JP3827901B2 - Multilayer ceramic capacitor - Google Patents

Multilayer ceramic capacitor Download PDF

Info

Publication number
JP3827901B2
JP3827901B2 JP36689099A JP36689099A JP3827901B2 JP 3827901 B2 JP3827901 B2 JP 3827901B2 JP 36689099 A JP36689099 A JP 36689099A JP 36689099 A JP36689099 A JP 36689099A JP 3827901 B2 JP3827901 B2 JP 3827901B2
Authority
JP
Japan
Prior art keywords
ceramic
conductor layer
ceramic capacitor
layer
multilayer ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36689099A
Other languages
Japanese (ja)
Other versions
JP2001185436A (en
Inventor
洋一 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP36689099A priority Critical patent/JP3827901B2/en
Priority to TW089124649A priority patent/TW498371B/en
Priority to KR10-2000-0077657A priority patent/KR100393304B1/en
Priority to CNB001354981A priority patent/CN1189901C/en
Priority to MYPI20005980A priority patent/MY121500A/en
Priority to US09/741,441 priority patent/US6404616B2/en
Publication of JP2001185436A publication Critical patent/JP2001185436A/en
Priority to HK01107207A priority patent/HK1036145A1/en
Application granted granted Critical
Publication of JP3827901B2 publication Critical patent/JP3827901B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Description

