 3 denotes a ventilation portion between the inside and outside by the net 1.
[0022]
Further, in FIG. 2, 4 is a nickel metal plate, 5 is a number of holes provided in the metal plate 4 so as to have a mesh shape, and the holes 5 serve as ventilation portions. Reference numeral 2 denotes a nickel frame provided on the tray-shaped ridge.
[0023]
The use of nickel for the net 1, the metal plate 4 and the frame 2 constituting the tray in this way has a melting point of 1455 ° C., and the firing temperature of ceramic electronic components is generally lower than this temperature. This is because a ceramic electronic component hardly reacts with a green chip, and is relatively inexpensive and excellent in workability.
[0024]
Considering only the melting point, it is possible to use tungsten having a melting point of 3410 ° C. or titanium having a melting point of 1660 ° C. However, tungsten is easy to react with the ceramic during firing, is expensive and inferior in workability, and titanium is expensive and ceramic. If the electronic component is a multilayer ceramic capacitor, the composition of the main component barium titanate will be changed, making it impossible to produce ceramic electronic components of stable quality.
[0025]
In addition, when the nickel net 1 shown in FIG. 1 is used, the mechanical strength is increased when the two nets are stacked, and even when the fired sheaths are stacked and used in multiple stages, they are not deformed. It will be excellent.
[0026]
Further, the reason why the metal plate 4 is provided with a large number of nets 1 and holes 5 is to keep the atmosphere constant so that the fluidity of the atmosphere is not hindered during the degreasing or firing process.
[0027]
Further, the ventilation portion 3 of the mesh 1 or the hole 5 of the metal plate 4 is set to a size smaller than the minimum size portion of the green chip of the ceramic electronic component that is put into the firing sheath and fired, thereby preventing the material to be fired from falling off.
[0028]
Further, it is necessary to use nickel having a purity of 75% or more. If the purity is 75.0% or less, the melting point is lowered, and when it is repeatedly used as a firing sheath, it is deformed and has a short life. Further, iron, manganese, and the like used for producing an alloy with nickel react with the object to be fired during the firing process, thereby causing pinholes and poor appearance and poor characteristics.
[0029]
Next, a method for manufacturing a ceramic electronic component according to an embodiment of the present invention will be described by taking a multilayer ceramic capacitor using nickel metal as an input / output internal electrode for the ceramic electronic component as an example.
[0030]
(Embodiment 1)
First, an internal electrode paste mainly composed of nickel is printed on the surface of a dielectric ceramic green sheet mainly composed of barium titanate and a binder by using a known method for producing a multilayer ceramic capacitor.
[0031]
The green sheet on which the internal electrodes are printed is repeatedly laminated by a predetermined number of times while alternately shifting the predetermined dimensions one by one in the longitudinal direction of the printed internal electrodes to produce a laminate green block.
[0032]
Next, the multilayer green block is cut into a predetermined size shape to produce a green chip 6 of a multilayer ceramic capacitor.
[0033]
The both ends of the obtained green chip 6 in the longitudinal direction have a configuration in which one end portion of the internal electrode is exposed on different end surfaces alternately facing each other with a green sheet interposed therebetween. The cut dimensions in the present embodiment are 3.80 mm length × 1.90 mm width in order to produce a 3216 type element as a finished product of a multilayer ceramic capacitor. As the electrical characteristics, a material composition having a temperature characteristic of B characteristic and a capacitance value of 1.0 F was used.
[0034]
Next, zirconia powder as an anti-fusing material is adhered to the surface of the green chip 6 by using static electricity, and is packed in the firing sheath 7 shown in FIG. 1, and the firing sheath 7 is multi-staged as shown in FIG. After stacking and putting into a firing furnace (not shown), degreasing is performed at a temperature of 300 ° C. in air. Subsequently, firing was performed at a temperature of 1300 ° C. in an atmosphere in which the oxygen partial pressure was controlled to 10 −8 atm or less to obtain a sintered body. The firing sheath 7 used was a nickel net and a nickel metal rod having a nickel purity of 99.5% or higher, and a net having a mesh diameter of two 25 mesh layers. Furthermore, the number of sheath packing was changed to 3000, 5000, 15000 and 15000 per sheath of the sheath 7 for firing.
