JPH11176687A - Manufacture of grain boundary insulation type of stacked ceramic element - Google Patents

Manufacture of grain boundary insulation type of stacked ceramic element

Info

Publication number
JPH11176687A
JPH11176687A JP9344876A JP34487697A JPH11176687A JP H11176687 A JPH11176687 A JP H11176687A JP 9344876 A JP9344876 A JP 9344876A JP 34487697 A JP34487697 A JP 34487697A JP H11176687 A JPH11176687 A JP H11176687A
Authority
JP
Japan
Prior art keywords
layer
green
ceramic
sheath
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9344876A
Other languages
Japanese (ja)
Inventor
Akihito Konishi
彰仁 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9344876A priority Critical patent/JPH11176687A/en
Publication of JPH11176687A publication Critical patent/JPH11176687A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grain boundary insulation type of stacked ceramic part little in dispersion of electric property and high in property reproducibility. SOLUTION: A green stack, where ceramic layers 1 having SrTiO3 for their main components and two layers of inner electrodes 2 are stacked alternately in plural numbers and then reactive layers 3 of the same composition as the ceramic layer 1 are arranged at its upper layer and lower layer, is cut into a predetermined green chip shape so that the inner electrodes 2 may be exposed each to opposed end faces, and next the degreasing of the green ship is performed. Next, the outer electrode 4 in the first layer is applied on the exposed inner electrode 2, and then the material of the same composition as the ceramic layer 1 is mixed with powder being adjusted into a fixed grain size after calcination in reductive atmosphere, and the mixture is packed in a backing sheath of 50-70% in apparent porosity. Then, the above sheathes are piled up into plural stages, and are baked in reductive atmosphere, and the outer electrode 5 in the second layer is applied on the surface of the outer electrode 4 in the first layer of the obtained sintered substance, and in air, the reoxidation treatment of the sintered material is performed at the same time as the baking of the outer electrode 5 in the second layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種電子機器に使
用される粒界絶縁型積層セラミック素子(以降、セラミ
ック素子と称する)の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain boundary insulated multilayer ceramic element (hereinafter referred to as a ceramic element) used for various electronic devices.

【0002】[0002]

【従来の技術】近年、電子機器は小型化、高性能化に向
けて、多くの半導体素子が使用され、これに伴って電子
機器のノイズフィルターとして使用されるフィルムコン
デンサ、積層セラミックコンデンサ、半導体セラミック
コンデンサなども、小型、高性能の要請が強まってい
る。なかでも、SrTiO3を主成分とするセラミック
素子はノイズ吸収性に優れ、更に温度や周波数変動に対
し特性が安定していることに加えてバリスタ機能をも有
しその使用範囲は益々拡大されている。
2. Description of the Related Art In recent years, many semiconductor devices have been used for miniaturization and high performance of electronic devices, and accordingly, film capacitors, multilayer ceramic capacitors, and semiconductor ceramics used as noise filters for electronic devices have been used. Demands for smaller capacitors and higher performance are also increasing for capacitors and the like. Above all, ceramic elements containing SrTiO 3 as a main component have excellent noise absorption properties, and have a varistor function in addition to being stable in temperature and frequency fluctuations. I have.

【0003】従来のセラミック素子は、図1に示すよう
にSrTiO3を主成分とするセラミック層1と、セラ
ミックの半導体化と焼結を促進する元素を含んだ内部電
極2層とを交互に複数層積重ね、更にその上、下層にセ
ラミック層1と同組成の無効層3を積層した後、所定の
グリーンチップ形状に切断する。次に脱脂処理を行い、
次いでグリーンチップ側面に露出した内部電極2部分に
第一層目の外部電極4の塗布を行い、焼成サヤ詰めを行
って還元雰囲気中で焼成を行う。その後、得られた焼結
体の第一層目の外部電極4面に第二層目の外部電極5を
塗布し、大気中で第二層目の外部電極5の焼付と同時
に、焼結体粒界の再酸化を行っていた。
As shown in FIG. 1, a conventional ceramic element comprises a ceramic layer 1 containing SrTiO 3 as a main component and two internal electrodes containing elements for promoting the conversion of ceramic into a semiconductor and sintering. After laminating the layers, further laminating an ineffective layer 3 having the same composition as the ceramic layer 1 on the lower layer, the resultant is cut into a predetermined green chip shape. Next, perform degreasing,
Next, a first layer of the external electrode 4 is applied to the portion of the internal electrode 2 exposed on the side surface of the green chip, and the outer layer 4 is fired in a reducing atmosphere after filling with a firing sheath. Thereafter, a second-layer external electrode 5 is applied to the surface of the first-layer external electrode 4 of the obtained sintered body. Re-oxidation of the grain boundaries was performed.