【0001】
【発明の属する技術分野】
本発明は、積層セラミックコンデンサに関し、特にその積層構造に関するものである。
【0002】
【従来の技術】
従来の積層セラミックコンデンサは、セラミック誘電体層と導体層とを交互に積層した積層体と、積層体の両端部に形成され前記導体層と接続する外部電極とを備えている。ここで、導体層は、両端の外部電極に対して交互に接続している。すなわち、一方の外部電極は導体層と一層おきに接続し、他方の外部電極は前記一方の外部電極と接続していない導体層と接続している。
【0003】
このような積層セラミックコンデンサは、例えば外形寸法が3.2mm×1.6mm×1.6mmであるいわゆる3216タイプで静電容量が10Fの場合には、導体層の積層数が350枚、セラミック誘電体層の厚みが3.0μm、導体層の厚みが1.5μmである。すなわち、セラミック誘電体層の厚みは、導体層の厚みの2倍程度となっている。
【0004】
【発明が解決しようとする課題】
ところで一般に積層セラミックコンデンサでは、熱衝撃に対して高い耐性を有するものが求められる場合がある。また、近年小型且つ大容量な積層セラミックが求められている。しかしながら、従来の積層セラミックコンデンサでは十分な耐熱衝撃性を有するには至らない場合があった。特に、積層数の増加により小型且つ大容量化を図ろうとすると十分な耐熱衝撃性を得られない場合があった。
【0005】
本発明は、上記事情に鑑みてなされたものであり、その目的とするところは、耐熱衝撃性に優れた積層セラミックコンデンサを提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明では、導体層とセラミック誘電体層とを交互に積層してなる積層セラミックコンデンサにおいて、前記セラミック誘電体層の厚みが前記導体層の厚みより小さく且つ導体層の厚みが不均一であり、前記導体層は途切れた部位を有し、該途切れた部位は、前記セラミック誘電体層に含まれる二次相が充填されていることを特徴とするものを提案する。
【0007】
積層セラミックコンデンサにおいては、一般に、導体層はセラミック誘電体層よりも熱衝撃に対して比較的柔軟性を有している。したがって、本発明では、セラミック誘電体層の厚みが導体層の厚みより小さいので、全体として導体層の占める割合が大きくなり、これにより熱衝撃に対する耐性が向上する。また、導体層は途切れた部位を有し、この途切れた部位には二次相が充填されている。積層セラミックコンデンサにおいては、一般に、セラミック誘電体層を構成するセラミック粒子よりも該セラミック粒子間に介在する二次相の方が熱衝撃に対して比較的柔軟性を有している。したがって、本発明によれば、前記二次相の充填された部位が熱衝撃を緩和するので、熱衝撃に対する耐性が向上する。
【0011】
【発明の実施の形態】
(第1の実施の形態)
本発明の第1の実施の形態にかかる積層セラミックコンデンサについて図面を参照して説明する。図1は積層セラミックコンデンサの一部切り欠き斜視図、図2は積層セラミックコンデンサの拡大断面図である。
【0012】
図1に示すように、この積層セラミックコンデンサ10は、セラミック誘電体層11と導体層12とを交互に積層した略直方体形状の積層体13と、積層体13の両端部に形成され前記導体層12と接続する外部電極14とを備えている。ここで、導体層12は、両端の外部電極14に対して交互に接続している。すなわち、一方の外部電極14は導体層12と一層おきに接続し、他方の外部電極14は前記一方の外部電極14と接続していない導体層12と接続している。
【0013】
セラミック誘電体層11は、例えばBaTiO3系の強誘電性を有するセラミック焼結体からなる。また、導体層12は、例えばPd,Ni,Agなどの金属材料からなる。積層体13は、導電性ペーストを印刷したセラミックグリーンシートを複数積層し、これを焼結して形成される。これにより、セラミックグリーンシートが焼結してセラミック誘電体層11が形成され、導電性ペーストが焼結して導体層12が形成される。外部電極14は、例えばNi,Agなどの金属材料からなる。
【0014】
この積層セラミックコンデンサ10の特徴的な点は、図2に示すように、セラミック誘電体層11の厚みDdが導体層12の厚みDe以下である点である。具体的には、セラミック誘電体層11の厚みDdは、導体層12の厚みDeの70%〜100%程度が好ましく、さらに好ましくは85%〜100%程度である。ここで、セラミック誘電体層11と導体層12とを比較すると、導体層12の方が熱衝撃に対して柔軟性を有している。
【0015】
なお、図2では導体層12が途切れたように図示されているが、これは導体層12を形成する導電性ペーストに含まれる金属粒子が凝集するなどして導体層12の厚みが不均一となり、結果として導体が形成されない部位が生じたものである。導体層12が途切れた部位には、セラミック誘電体層11に含まれる二次相15が充填されている。
【0016】
次に、この積層セラミックコンデンサの製造方法の一例について説明する。まず、例えばBaTiO3などを主原料とし添加物としてSiO2などを混合した誘電体セラミック材料に、有機バインダ、有機溶剤又は水を所定量混合・撹拌してセラミックスラリーを得る。次に、このセラミックスラリーをドクターブレード法等のテープ成型法によりセラミックグリーンシートを形成する。
【0017】
次に、このセラミックグリーンシート上に、スクリーン印刷法、凹版印刷法、凸版印刷法などにより所定形状で導電性ペーストを印刷する。ここで導電性ペーストは、焼結後の導体層の厚みがセラミック誘電体層の厚みよりも厚くなるように塗布する。
【0018】
次いで、導電性ペーストが印刷されたセラミックグリーンシートをプレス装置を用いて積層及び圧着してセラミック積層体を得る。次に、セラミック積層体を部品単位あたりの大きさに裁断して積層チップを得る。次に、この積層チップを、所定の温度条件及び雰囲気条件で焼成して焼結体を得る。最後に、焼結体の両端部にディップ法などで外部電極を形成して積層セラミックコンデンサを得る。
【0019】
本実施の形態にかかる積層セラミックコンデンサ10では、熱衝撃に対して比較的柔軟性を有する導体層12がセラミック誘電体層11よりも厚く形成されているので、全体として耐熱衝撃性に優れたものとなる。特に、各層を薄層化するとともに積層数を増加させ小型化及び大容量化を図る場合において、この積層セラミックコンデンサ10は優れた耐熱衝撃性を有する。
【0020】
(第2の実施の形態)
本発明の第2の実施の形態にかかる積層セラミックコンデンサについて図面を参照して説明する。図3は積層セラミックコンデンサの拡大断面図である。
【0021】
この積層セラミックコンデンサは、前記第1の実施の形態と同様に、セラミック誘電体層21と導体層22とを交互に積層した略直方体形状の積層体と、積層体の両端部に形成され前記導体層22と接続する外部電極とを備えている。ここで、導体層22は、両端の外部電極に対して交互に接続している。すなわち、一方の外部電極は導体層22と一層おきに接続し、他方の外部電極は前記一方の外部電極と接続していない導体層22と接続している。
【0022】
セラミック誘電体層21は、例えばBaTiO3系の強誘電性を有するセラミック焼結体からなる。また、導体層22は、例えばPd,Ni,Agなどの金属材料からなる。積層体は、導電性ペーストを印刷したセラミックグリーンシートを複数積層し、これを焼結して形成される。これにより、セラミックグリーンシートが焼結してセラミック誘電体層21が形成され、導電性ペーストが焼結して導体層22が形成される。外部電極は、例えばNi,Agなどの金属材料からなる。
【0023】
この積層セラミックコンデンサの特徴的な点は、セラミック誘電体層21の構造にある。一般に、セラミック誘電体層は、セラミック粒子と該セラミック粒子間に介在する二次相からなる。ここで、二次相とは、セラミックの焼成時に原料とともに添加された添加物或いは添加物とセラミック粒子との反応生成物である。この二次相は、セラミック粒子と比較して熱衝撃性に対して柔軟性を有している。なお、セラミック誘電体層は、一般的には、全域に亘り各セラミック粒子が密に結合した状態となっている。
【0024】
本実施の形態にかかる積層セラミックコンデンサは、図3に示すように、セラミック誘電体層21が、対向する導体層22間に亘ってセラミック粒子31が存在せず二次相32のみで構成された部位21aを含んでいることを特徴としている。ここで、二次相32のみで構成された部位21aの大きさ、すなわち、対向するセラミック粒子31の間隔は、セラミック誘電体層の厚み以上である。また、二次相32のみで構成された部位21aは、一のセラミック誘電体層21において、0%〜15%程度含まれているのが好ましく、さらに好ましくは0%〜5%程度である。さらに、二次相32のみで構成された部位21aを有するセラミック誘電体層21は、全セラミック誘電体層21に対して10%〜90%程度であるのが好ましく、さらに好ましくは15%〜30%程度である。
【0025】
なお、図3では導体層22が途切れたように図示されているが、これは導体層22を形成する導電性ペーストに含まれる金属粒子が凝集するなどして導体層22の厚みが不均一となり、結果として導体が形成されない部位が生じたものである。導体層22が途切れた部位には、セラミック誘電体層21に含まれる二次相32が充填されている。
