JP2004075452A - Dielectric ceramic composition and ceramic capacitor - Google Patents

Dielectric ceramic composition and ceramic capacitor Download PDF

Info

Publication number
JP2004075452A
JP2004075452A JP2002237326A JP2002237326A JP2004075452A JP 2004075452 A JP2004075452 A JP 2004075452A JP 2002237326 A JP2002237326 A JP 2002237326A JP 2002237326 A JP2002237326 A JP 2002237326A JP 2004075452 A JP2004075452 A JP 2004075452A
Authority
JP
Japan
Prior art keywords
component
sio
glass
firing
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002237326A
Other languages
Japanese (ja)
Inventor
Shusaku Ueda
上田 周作
Shinichi Abe
阿部 紳一
Shinobu Sakaguchi
坂口 忍
Tetsuyuki Suzuki
鈴木 鉄之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2002237326A priority Critical patent/JP2004075452A/en
Publication of JP2004075452A publication Critical patent/JP2004075452A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that a Ca-Ba-Sr-Ti-Zr-O perovskite-type complex-based dielectric ceramic composition easily causes the grain growth in firing under a reducing atmosphere to easily deteriorate the mechanical strength. <P>SOLUTION: The dielectric ceramic composition is obtained by firing a mixture prepared by adding an accessory component into a main component under a non-oxidizing atmosphere to sinter and after that, firing under an oxidizing atmosphere at a temperature lower than that in the previous firing to oxidize. The main component is composed of a material expressed by (Ca<SB>1-x</SB>L<SB>x</SB>)k(Zr<SB>1-y</SB>Ti<SB>y</SB>)O<SB>3</SB>(where, L is Ba and/or Sr; (x) is 0.1-0.9: (k) is 0.9-1.1; (y) is 0.15-0.50). The accessory component is composed of SiO<SB>2</SB>, Mn<SB>2</SB>O<SB>3</SB>and MO (MO is one or more kind of oxides selected from CrO<SB>2/3</SB>, NiO, CoO<SB>3/2</SB>and VO<SB>5/2</SB>) and contains 0.1-5 wt.% SiO<SB>2</SB>, 0.1-3 atom% expressed as Mn and 0.05-2 atom% expressed as M. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、耐還元性を有し、Niなどの卑金属を内部電極の材料とする温度補償用磁器コンデンサの誘電体層の材料として好適な誘電体磁器組成物とこの誘電体磁器組成物を誘電体層の材料とした磁器コンデンサに関するものである。
【0002】
【従来の技術】
磁器コンデンサとして、例えば、積層タイプの磁器コンデンサは次のような方法によって製造されている。すなわち、ドクターブレード法等によりセラミックグリーンシートを作成し、このグリーンシート上に内部電極となる金属粉末のペーストを印刷し、これらを複数枚積み重ねて熱圧着し、大気雰囲気中において1300℃以上の温度で焼成して焼結体を作り、内部電極と導通する外部電極を焼結体の端面に焼き付けている。