【0004】[0004]

【発明が解決しようとする課題】上記の従来の方法で
は、内部電極2に挟まれたセラミック層1は半導体化と
焼結が促進されるが、内部電極2から離れている無効層
3や、サヤ内でグリーンチップ同士が重なりあった部分
は焼成時にサヤ内部に残留している酸素の影響を受け、
半導体化と焼結が不十分となり焼結体の均一性にむらが
生じ、その結果第二層目の外部電極5の焼付と同時に行
う焼結体の粒界の再酸化状態にバラツキを生じ、得られ
たセラミック素子の電気特性の変動が大きくなるという
問題点を有していた。
In the above conventional method, the ceramic layer 1 sandwiched between the internal electrodes 2 is promoted to be a semiconductor and sintering. The part where the green chips overlap in the sheath is affected by the oxygen remaining in the sheath during firing,
Insufficiency in semiconductor conversion and sintering results in unevenness in the uniformity of the sintered body, and as a result, a variation occurs in the reoxidation state of the grain boundary of the sintered body performed simultaneously with the baking of the external electrode 5 of the second layer, There was a problem that the fluctuations in the electrical characteristics of the obtained ceramic element became large.

【0005】本発明は上記問題点を解決するもので、セ
ラミック素子の電気特性の変動幅が小さく、かつ特性再
現性の優れたセラミック素子を提供することを目的とす
るものである。
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a ceramic element having a small fluctuation range of the electrical characteristics of the ceramic element and having excellent characteristic reproducibility.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
に本発明では、SrTiO3を主成分とする積層グリー
ンチップを脱脂した後、脱脂仮焼体の端面に露出した内
部電極面に第一層目の外部電極の塗布を行い、次に見掛
け気孔率が50〜70%の焼成用サヤに、前記セラミッ
ク層と同一組成材料を還元雰囲気で仮焼後、一定粒度に
粒度調整した共生地粉末と混ぜ合せサヤ詰めした後、こ
のサヤを多段積重ねて還元雰囲気中で焼成を行う。その
後得られたセラミック素子焼結体の第一層目の外部電極
面に第二層目の外部電極を塗布し、大気中で第二層目の
外部電極焼付けと同時にセラミック素子焼結体の粒界を
再酸化する方法でセラミック素子を作製する。
In order to achieve the above object, according to the present invention, after a laminated green chip containing SrTiO 3 as a main component is degreased, a first surface of an internal electrode exposed on an end surface of a degreased calcined body is formed. The outer electrode of the layer is applied, and then the same material as the ceramic layer is calcined in a reducing atmosphere on a firing sheath having an apparent porosity of 50 to 70%. After that, the sheath is stacked in multiple stages and fired in a reducing atmosphere. Then, a second-layer external electrode is applied to the first-layer external electrode surface of the obtained ceramic element sintered body, and the second-layer external electrode is baked in the air at the same time as the particles of the ceramic element sintered body. A ceramic element is manufactured by a method of reoxidizing the field.