【0026】
次に、この積層セラミックコンデンサの製造方法の一例について説明する。まず、誘電体セラミック材料に、有機バインダ、有機溶剤又は水を所定量混合・撹拌してセラミックスラリーを得る。ここで、誘電体セラミック材料は、例えばBaTiO3などのチタン酸バリウム系の主原料に、SiO2などの添加物を混合したものである。この添加物が後述する焼成時に二次相を形成することになる。この添加物は、主原料に対して1%〜10%程度混合することが好ましく、さらに好ましくは3%〜7%程度である。
【0027】
次に、このセラミックスラリーをドクターブレード法等のテープ成型法によりセラミックグリーンシートを形成する。次に、このセラミックグリーンシート上に、スクリーン印刷法、凹版印刷法、凸版印刷法などにより所定形状で導電性ペーストを印刷する。次いで、導電性ペーストが印刷されたセラミックグリーンシートをプレス装置を用いて積層及び圧着してセラミック積層体を得る。
【0028】
次に、セラミック積層体を部品単位あたりの大きさに裁断して積層チップを得る。次に、この積層チップを、所定の温度条件及び雰囲気条件で焼成して焼結体を得る。最後に、焼結体の両端部にディップ法などで外部電極を形成して積層セラミックコンデンサを得る。
【0029】
本実施の形態にかかる積層セラミックコンデンサでは、セラミック誘電体21が、熱衝撃に対して比較的柔軟な二次相のみで構成された部位21aを含んでいるので、全体として耐熱衝撃性に優れたものとなる。すなわち、この二次相のみで構成された部位21aが応力緩和の働きをするものである。特に、各層を薄層化するとともに積層数を増加させ小型化及び大容量化を図る場合において、この積層セラミックコンデンサは優れた耐熱衝撃性を有する。
【0030】
なお、上述した第1及び第2の実施形態では、セラミック誘電体層の材料として、主原料がBaTiO3で添加物がSiO2であるセラミック材料粉を例示したが、本発明はこれに限定されるものではない。例えば、主原料として、BaTiO3、Bi4Ti312、(Ba,Sr,Ca)TiO3、(Ba,Ca)(Zr,Ti)O3、(Ba,Sr,Ca)(Zr,Ti)O3、Ba(Ti,Sn)O3などを用いてもよい。また、添加物として、MgO、Mn34、Li系ガラス、B系ガラスなどを用いてもよい。
【0031】
【発明の効果】
以上詳述したように、請求項1の発明によれば、セラミック誘電体層の厚みが導体層の厚みより小さいので、全体として熱衝撃に対して比較的柔軟性を有している導体層の占める割合が大きくなり、これにより熱衝撃に対する耐性が向上する。また、前記二次相の充填された部位が熱衝撃を緩和するので、熱衝撃に対する耐性が向上する。
【図面の簡単な説明】
【図1】積層セラミックコンデンサの一部切り欠き斜視図
【図2】積層セラミックコンデンサの拡大断面図
【図3】積層セラミックコンデンサの拡大断面図
【符号の説明】
10…積層セラミックコンデンサ、11,21…セラミック誘電体層、12,22…導体層、13…積層体、14…外部電極、31…セラミック粒子、15,32…二次相
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multilayer ceramic capacitor, and more particularly to a multilayer structure thereof.
[0002]
[Prior art]
A conventional multilayer ceramic capacitor includes a laminate in which ceramic dielectric layers and conductor layers are alternately laminated, and external electrodes that are formed at both ends of the laminate and are connected to the conductor layers. Here, the conductor layers are alternately connected to the external electrodes at both ends. That is, one external electrode is connected to the conductor layer every other layer, and the other external electrode is connected to a conductor layer not connected to the one external electrode.
[0003]
Such a multilayer ceramic capacitor has, for example, a so-called 3216 type whose outer dimensions are 3.2 mm × 1.6 mm × 1.6 mm and has a capacitance of 10 F, the number of laminated conductor layers is 350, ceramic dielectric The thickness of the body layer is 3.0 μm, and the thickness of the conductor layer is 1.5 μm. That is, the thickness of the ceramic dielectric layer is about twice the thickness of the conductor layer.
[0004]
[Problems to be solved by the invention]
In general, a multilayer ceramic capacitor may be required to have high resistance to thermal shock. In recent years, a small and large capacity multilayer ceramic has been demanded. However, conventional multilayer ceramic capacitors sometimes do not have sufficient thermal shock resistance. In particular, there was a case where sufficient thermal shock resistance could not be obtained if an attempt was made to reduce the size and increase the capacity by increasing the number of layers.
[0005]
The present invention has been made in view of the above circumstances, and an object thereof is to provide a multilayer ceramic capacitor excellent in thermal shock resistance.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, in the multilayer ceramic capacitor formed by alternately laminating conductor layers and ceramic dielectric layers, the thickness of the ceramic dielectric layer is smaller than the thickness of the conductor layer. And the conductor layer has a non-uniform thickness, the conductor layer has a discontinuous portion, and the discontinuous portion is filled with a secondary phase contained in the ceramic dielectric layer. Propose.
[0007]