【0003】
ここで、内部電極の材料としては、パラジウム、白金、銀−パラジウムのような貴金属であれば、上記製造条件下でも酸化しないため、この様な貴金属がこれまで多くの積層磁器コンデンサに使用されていた。
【0004】
しかし、上記のような貴金属は、内部電極の材料として優れた特性を有しているが、反面、高価であるためコスト高の原因になっていた。そこで、このような問題を解決する手段として、内部電極の材料としてニッケル等の卑金属を用いることが試みられている。
【0005】
しかし、内部電極の材料として、例えばニッケルを用いると、大気雰囲気中における焼成でニッケルが酸化されるため、内部電極を形成することができなくなる。このような卑金属の酸化を防止するためには、還元雰囲気中で焼成を行なわなければならないが、還元雰囲気中で焼成を行なうとセラミックは還元されて半導体化し、絶縁性が低下してコンデンサとして機能しなくなる。
【0006】
そこで、還元性雰囲気中で焼成しても半導体化しない、絶縁性の高い誘電体材料が種々開発されている。そして、そのような材料の一つとして耐還元性を有するCa−Ba−Sr−Ti−Zr−O複合ペロブスカイト系磁器組成物が、温度補償用磁器コンデンサの誘電体層の材料として使用されている。
【0007】
【発明が解決しようとする課題】
しかし、Ca−Ba−Sr−Ti−Zr−O複合ペロブスカイト系誘電体磁器組成物は、還元性雰囲気中での焼成により粒成長し易く、このため機械的強度が悪化し易いという問題があった。
【0008】
この発明の目的は、できるだけ機械的強度の高いCa−Ba−Sr−Ti−Zr−O複合ペロブスカイト系誘電体磁器組成物を備えた磁器コンデンサを提供することにある。
【0009】
具体的には、非酸化性雰囲気中における1250℃以下の焼成温度で得られ、誘電体層を構成している誘電体磁器組成物の比誘電率εs が50以上、Qが5000以上、温度係数TCCが−1000ppm〜−50ppm、抗折強度が14000kgf/mmと、その特性が従来のものより更に優れた誘電体磁器組成物及び磁器コンデンサを提供することにある。
【0010】
【課題を解決するための手段】
この発明に係る誘電体磁器組成物は、主成分に副成分を添加してなる混合物を焼成して焼結させたものからなり、前記主成分が、(Ca1−x(Zr1−yTi)O(但し、LはBa及び又はSr、xは0.1〜0.9、kは0.9〜1.1、yは0.15〜0.50)で表わされる物質からなり、前記副成分が、ガラス成分と、Mnと、MO(MOはCrO3/2,NiO,CoO3/2及びVO5/2から選択された1種又は2種以上の酸化物)とからなり、該ガラス成分の添加量が主成分に対して0.1〜5wt%、該Mnの添加量がMnとして0.1〜3atm%、該MOの添加量がM(Cr,Ni,Co及びVから選択された1種又は2種以上の元素)として0.05〜2atm%であることを特徴とするものである。
【0011】
また、この発明に係る磁器コンデンサは1又は2以上の卑金属を材料とする誘電体層と、該誘電体層を各々挟持している少なくとも2以上の内部電極とを備え、該誘電体層が主成分に副成分を添加してなる混合物を非酸化性雰囲気中で焼成して焼結させた前記誘電体磁器組成物からなるものである。
【0012】
ここで、主成分のA/B比であるkの値を0.9〜1.1としたのは、kの値が0.9未満になったり、1.1を越えると焼結性が悪化したり、Qが悪化するが、kの値が0.9〜1.1の範囲ではこのようなことがないからである。
【0013】
また、L(Ba及び/又はSr)の割合であるxの値を0.1〜0.9としたのは、xの値が0.1未満になると温度係数TCCがマイナス変動し、xの値が0.9を越えると誘電率εsが低下するが、xの値が0.1〜0.9の範囲ではこのようなことがないからである。
【0014】
また、Tiの割合であるyの値を0.15〜0.50としたのは、yの値が0.15未満になると誘電率εsが低下し、yの値が0.50を越えると温度係数TCCがマイナス変動するが、yの値が0.15〜0.50の範囲ではこのようなことがないからである。
【0015】
また、ガラス成分の割合を主成分に対して0.1〜5wt%としたのは、ガラス成分の割合が0.1wt%未満になると焼結性が悪化したり、Qが悪化し、SiOの割合が5wt%を越えると粒成長により機械的強度が低下するが、ガラス成分の割合が0.1〜5wt%の範囲ではこのようなことがないからである。なお、ガラス成分としては、Li−SiO系ガラス、B−SiO系ガラスまたはSiOが使用可能である。
【0016】
また、Mnの割合をMnとして0.1〜3atm%としたのは、Mnの割合がMnとして0.1atm%未満になると半導体化してQが低下し、Mnの割合がMnとして3atm%を越えると粒成長により強度が低下するが、Mnの割合がMnとして0.1〜3atm%の範囲ではこのようなことがないからである。
【0017】