【0007】[0007]

【発明の実施の形態】本発明の請求項1に記載の発明
は、SrTiO3を主成分とするセラミック層と内部電
極層とを複数層交互に積層した後、更にその上層と下層
に前記セラミック層と組成の無効層を配したグリーン積
層体を、対向する端面に前記内部電極がそれぞれ露出す
るように、所定のグリーンチップ形状に切断し、次にグ
リーンチップの脱脂を行う。次いで露出した内部電極部
に第一層目の外部電極を塗布した後、見掛け気孔率が5
0〜70%の焼成サヤ内に、前記セラミック層と同組成
材料を還元雰囲気中で仮焼後、一定の粒度に粒度調整し
た共生地粉末と混ぜ合せてサヤ詰めし、前記サヤを多段
積重ねて還元雰囲気中で焼成を行う。その後、得られた
セラミック素子焼結体の第一層目の外部電極表面に第二
層目の外部電極を塗布し、大気中で第二層目の外部電極
焼付と同時にセラミック素子焼結体の粒界を再酸化する
セラミック素子の製造方法であり、前記多孔質サヤを用
いて焼成することにより、焼成サヤ内部、及び壁内部に
残留する酸素が容易に還元ガスと置換され、またグリー
ンチップのセラミックと同組成の材料を還元雰囲気中で
仮焼後、一定大きさに粒度調整した粉末とグリーンチッ
プを混ぜ合せてサヤ詰めすることにより、グリーンチッ
プ同士の重なりがなくなり、しかも多孔質サヤの壁面を
通過してサヤ内に流入した還元ガスが焼成中のグリーン
チップ表面にふれやすくなる。その結果グリーンチップ
全体の半導体化と焼結性が促進され、第二層目の外部電
極焼付と同時に行うセラミック素子焼結体粒界の再酸化
状態が一定となり、電気特性のばらつきの小さいセラミ
ック素子を再現性よく作製することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is characterized in that, after alternately laminating a plurality of ceramic layers containing SrTiO 3 as a main component and internal electrode layers, the ceramic layers are further formed on the upper and lower layers. The green laminate in which the layers and the ineffective layer having the composition are arranged is cut into a predetermined green chip shape so that the internal electrodes are exposed at the opposite end faces, and then the green chip is degreased. Then, after applying the first-layer external electrode to the exposed internal electrode portion, the apparent porosity becomes 5%.
After calcining the same composition material as the ceramic layer in a reducing atmosphere in a 0 to 70% fired sheath, mixing with a co-fabric powder adjusted to a certain particle size, and filling with a sheath, the sheath is stacked in multiple stages. The firing is performed in a reducing atmosphere. Thereafter, a second-layer external electrode is applied to the surface of the first-layer external electrode of the obtained ceramic element sintered body, and simultaneously with the second-layer external electrode baking in air, the ceramic element sintered body is A method of manufacturing a ceramic element for reoxidizing grain boundaries.By firing using the porous sheath, oxygen remaining inside the sintered sheath and inside the wall is easily replaced with a reducing gas, and the green chip After calcining a material of the same composition as the ceramic in a reducing atmosphere, and mixing the green chips with the powder whose particle size has been adjusted to a certain size, the green chips are prevented from overlapping, and the walls of the porous sheath are eliminated. The reducing gas that has flowed into the sheath after passing through the surface easily touches the green chip surface during firing. As a result, the conversion of the entire green chip to a semiconductor and sinterability are promoted, and the reoxidation state of the ceramic element sintered body grain boundary which is performed simultaneously with the external electrode baking of the second layer becomes constant, and the ceramic element with small variation in electric characteristics. Can be produced with good reproducibility.