In a multilayer ceramic capacitor, the conductor layer is generally relatively more flexible with respect to thermal shock than the ceramic dielectric layer. Therefore, in the present invention, since the thickness of the ceramic dielectric layer is smaller than the thickness of the conductor layer, the ratio of the conductor layer as a whole is increased, thereby improving the resistance to thermal shock. In addition, the conductor layer has a discontinuous portion, and the discontinuous portion is filled with a secondary phase. In a multilayer ceramic capacitor, the secondary phase interposed between the ceramic particles is generally more flexible to thermal shock than the ceramic particles constituting the ceramic dielectric layer. Therefore, according to the present invention, the portion filled with the secondary phase alleviates the thermal shock, thereby improving the resistance to the thermal shock.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
A multilayer ceramic capacitor according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a partially cutaway perspective view of a multilayer ceramic capacitor, and FIG. 2 is an enlarged sectional view of the multilayer ceramic capacitor.
[0012]
As shown in FIG. 1, this multilayer ceramic capacitor 10 includes a substantially rectangular parallelepiped laminate 13 in which ceramic dielectric layers 11 and conductor layers 12 are alternately laminated, and the conductor layers formed at both ends of the laminate 13. 12 and an external electrode 14 connected to the external electrode 14. Here, the conductor layers 12 are alternately connected to the external electrodes 14 at both ends. That is, one external electrode 14 is connected to the conductor layer 12 every other layer, and the other external electrode 14 is connected to the conductor layer 12 not connected to the one external electrode 14.
[0013]
The ceramic dielectric layer 11 is made of, for example, a BaTiO 3 based ceramic sintered body having ferroelectricity. The conductor layer 12 is made of a metal material such as Pd, Ni, or Ag. The laminated body 13 is formed by laminating a plurality of ceramic green sheets on which a conductive paste is printed and sintering them. As a result, the ceramic green sheet is sintered to form the ceramic dielectric layer 11, and the conductive paste is sintered to form the conductor layer 12. The external electrode 14 is made of a metal material such as Ni or Ag.
[0014]
A characteristic point of the multilayer ceramic capacitor 10 is that the thickness Dd of the ceramic dielectric layer 11 is equal to or less than the thickness De of the conductor layer 12, as shown in FIG. Specifically, the thickness Dd of the ceramic dielectric layer 11 is preferably about 70% to 100%, more preferably about 85% to 100% of the thickness De of the conductor layer 12. Here, when the ceramic dielectric layer 11 and the conductor layer 12 are compared, the conductor layer 12 is more flexible against thermal shock.
[0015]
In FIG. 2, the conductor layer 12 is illustrated as being interrupted. However, this is because the metal particles contained in the conductive paste forming the conductor layer 12 aggregate to make the conductor layer 12 non-uniform in thickness. As a result, a portion where a conductor is not formed is generated. A portion where the conductor layer 12 is interrupted is filled with the secondary phase 15 included in the ceramic dielectric layer 11.
[0016]
Next, an example of a method for manufacturing this multilayer ceramic capacitor will be described. First, a ceramic slurry is obtained by mixing and stirring a predetermined amount of an organic binder, an organic solvent, or water to a dielectric ceramic material in which, for example, BaTiO 3 or the like is used as a main raw material and SiO 2 or the like is mixed as an additive. Next, a ceramic green sheet is formed from the ceramic slurry by a tape molding method such as a doctor blade method.
[0017]
Next, a conductive paste is printed in a predetermined shape on the ceramic green sheet by a screen printing method, an intaglio printing method, a relief printing method, or the like. Here, the conductive paste is applied so that the thickness of the conductor layer after sintering is larger than the thickness of the ceramic dielectric layer.
[0018]