[0035]
After chamfering the obtained fired body and exposing one end of the internal electrode to the end face of the sintered body, an electrode paste mainly composed of copper is applied and baked to form an external electrode. Furthermore, the surface of the external electrode was solder plated to complete the multilayer ceramic capacitor.
[0036]
For each of the obtained multilayer ceramic capacitors, the capacitance, tan δ, and insulation resistance value were evaluated for each padding, and the number of internal structure defects such as delamination was investigated. The results are shown in Table 1. It was. In addition, as a comparative example, the evaluation results of a multilayer ceramic capacitor that was fired by varying the number of padding in the same manner as described above using a firing sheath having a surface of a conventional alumina ceramic sintered body coated with zirconia are also shown (Table 1). It was shown to.
[0037]
[Table 1]
Figure 0003725352
[0038]
As shown in (Table 1), the multilayer ceramic capacitor produced by the production method of the present invention tends to have a larger variation in capacitance and tan δ as the number of sheaths increases. In particular, the advantages of the present invention become more prominent as the number of padding per sheath increases. In addition, in the conventional manufacturing method, as the number of sheaths increases, the insulation resistance decreases extremely and delamination is observed. This is because the firing sheath 7 using the nickel mesh of the present invention is uniformly degreased by the air permeability of the mesh hole diameter even in a large-scale firing treatment, and the occurrence of structural defects is prevented. It can be seen that since the oxygen partial pressure in the firing atmosphere is stably controlled without releasing oxygen from the steel, the obtained sintered body has small characteristic variations and is an excellent manufacturing method.
[0039]
In this embodiment, the two nickel nets 2 of the firing sheath 7 are stacked and the nickel metal frame 2 is arranged on the ridge, but when the firing sheaths 7 are not stacked at the time of firing, the mesh 1 is made single. There is no problem even if the frame 2 is omitted.
[0040]
(Embodiment 2)
A green chip 6 of a multilayer ceramic capacitor manufactured under the same conditions as in the first embodiment has a thickness of 0 with nickel purity of 99.5%, 90.0%, 80.0%, 75.0%, 70.0%. . Using a firing sheath 7 in which 1.0 mm holes are punched at 2.0 mm intervals on a 8 mm nickel metal plate, 5000 pieces of green chips 6 are packed into one sheath, and degreasing and firing are performed in the embodiment. For the multilayer ceramic capacitors fabricated under the same conditions as in No. 1, the electrostatic capacity, tan δ, insulation resistance value, and internal structure defects such as delamination were investigated, and the results are shown in Table 2. .
[0041]
[Table 2]
Figure 0003725352
[0042]
As shown in (Table 2), when the nickel purity is 75.0% or more, the firing sheath 7 of the first embodiment and the capacitance, the variation of tan δ, the insulation resistance value, and the occurrence rate of internal structure defects There is no difference. However, when the nickel purity is less than 75.0%, a small insulation resistance value is generated, the reaction between the firing sheath 7 and the multilayer ceramic capacitor element is observed, and the nickel from the side wall portion of the firing sheath 7 is also observed. Since the occurrence of partial peeling of the film was observed, it was found that it was not suitable for repeated firing use.
[0043]
【The invention's effect】
As described above, according to the present invention, when firing a large amount of ceramic electronic components at once, it becomes easy to reduce the non-uniformity of the degreasing state and maintain the oxygen partial pressure in the firing atmosphere at a constant condition. Variations can be suppressed. As a result, it is possible to provide a ceramic electronic component that is free from structural defect delamination, has little variation in electrical characteristics, and is excellent in productivity.
[Brief description of the drawings]
FIG. 1 is a perspective view of a firing sheath using a nickel net according to an embodiment of the present invention. FIG. 2 is a perspective view of a firing sheath obtained by punching the same nickel metal plate. FIG.
1 Net 2 Frame 3 Ventilation part 4 Metal plate 5 Hole 6 Green chip 7 Saya for firing