【0008】本発明の請求項2に記載の発明は、グリー
ンチップと同組成の仮焼粉末とを詰めた見掛け気孔率が
50〜70%の焼成サヤと、側壁面に開口部を設けた見
掛け気孔率が50〜70%の空サヤとを交互に多段積重
ねて還元雰囲気中で焼成する請求項1記載のセラミック
素子の製造方法である。すなわちグリーンチップと、仮
焼粉末を混ぜ合せたサヤのみを多段積重ねた場合、還元
ガスが主にサヤ側壁面を通過しサヤ内部に流入するた
め、サヤ内の底面部では還元ガスが淀み残留酸素の置換
が起こり難い。そこで、これを避けるため側壁面に開口
部を形成した見掛け気孔率が50〜70%の多孔質空サ
ヤと、グリーンチップを詰めた多孔質サヤとを交互に多
段積重ねて焼成すると、空サヤの側壁面の開口部から流
入した還元ガスが、その上部に位置するサヤの底部壁を
通過してサヤ内に容易に拡散し残留酸素と置換しサヤ内
の雰囲気を安定させることができる。
The invention according to claim 2 of the present invention is directed to a fired sheath filled with green chips and calcined powder having the same composition and having an apparent porosity of 50 to 70%, and an apparent side wall having an opening. 2. The method for manufacturing a ceramic element according to claim 1, wherein empty sheaths having a porosity of 50 to 70% are alternately stacked in multiple stages and fired in a reducing atmosphere. That is, when only the saya in which the green chips and the calcined powder are mixed are stacked in multiple stages, the reducing gas mainly passes through the saya side wall and flows into the saya. Is unlikely to occur. Therefore, in order to avoid this, the porous sheath having an opening portion formed in the side wall surface and having an apparent porosity of 50 to 70% and the porous sheath filled with green chips are alternately stacked in multiple stages and fired. The reducing gas flowing from the opening on the side wall surface passes through the bottom wall of the sheath located at the upper portion thereof, easily diffuses into the sheath, replaces residual oxygen, and stabilizes the atmosphere in the sheath.

【0009】(実施の形態1)以下本発明の一実施の形
態について図を用い説明する。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.

【0010】図1はセラミック素子の断面図を示し、1
はセラミック層、2は内部電極、3は無効層、4は第一
層目の外部電極、5は第二層目の外部電極である。図2
はその製造工程を示す図である。
FIG. 1 is a sectional view of a ceramic element, and FIG.
Is a ceramic layer, 2 is an internal electrode, 3 is an ineffective layer, 4 is a first layer external electrode, and 5 is a second layer external electrode. FIG.
FIG. 3 is a diagram showing the manufacturing process.

【0011】まず、主成分のSrTiO3 97.1mo
l%に、副成分のNb25を0.5mol%、Ta25
を0.5mol%、MnOを0.4mol%、SiO2
を1.0mol%、Na2SiO3を0.5mol%をそ
れぞれ秤量配合(6)、混合(7)した後、1100℃
の温度で仮焼(8)し、次に粉砕(9)を行いセラミッ
ク素子用の材料粉末を作製した。
First, the main component SrTiO 3 97.1mo
1%, 0.5 mol% of Nb 2 O 5 as a sub-component, and Ta 2 O 5
0.5 mol%, MnO 0.4 mol%, SiO 2
And 1.0 mol% of Na 2 SiO 3 and 0.5 mol% of Na 2 SiO 3 were weighed and mixed (6) and mixed (7), and then 1100 ° C.
Was calcined (8) and then pulverized (9) to produce a material powder for a ceramic element.

【0012】又別途、混合済みの前記材料を窒素90%
と水素10%を混合したグリーンガス中で1150℃の
温度で仮焼を行った後、粉砕を行い、見掛け気孔率が5
0〜70%の焼成サヤ気孔開孔径より大きな粒度に粒度
調整したサヤ詰め用共生地と、粒度調整を行っていない
サヤ詰め用共生地を準備した。
[0012] Separately, the mixed material is 90% nitrogen.
After calcination at a temperature of 1150 ° C. in a green gas containing 10% hydrogen and hydrogen, pulverization was performed, and an apparent porosity of 5% was obtained.
A co-fabric for shedding with grain size adjusted to a particle size larger than the fired sheer pore opening diameter of 0 to 70% and a co-fabric for shedding with no grain size adjustment were prepared.