Next, the ceramic green sheet on which the conductive paste is printed is laminated and pressure-bonded using a press device to obtain a ceramic laminate. Next, the ceramic laminate is cut into a size per component unit to obtain a laminated chip. Next, this multilayer chip is fired under predetermined temperature conditions and atmospheric conditions to obtain a sintered body. Finally, external electrodes are formed on both ends of the sintered body by a dip method or the like to obtain a multilayer ceramic capacitor.
[0019]
In the multilayer ceramic capacitor 10 according to the present embodiment, the conductor layer 12 that is relatively flexible with respect to thermal shock is formed thicker than the ceramic dielectric layer 11, so that it has excellent thermal shock resistance as a whole. It becomes. In particular, in the case where each layer is thinned and the number of laminated layers is increased to reduce the size and increase the capacity, the laminated ceramic capacitor 10 has excellent thermal shock resistance.
[0020]
(Second Embodiment)
A multilayer ceramic capacitor according to a second embodiment of the present invention will be described with reference to the drawings. FIG. 3 is an enlarged cross-sectional view of the multilayer ceramic capacitor.
[0021]
As in the first embodiment, the multilayer ceramic capacitor includes a substantially rectangular parallelepiped laminate in which ceramic dielectric layers 21 and conductor layers 22 are alternately laminated, and the conductor formed on both ends of the laminate. An external electrode connected to the layer 22 is provided. Here, the conductor layers 22 are alternately connected to the external electrodes at both ends. That is, one external electrode is connected to the conductor layer 22 every other layer, and the other external electrode is connected to the conductor layer 22 not connected to the one external electrode.
[0022]
The ceramic dielectric layer 21 is made of, for example, a BaTiO 3 based ceramic sintered body having ferroelectricity. The conductor layer 22 is made of a metal material such as Pd, Ni, or Ag. The laminate is formed by laminating a plurality of ceramic green sheets on which a conductive paste is printed, and sintering them. As a result, the ceramic green sheet is sintered to form the ceramic dielectric layer 21, and the conductive paste is sintered to form the conductor layer 22. The external electrode is made of a metal material such as Ni or Ag.
[0023]
A characteristic point of this multilayer ceramic capacitor is the structure of the ceramic dielectric layer 21. In general, the ceramic dielectric layer is composed of ceramic particles and a secondary phase interposed between the ceramic particles. Here, the secondary phase is an additive added together with the raw material during firing of the ceramic or a reaction product of the additive and ceramic particles. This secondary phase is more flexible with respect to thermal shock properties than ceramic particles. In general, the ceramic dielectric layer is in a state where the ceramic particles are tightly coupled throughout the entire area.
[0024]
In the multilayer ceramic capacitor according to the present embodiment, as shown in FIG. 3, the ceramic dielectric layer 21 is composed of only the secondary phase 32 without the ceramic particles 31 between the opposing conductor layers 22. The region 21a is included. Here, the size of the portion 21a constituted only by the secondary phase 32, that is, the interval between the opposing ceramic particles 31 is equal to or greater than the thickness of the ceramic dielectric layer. Moreover, it is preferable that about 21%-15% of the site | part 21a comprised only by the secondary phase 32 is contained in one ceramic dielectric layer 21, More preferably, it is about 0%-5%. Furthermore, it is preferable that the ceramic dielectric layer 21 having the portion 21a composed only of the secondary phase 32 is about 10% to 90%, more preferably 15% to 30% with respect to the total ceramic dielectric layer 21. %.
[0025]