Claims (7)

チタン酸バリウムを主成分とするセラミックシートとニッケルを主成分とする内部電極を積層した積層体をニッケルを用いて作製した多数の通気孔を有するトレイに入れて、酸素分圧10 -8 atm以下に制御した雰囲気で焼成するセラミック電子部品の製造方法。A laminated body in which a ceramic sheet mainly composed of barium titanate and an internal electrode mainly composed of nickel are stacked is placed in a tray having a large number of air holes made of nickel, and an oxygen partial pressure of 10 −8 atm or less. A method of manufacturing a ceramic electronic component that is fired in a controlled atmosphere トレイは、ニッケル製の網を用いて作製したものである請求項1に記載のセラミック電子部品の製造方法。  The method for manufacturing a ceramic electronic component according to claim 1, wherein the tray is manufactured using a net made of nickel. トレイは、ニッケル製の網を二枚重ねて作製したものである請求項2に記載のセラミック電子部品の製造方法。  The method of manufacturing a ceramic electronic component according to claim 2, wherein the tray is formed by stacking two nickel nets. トレイは、多数の孔を有するニッケル板を用いて作製したものである請求項1に記載のセラミック電子部品の製造方法。  The method for manufacturing a ceramic electronic component according to claim 1, wherein the tray is manufactured using a nickel plate having a large number of holes. トレイは、純度75.0%以上のニッケルを用いて作製したものである請求項1に記載のセラミック電子部品の製造方法。  The method for manufacturing a ceramic electronic component according to claim 1, wherein the tray is manufactured using nickel having a purity of 75.0% or more. トレイの稜部にニッケル製のフレームを設けた請求項1に記載のセラミック電子部品の製造方法。  The method for manufacturing a ceramic electronic component according to claim 1, wherein a nickel frame is provided on a ridge portion of the tray. 通気孔は、積層体の最小寸法箇所より小さいものである請求項1に記載のセラミック電子部品の製造方法。  The method for manufacturing a ceramic electronic component according to claim 1, wherein the vent hole is smaller than a minimum dimension portion of the laminate.
JP34123498A 1998-12-01 1998-12-01 Manufacturing method of ceramic electronic components Expired - Lifetime JP3725352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34123498A JP3725352B2 (en) 1998-12-01 1998-12-01 Manufacturing method of ceramic electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34123498A JP3725352B2 (en) 1998-12-01 1998-12-01 Manufacturing method of ceramic electronic components

Publications (2)

Publication Number Publication Date
JP2000169243A JP2000169243A (en) 2000-06-20
JP3725352B2 true JP3725352B2 (en) 2005-12-07

Family

ID=18344432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34123498A Expired - Lifetime JP3725352B2 (en) 1998-12-01 1998-12-01 Manufacturing method of ceramic electronic components

Country Status (1)

Country Link
JP (1) JP3725352B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198243A (en) * 2000-12-26 2002-07-12 Murata Mfg Co Ltd Method for manufacturing laminated ceramic electronic component
WO2007074528A1 (en) * 2005-12-27 2007-07-05 Ibiden Co., Ltd. Jig for degreasing, method of degreasing molded ceramic, and process for producing honeycomb structure
JP5431891B2 (en) * 2009-12-03 2014-03-05 株式会社モトヤマ Sheath sheath and method of manufacturing ceramic electronic component using the same
CN106461334B (en) * 2014-05-12 2019-08-06 株式会社村田制作所 Jig is used in firing
JP2018120946A (en) * 2017-01-25 2018-08-02 太陽金網株式会社 Tray for heat treatment and method of manufacturing the same

Also Published As

Publication number Publication date
JP2000169243A (en) 2000-06-20

Similar Documents

Publication Publication Date Title
KR101701049B1 (en) Multi-layered ceramic electronic component and manufacturing method of the same
JP3259686B2 (en) Ceramic electronic components
JP2007036003A (en) Laminated capacitor
CN103887067B (en) Laminated ceramic electronic component and its manufacture method
US8988855B2 (en) Method of manufacturing ceramic electronic component including heating an electrode layer to form a conductive layer including an alloy particle
EP2860742A2 (en) Multilayer ceramic electronic component and board having the same mounted thereon
US7042706B2 (en) Laminated ceramic electronic component and method of manufacturing the electronic component
US9779875B2 (en) Multilayer ceramic electronic component
JP2014049435A (en) Conductive paste composition for external electrode, multilayered ceramic electronic component including the same, and manufacturing method thereof
JPH06140279A (en) Burning method of laminated ceramic electronic part
JP2017212272A (en) Multilayer ceramic capacitor
JP3725352B2 (en) Manufacturing method of ceramic electronic components
JP2013115425A (en) Multilayer ceramic electronic component and manufacturing method for the same
TWI399769B (en) Metal film and manufacturing method thereof, manufacturing method of stacked electronic component, and stacked electronic component
JP2005101317A (en) Ceramic electronic component and its manufacturing method
JP2003045740A (en) Laminated electronic component
JP4544825B2 (en) Method for forming external electrode of electronic component
JP3196524B2 (en) Electronic component manufacturing method
JP2006332572A (en) Lamination ceramic capacitor and its manufacturing method
KR20130106120A (en) Laminated ceramic electronic parts and fabrication method thereof
JP2011134832A (en) Stacked ceramic capacitor and method of manufacturing the same
JP2011029533A (en) Stacked ceramic capacitor, and method of manufacturing the same
JP4109348B2 (en) Electronic parts and manufacturing method thereof
WO2001001427A1 (en) A dielectric multilayer element and method of manufacturing a dieletric multilayer element
JP4003437B2 (en) Manufacturing method of multilayer ceramic electronic component

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050921

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

EXPY Cancellation because of completion of term