【0013】得られた前記材料粉末に有機溶剤とバイン
ダーを加えスラリー化した後、ドクターブレード法でグ
リーンシートを作製(10)した。次にグリーンシート
面に、主成分がNiOからなるペーストを用い内部電極
2の印刷(11)を行う。次いで内部電極2が印刷され
たグリーンシートを、グリーンチップ形状に切断した際
に、グリーンチップの対向する端面に内部電極2が露出
するよう、印刷した内部電極2の長手方向に交互に一定
寸法ずらしながら、所定層数を積重ね(12)た後、そ
の上、下層に内部電極2を印刷していないグリーンシー
トを所定枚数積層した無効層3を重ね、加圧積層しグリ
ーン積層体を作製した。
An organic solvent and a binder were added to the obtained material powder to form a slurry, and then a green sheet was prepared by a doctor blade method (10). Next, printing (11) of the internal electrode 2 is performed on the green sheet surface using a paste whose main component is NiO. Next, when the green sheet on which the internal electrodes 2 are printed is cut into a green chip shape, the green sheets are alternately shifted by a predetermined dimension in the longitudinal direction of the printed internal electrodes 2 so that the internal electrodes 2 are exposed on the opposite end surfaces of the green chips. After stacking a predetermined number of layers (12), an ineffective layer 3 in which a predetermined number of green sheets on which the internal electrodes 2 were not printed was stacked on the lower layer, and a lower layer was stacked under pressure to produce a green laminate.

【0014】グリーン積層体を所定のグリーンチップ形
状に切断(13)した後、1100℃の温度で脱脂(1
4)及び仮焼を行った。次に脱脂したグリーンチップの
面取りを行い、内部電極2が露出した端面に、内部電極
2と同じペーストを塗布し(15)第一層目の外部電極
4を設けた後、(表1)に示すサヤ詰め条件にしたがっ
て、予め準備した共生地と第一層目の外部電極4を設け
たグリーンチップを混ぜ合せて見掛け気孔率が50〜7
0%の焼成サヤに詰め、これを多段階に積重ねて、窒素
90%、水素10%のグリーンガスを炉内にフローさせ
ながら1200℃の温度で還元雰囲気焼成(16)を行
った。
After cutting the green laminate into a predetermined green chip shape (13), the green laminate is degreased at a temperature of 1100 ° C. (1).
4) and calcination were performed. Next, the degreased green chip is chamfered, and the same paste as that of the internal electrode 2 is applied to the exposed end surface of the internal electrode 2 (15). After providing the first-layer external electrode 4, (Table 1) According to the shear filling conditions shown, the co-fabric prepared in advance and the green chip provided with the first layer external electrode 4 are mixed to give an apparent porosity of 50-7.
This was packed in a 0% firing sheath, stacked in multiple stages, and fired in a reducing atmosphere (16) at a temperature of 1200 ° C. while flowing a green gas of 90% nitrogen and 10% hydrogen into the furnace.

【0015】[0015]

【表1】 [Table 1]

【0016】以上のようにして得られたセラミック素子
の焼結体の端面に形成された第一層目の外部電極4の表
面に、銀を主成分とするペーストを塗布し(17)第二
層目の外部電極5を設けた後、大気中で850℃の温度
で第二層目の外部電極5の焼付と同時にセラミック素子
焼結体の粒界再酸化(18)を行いセラミック素子を完
成させた。
A paste containing silver as a main component is applied to the surface of the first-layer external electrode 4 formed on the end face of the sintered body of the ceramic element obtained as described above. After the outer electrode 5 of the layer is provided, the grain boundary re-oxidation (18) of the ceramic element sintered body is performed simultaneously with the baking of the outer electrode 5 of the second layer at 850 ° C. in the air to complete the ceramic element. I let it.

【0017】得られたセラミック素子について、バリス
タ電圧(V0.1mA)と1kHzにおける静電容量を測定
し、その結果を(表1)に併せて示した。
With respect to the obtained ceramic element, the varistor voltage (V 0.1 mA ) and the capacitance at 1 kHz were measured, and the results are also shown in Table 1.

【0018】(表1)に示すように、粒度調整を行って
ない共生地を用いたものは、バリスタ電圧、及び容量値
のばらつきが大きいのに対し、粒度調整を行った共生地
を用いたものは、バリスタ電圧、及び容量値のばらつき
が小さくなっている。またグリーンチップと共生地を詰
めたサヤと、側壁面に開口部を設けた空サヤと交互に積
重ねて焼成したものは、ばらつきが更に小さくなってい
ることが分かる。
As shown in (Table 1), those using the co-fabric without grain size adjustment had a large variation in varistor voltage and capacitance value, whereas the co-fabric with grain size adjustment was used. The varistor voltage and the capacitance value have small variations. Further, it can be seen that the variation is further reduced in the case where the saya filled with the green chips and the co-fabric and the empty saya provided with the opening in the side wall surface are alternately stacked and fired.