In FIG. 3, the conductor layer 22 is illustrated as being interrupted. However, this is because the metal particles contained in the conductive paste forming the conductor layer 22 aggregate and the thickness of the conductor layer 22 becomes nonuniform. As a result, a portion where a conductor is not formed is generated. A portion where the conductor layer 22 is interrupted is filled with the secondary phase 32 included in the ceramic dielectric layer 21.
[0026]
Next, an example of a method for manufacturing this multilayer ceramic capacitor will be described. First, a ceramic slurry is obtained by mixing and stirring a predetermined amount of an organic binder, an organic solvent, or water with a dielectric ceramic material. Here, the dielectric ceramic material is obtained by mixing an additive such as SiO 2 in a main raw material of barium titanate such as BaTiO 3 . This additive forms a secondary phase during firing, which will be described later. This additive is preferably mixed in an amount of about 1% to 10%, more preferably about 3% to 7% with respect to the main raw material.
[0027]
Next, a ceramic green sheet is formed from the ceramic slurry by a tape molding method such as a doctor blade method. Next, a conductive paste is printed in a predetermined shape on the ceramic green sheet by a screen printing method, an intaglio printing method, a relief printing method, or the like. Next, the ceramic green sheet on which the conductive paste is printed is laminated and pressure-bonded using a press device to obtain a ceramic laminate.
[0028]
Next, the ceramic laminate is cut into a size per component unit to obtain a laminated chip. Next, this multilayer chip is fired under predetermined temperature conditions and atmospheric conditions to obtain a sintered body. Finally, external electrodes are formed on both ends of the sintered body by a dip method or the like to obtain a multilayer ceramic capacitor.
[0029]
In the multilayer ceramic capacitor according to the present embodiment, since the ceramic dielectric 21 includes the portion 21a composed only of the secondary phase that is relatively flexible against thermal shock, it has excellent thermal shock resistance as a whole. It will be a thing. That is, the portion 21a composed only of the secondary phase functions to relieve stress. In particular, in the case where each layer is thinned and the number of laminated layers is increased to reduce the size and increase the capacity, the laminated ceramic capacitor has excellent thermal shock resistance.
[0030]
In the first and second embodiments described above, the ceramic material powder in which the main raw material is BaTiO 3 and the additive is SiO 2 is exemplified as the material of the ceramic dielectric layer. However, the present invention is not limited to this. It is not something. For example, BaTiO 3 , Bi 4 Ti 3 O 12 , (Ba, Sr, Ca) TiO 3 , (Ba, Ca) (Zr, Ti) O 3 , (Ba, Sr, Ca) (Zr, Ti) are used as main raw materials. ) O 3 , Ba (Ti, Sn) O 3 or the like may be used. Further, as additives, MgO, Mn 3 O 4, Li -based glass, or the like may be used B based glass.
[0031]
【The invention's effect】
As described in detail above, according to the first aspect of the present invention, since the thickness of the ceramic dielectric layer is smaller than the thickness of the conductor layer, the conductor layer having a relatively flexible against thermal shock as a whole. The proportion occupied is increased, which improves the resistance to thermal shock. Moreover, since the site | part with which the said secondary phase was filled relieve | moderates a thermal shock, the tolerance with respect to a thermal shock improves.
[Brief description of the drawings]
1 is a partially cutaway perspective view of a multilayer ceramic capacitor. FIG. 2 is an enlarged sectional view of the multilayer ceramic capacitor. FIG. 3 is an enlarged sectional view of the multilayer ceramic capacitor.
DESCRIPTION OF SYMBOLS 10 ... Multilayer ceramic capacitor, 11, 21 ... Ceramic dielectric layer, 12, 22 ... Conductor layer, 13 ... Laminated body, 14 ... External electrode, 31 ... Ceramic particle, 15, 32 ... Secondary phase

Claims (1)

導体層とセラミック誘電体層とを交互に積層してなる積層セラミックコンデンサにおいて、
前記セラミック誘電体層の厚みが前記導体層の厚みより小さく且つ導体層の厚みが不均一であり、前記導体層は途切れた部位を有し、該途切れた部位は、前記セラミック誘電体層に含まれる二次相が充填されている
ことを特徴とする積層セラミックコンデンサ。
In a multilayer ceramic capacitor formed by alternately laminating conductor layers and ceramic dielectric layers,
The thickness of the ceramic dielectric layer is smaller than the thickness of the conductor layer and the thickness of the conductor layer is non-uniform, the conductor layer has a discontinuous portion, and the discontinuous portion is included in the ceramic dielectric layer. A multilayer ceramic capacitor characterized by being filled with a secondary phase.
JP36689099A 1999-12-24 1999-12-24 Multilayer ceramic capacitor Expired - Lifetime JP3827901B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP36689099A JP3827901B2 (en) 1999-12-24 1999-12-24 Multilayer ceramic capacitor
TW089124649A TW498371B (en) 1999-12-24 2000-11-21 Packed ceramic capacitor
KR10-2000-0077657A KR100393304B1 (en) 1999-12-24 2000-12-18 Multi layer ceramic capacitor
MYPI20005980A MY121500A (en) 1999-12-24 2000-12-20 Multilayer ceramic capacitor
CNB001354981A CN1189901C (en) 1999-12-24 2000-12-20 Stacked ceramic capacitor
US09/741,441 US6404616B2 (en) 1999-12-24 2000-12-21 Multilayer ceramic capacitor
HK01107207A HK1036145A1 (en) 1999-12-24 2001-10-15 Laminate ceramic condenser.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36689099A JP3827901B2 (en) 1999-12-24 1999-12-24 Multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JP2001185436A JP2001185436A (en) 2001-07-06
JP3827901B2 true JP3827901B2 (en) 2006-09-27