【0019】このことは、見掛け気孔率が50〜70%
の焼成サヤを用いることにより、焼成中にグリーンガス
が容易にサヤ内に流入し、サヤ内部、及び壁内部に残留
する酸素との置換がなされ、サヤ内のグリーンガス雰囲
気が安定するが、グリーンチップを詰めたサヤと側壁面
に開口部を設けた空サヤを交互に積重ねて焼成すること
で、空サヤの開口部から流入したグリーンガスが、空サ
ヤの上部に位置する、グリーンチップを詰めたサヤの底
部の気孔を通過しサヤ内に残留している酸素を完全に排
除し、サヤ内のグリーンガス雰囲気を更に安定な状態に
し、セラミック素子の無効層3部分を含め全体を、均質
に半導体化と焼結を促進し、次工程の第二層目の外部電
極5焼付と同時に行うセラミック素子粒界の再酸化を均
一な状態にした結果だと思われる。
This means that the apparent porosity is 50-70%.
By using the calcined saya, the green gas easily flows into the saya during sintering, and is replaced with oxygen remaining inside the saya and inside the wall, and the green gas atmosphere in the saya is stabilized. By alternately stacking and firing the sheaths filled with chips and the empty sheaths with openings on the side wall surface, the green gas flowing from the openings of the empty sheaths packs the green chips located at the top of the empty sheaths. The oxygen remaining in the sheath after passing through the pores at the bottom of the sheath is completely eliminated, and the green gas atmosphere in the sheath is made more stable. This is considered to be the result of promoting the formation of a semiconductor and sintering, and making the re-oxidation of the grain boundaries of the ceramic element, which is performed simultaneously with the baking of the second-layer external electrode 5 in the next step, into a uniform state.

【0020】又、更にグリーンチップと共生地を混ぜ合
せてサヤ詰めするのは、グリーンチップ同士の重なりを
排除すると共に、サヤ内に流入したグリーンガスを共生
地の隙間を蛇行しながら通過させ、焼成中のグリーンチ
ップ表面に確実に接触させるためであり、共生地をサヤ
の気孔開孔径より大きく粒度調整した場合は、サヤの見
掛け気孔率を大きくした効果との相乗効果を発揮する
が、共生地を粒度調整していない場合は、サヤの気孔開
孔内に目詰まりを起こしグリーンガスのサヤ内流入を妨
げると共に、グリーンチップ同士が重なり接触するのを
完全に防ぐことができず、得られたセラミック素子焼結
体の粒界再酸化の状態が不均一となり、その結果電気特
性のばらつきを大きなものとさせてしまうため、共生地
はサヤの気孔開孔径より大きなものにする必要がある。
[0020] Further, the method of mixing the green chips and the co-fabric and stuffing them together is to eliminate the overlap between the green chips and to allow the green gas flowing into the saya to pass through the gaps between the co-fabrics while meandering. This is to ensure the contact with the green chip surface during firing, and when the co-fabric is adjusted to a particle size larger than the pore diameter of the sheath, it has a synergistic effect with the effect of increasing the apparent porosity of the sheath. If the ground size is not adjusted, clogging occurs in the pores of the sheath and hinders the flow of green gas into the sheath, and it is impossible to completely prevent the green chips from overlapping and coming into contact with each other. Since the state of grain boundary reoxidation of the ceramic element sintered body becomes uneven, which results in large variations in electrical characteristics, There needs to be a big thing Ri.

【0021】尚、サヤの見掛け気孔率を50〜70%の
範囲としたのは、気孔率が50%以下の場合は気孔開孔
径が小さくなりグリーンガスをサヤ内に流入させにくく
なり、70%以上となるとサヤ自体の機械的強度が弱く
なってしまい、多段の積重ねで破壊してしまうためであ
る。又気孔率50〜70%にすることでサヤ内に流入し
たグリーンガスの滞留時間を伸ばすのに効果がある。又
更にサヤを用いない焼成の場合は、焼成中のグリーンチ
ップの表面層のみグリーンガスが強く作用し、逆にセラ
ミック素子の半導体化と焼結ばらつきを助長する結果を
招いてしまい好ましくない。
The reason why the apparent porosity of the sheath is in the range of 50 to 70% is that when the porosity is 50% or less, the pore opening diameter becomes small and it becomes difficult for green gas to flow into the sheath. This is because the mechanical strength of the sheath itself becomes weaker when the above is reached, and the sheath is destroyed by stacking in multiple stages. Further, by setting the porosity to 50 to 70%, it is effective to extend the residence time of the green gas flowing into the sheath. Further, in the case of sintering without using a sheath, the green gas strongly acts only on the surface layer of the green chip during sintering.

【0022】[0022]

【発明の効果】以上、本発明によると、粒界絶縁型セラ
ミック素子の焼成の際に使用する焼成サヤに見掛け気孔
率が50〜70%のものを使用し、焼成するセラミック
組成と同材質の材料を、還元雰囲気中で仮焼後、一定の
粒度に粒度調整した共生地粉末とグリーンチップを混ぜ
合わせたサヤを、多段に積重ねて還元雰囲気中で焼成す
ることにより、セラミック素子焼結体全体の半導体化と
焼結を均質に進行させることができ、次工程の外部電極
の焼付と同時に行うセラミック素子焼結体の粒界再酸化
の状態が均一なものとなる。その結果、電気特性のばら
つきの少ない、特性再現性の高い粒界絶縁型積層セラミ
ック素子を提供することができる。
As described above, according to the present invention, a firing sheath having an apparent porosity of 50 to 70% is used for firing a grain boundary insulating ceramic element, and the same material as the ceramic composition to be fired is used. After calcining the material in a reducing atmosphere, the saya, which is a mixture of co-fabric powder and green chips adjusted to a certain particle size, is stacked in multiple stages and fired in a reducing atmosphere to form the entire ceramic element sintered body. And the sintering of the ceramic element can be made to proceed homogeneously, and the state of grain boundary reoxidation of the ceramic element sintered body performed simultaneously with the baking of the external electrode in the next step becomes uniform. As a result, it is possible to provide a grain boundary insulated multilayer ceramic element having small variations in electrical characteristics and high reproducibility of characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】粒界絶縁型積層セラミック素子の断面図FIG. 1 is a cross-sectional view of a grain boundary insulating multilayer ceramic device.