Family

ID=18487948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36689099A Expired - Lifetime JP3827901B2 (en) 1999-12-24 1999-12-24 Multilayer ceramic capacitor

Country Status (7)

Country Link
US (1) US6404616B2 (en)
JP (1) JP3827901B2 (en)
KR (1) KR100393304B1 (en)
CN (1) CN1189901C (en)
HK (1) HK1036145A1 (en)
MY (1) MY121500A (en)
TW (1) TW498371B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1178240C (en) * 2000-02-03 2004-12-01 太阳诱电株式会社 Stached ceramic capacitor and making method thereof
JP2003031948A (en) * 2001-07-12 2003-01-31 Matsushita Electric Ind Co Ltd Method of manufacturing ceramic multilayer board
US7323422B2 (en) * 2002-03-05 2008-01-29 Asm International N.V. Dielectric layers and methods of forming the same
JP4305808B2 (en) * 2002-07-03 2009-07-29 太陽誘電株式会社 Multilayer capacitor
JP4200792B2 (en) * 2003-03-12 2008-12-24 株式会社村田製作所 Multilayer ceramic capacitor
JP3908715B2 (en) * 2003-10-24 2007-04-25 Tdk株式会社 Multilayer ceramic capacitor
WO2010013414A1 (en) * 2008-07-29 2010-02-04 株式会社村田製作所 Laminated ceramic capacitor
JP5040971B2 (en) * 2009-08-12 2012-10-03 株式会社村田製作所 Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
CN102906835B (en) 2009-12-16 2016-08-17 艾普瑞特材料技术有限责任公司 There is capacitor and the manufacture method of three-dimensional high surface area electrode
US8885322B2 (en) 2010-10-12 2014-11-11 Apricot Materials Technologies, LLC Ceramic capacitor and methods of manufacture
CN105406831A (en) * 2015-12-21 2016-03-16 成都新欣神风电子科技有限公司 Semi-lumped microwave band-pass filtering circuit and filter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3235772A1 (en) * 1981-09-30 1983-06-23 Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka MULTILAYER CAPACITOR
JPH01225149A (en) * 1988-03-04 1989-09-08 Toshiba Corp Capacitor and manufacture thereof
JPH10208969A (en) 1997-01-17 1998-08-07 Murata Mfg Co Ltd Laminated ceramic electronic parts

Also Published As

Publication number Publication date
KR20010067396A (en) 2001-07-12
MY121500A (en) 2006-01-28
KR100393304B1 (en) 2003-08-02
US20010010616A1 (en) 2001-08-02
CN1304146A (en) 2001-07-18
JP2001185436A (en) 2001-07-06
US6404616B2 (en) 2002-06-11
HK1036145A1 (en) 2001-12-21
CN1189901C (en) 2005-02-16
TW498371B (en) 2002-08-11

Similar Documents

Publication Publication Date Title
CN102640239B (en) Lamination type ceramic electronic part
JP7231340B2 (en) Ceramic electronic component and manufacturing method thereof
JP5420619B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP5825322B2 (en) Multilayer ceramic capacitor, method for manufacturing the same, and mounting substrate for multilayer ceramic capacitor
KR20190116113A (en) Multi-layered ceramic capacitor and method of manufacturing the same
JP2021010000A (en) Multilayer ceramic capacitor and manufacturing method thereof
CN104282433B (en) Multi-layered capacitor
KR101197787B1 (en) A Multi-Layered Ceramic Capacitor and a manufacturing method thereof
JP2021044533A (en) Multilayer ceramic capacitor and method of manufacturing the same
JP3827901B2 (en) Multilayer ceramic capacitor
KR20190121187A (en) Multi-layered ceramic capacitor
KR20230040972A (en) Multi-layered ceramic capacitor and method of manufacturing the same
JP2013214698A (en) Conductive paste composition for internal electrode and multilayer ceramic electronic component including the same
KR20210023440A (en) Multi-layered ceramic capacitor and method of manufacturing the same
JP2019140199A (en) Multilayer ceramic capacitor and manufacturing method thereof
JP3376963B2 (en) Multilayer ceramic capacitor and method of manufacturing the same
JP2012190874A (en) Multilayer ceramic capacitor and manufacturing method therefor
KR20140024584A (en) Conductive paste composition for internal electrode and multilayer ceramic electronic component containing the same
KR101792275B1 (en) Conductive paste for internal electrode, multilayer ceramic components using the same and manufacturing method of the same
JP3064659B2 (en) Manufacturing method of multilayer ceramic element
JP2872838B2 (en) Multilayer ceramic capacitor and method of manufacturing the same
JP2022016002A (en) Electronic component
KR102527709B1 (en) Multi-layered ceramic electronic component
JP3241054B2 (en) Multilayer ceramic capacitor and method of manufacturing the same
KR102381271B1 (en) Multi-layered ceramic capacitor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060705

R150 Certificate of patent or registration of utility model

Ref document number: 3827901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term