【図2】本発明の一実施形態における粒界絶縁型積層セ
ラミック素子の製造工程図
FIG. 2 is a manufacturing process diagram of a grain boundary insulating multilayer ceramic element according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 セラミック層 2 内部電極 3 無効層 4 第一層目の外部電極 5 第二層目の外部電極 DESCRIPTION OF SYMBOLS 1 Ceramic layer 2 Internal electrode 3 Invalid layer 4 First layer external electrode 5 Second layer external electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 SrTiO3を主成分とするセラミック
層と内部電極層とを複数層交互に積層した後、更にその
上層と下層に前記セラミック層と同組成の無効層を配し
たグリーン積層体を、対向する端面に前記内部電極がそ
れぞれ露出するように、所定のグリーンチップ形状に切
断し、次にグリーンチップの脱脂を行い、次いで露出し
た内部電極部に第一層目の外部電極を塗布し、その後、
見掛け気孔率が50〜70%の焼成サヤ内に、前記セラ
ミック層と同組成材料を還元雰囲気で仮焼後一定の粒度
に調整した共生地粉末と混ぜ合せてサヤ詰めを行い、そ
の後前記サヤを多段積み重ねて還元雰囲気中で焼成を行
い、得られた焼結体の第一層の外部電極表面に第二層目
の外部電極を塗布し、大気中で第二層目の外部電極焼付
と同時に焼結体粒界を再酸化することを特徴とする粒界
絶縁型積層セラミック素子の製造方法。
1. A green laminate in which a plurality of ceramic layers containing SrTiO 3 as a main component and internal electrode layers are alternately laminated, and further, an ineffective layer having the same composition as the ceramic layer is disposed on the upper and lower layers. Then, a predetermined green chip shape is cut so that the internal electrodes are exposed at the facing end surfaces, then the green chip is degreased, and then the first-layer external electrodes are applied to the exposed internal electrode portions. ,afterwards,
In a fired sheath having an apparent porosity of 50 to 70%, the ceramic layer and the same composition material are calcined in a reducing atmosphere and then mixed with a co-fabric powder adjusted to a certain particle size to perform sheath filling. Stacked in multiple stages and fired in a reducing atmosphere, apply the second layer external electrode on the surface of the first layer external electrode of the obtained sintered body, and simultaneously bake the second layer external electrode in air A method for producing a grain boundary insulated multilayer ceramic element, characterized by reoxidizing a grain boundary of a sintered body.
【請求項2】 グリーンチップと同組成の仮焼粉末とを
詰めた見掛け気孔率が50〜70%の焼成サヤと、側壁
面に開口部を設けた見掛け気孔率が50〜70%の空サ
ヤとを交互に多段積重ねて還元焼成する請求項1記載の
粒界絶縁型積層セラミック素子の製造方法。
2. A fired sheath filled with green chips and calcined powder of the same composition and having an apparent porosity of 50 to 70%, and an empty sheath having an opening formed on a side wall surface and having an apparent porosity of 50 to 70%. 2. The method for producing a grain boundary insulated multilayer ceramic device according to claim 1, wherein the components are alternately stacked in a multi-stage manner and reduced and fired.
JP9344876A 1997-12-15 1997-12-15 Manufacture of grain boundary insulation type of stacked ceramic element Pending JPH11176687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9344876A JPH11176687A (en) 1997-12-15 1997-12-15 Manufacture of grain boundary insulation type of stacked ceramic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9344876A JPH11176687A (en) 1997-12-15 1997-12-15 Manufacture of grain boundary insulation type of stacked ceramic element

Publications (1)

Publication Number Publication Date
JPH11176687A true JPH11176687A (en) 1999-07-02

Family

ID=18372680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9344876A Pending JPH11176687A (en) 1997-12-15 1997-12-15 Manufacture of grain boundary insulation type of stacked ceramic element

Country Status (1)

Country Link
JP (1) JPH11176687A (en)

Similar Documents

Publication Publication Date Title
JP7231340B2 (en) Ceramic electronic component and manufacturing method thereof
US11631538B2 (en) Electronic component
KR20190121187A (en) Multi-layered ceramic capacitor
JP3827901B2 (en) Multilayer ceramic capacitor
JP2872838B2 (en) Multilayer ceramic capacitor and method of manufacturing the same
KR100309597B1 (en) Material and Paste for Producing Internal Electrode of Varistor, Laminated Varistor, and Method for Producing the Varistor
JP3064659B2 (en) Manufacturing method of multilayer ceramic element
JP4293615B2 (en) Manufacturing method of multilayer ceramic capacitor
KR100492813B1 (en) Method of manufacturing monolithic piezoelectric ceramic device
JPH11176687A (en) Manufacture of grain boundary insulation type of stacked ceramic element
JPH11340090A (en) Manufacture of grain boundary insulated multilayer ceramic capacitor
JP2006041393A (en) Multilayer ceramic capacitor
JP3239666B2 (en) Manufacturing method of grain boundary insulated multilayer ceramic component
JPH0878284A (en) Composite electronic device and its production
JP4513388B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2004075452A (en) Dielectric ceramic composition and ceramic capacitor
JP3414123B2 (en) Method for manufacturing grain boundary insulating multilayer ceramic element
JPH08181514A (en) Manufacture of high frequency use ceramics component
JPH0714741A (en) Multilayer base metal ceramic capacitor and production thereof
JPH05243081A (en) Manufacture of laminated ceramic capacitor
JP3246267B2 (en) Manufacturing method of grain boundary insulated multilayer ceramic component
JPH07183155A (en) Laminated ceramic electronic component and its manufacture
JP2001093706A (en) Laminated ceramic varistor and method for manufacture thereof
JP2005302977A (en) Multilayer ceramic capacitor
JP2001080954A (en) Laminated ceramic composite capacitor and its production