また、MO(MOはCrO3/2,NiO,CoO3/2及びVO5/2から選択された1種又は2種以上の酸化物)の割合をM(Cr,Ni,Co及びVから選択された1種又は2種以上の元素)として0.05〜2atm%としたのは、MOの割合がMとして0.05atm%未満になると粒成長により機械的強度が低下し、MOの割合がMとして2atm%を越えると半導体化によりQが低下するが、MOの割合がMとして0.05〜2atm%の範囲ではこのようなことがないからである。
【0018】
【実施例】
純度99.9%の炭酸カルシウム(CaCO)、炭酸ストロンチウム(SrCO)、炭酸バリウム(BaCO)、酸化ジルコニウム(ZrO)、酸化チタン(TiO)を主成分の出発原料として用意し、これらを混合、焼結した後に得られる誘電体組成物が、表1▲1▼、表1▲2▼に示される条件を満足するように、各々秤量した。
【0019】
【表1▲1▼】

Figure 2004075452
【0020】
【表1▲2▼】
Figure 2004075452
【0021】
ここで、表1▲1▼、表1▲2▼のxの欄は主成分の組成式(Ca1−x(Zr1−yTi)OにおけるLと(L+Ca)との比(x)を、yの欄は主成分の組成式におけるTiと(Ti+Zr)との比(y)を、kの欄は主成分の組成式における(Ca+L)の比(k)を示している。なお、LはBa及び/又はSrを意味している。
【0022】
次に、これら主成分の出発原料100重量部とジルコニアボール300重量部と純水300重量部をポットミルに入れ、湿式で15時間撹拌し、得られたスラリーをステンレスバットに移し、これを熱風乾燥機に入れ、150℃で4時間乾燥させた。
【0023】
次に、この乾燥によって得られた固形物を粗粉砕し、得られた粗粉をトンネル炉に入れ、大気雰囲気中において、1200℃で、2時間仮焼して主成分材料(誘電体のベース材)を得た。
【0024】
次に、この主成分材料と副成分物質の材料とを混合、焼結した後の誘電体組成物が表1▲1▼、表1▲2▼に示された割合となるように各々の材料の量を秤量し、混合した。
【0025】
ここで、副成分物質の材料のガラス成分としての酸化珪素(SiO)は純度99%のものを、酸化マンガン(III)(Mn)、酸化クロム(III)(Cr)はいずれも、純度99.9%のものを使用した。また、試料No.3以外の、NiO,Co,Vのいずれも純度99.9%のものを使用した。
【0026】
次に、この誘電体材料100重量部に対して、有機バインダーとしてポリブチルフタレートを15重量部、可塑剤としてジオクチルフタレート(DOP)を40重量部、溶剤としてトルエンを150重量部添加し、ボールミルを用いて15時間、撹拌混合し、スラリーを作成した。
【0027】
次に、このスラリーを真空脱泡機に入れて脱泡し、このスラリーをリバースロールコーターによってポリエステルフィルム上に薄膜状に塗布し、これを100℃で乾燥し、厚さ6μmのセラミック未焼結シート(セラミックグリーンシート)を得た。
【0028】
一方、平均粒径0.5μmのNi粉末と、エチルセルロースをブチルカルビトールに溶解させたものとを撹拌機に入れ、充分に混合、混練して内部電極用の導電ペーストを得た。
【0029】
そして、この導電ペーストを用いて、未焼結シート上に、短冊状の導電パターンをスクリーン印刷した。この時、導電パターンが、長手方向に約1/3ずれるよう、2種類の導電パターンを印刷した。
【0030】
次に、2種類の導電パターンを印刷した2種類の未焼結シートを交互に51枚(誘電体50層)積層し、この積層によって得られた積層物の上下に、導電パターンが印刷されていない未焼結シートを積層した。
【0031】
そして、この積層体を70℃の温度の下で50MPaの圧力を加えて押圧し、これらを圧着した。その後、この積層体を格子状に切断し、積層体チップ(素子)を得た。
【0032】
次に、この積層体チップを大気雰囲気中において100℃/時間の速度で600℃まで昇温させ、積層体チップの内部に含まれている有機バインダを加熱除去させた。そして、炉の雰囲気を大気雰囲気からH(2体積%)+N(98体積%)の混合雰囲気に切り替え、100℃/時間の速度で1250℃(焼成温度)まで昇温させ、2時間保持した後、100℃/時間の速度で600℃まで降温し、雰囲気を大気雰囲気に切り替え、600℃で30時間保持して酸化処理を行ない、その後、室温まで冷却した。
【0033】
このようにして、積層体チップを焼成し、電極が露出した状態で焼結された焼結体チップの側面に、Ni粉末とガラスフリットとビヒクルからなる導電ペーストを塗布して乾燥し、大気中550℃、15分間焼き付けてNi電極層を形成する。
【0034】
更に、この上に無電解メッキによりCuを被着させ、この上に電解メッキによりPb−Sn半田層を被着させて、一対の外部電極を形成して積層セラミックコンデンサを得た。
【0035】
なお、得られた積層セラミックコンデンサは、2mm(L)×1.25mm(W)×1mm(T)(212タイプ)であり、内部電極の交差面積は1mm、誘電体層の1層当たりの厚みは4μmであった。
【0036】
次に、完成した積層セラミックコンデンサの比誘電率εs、品質係数Q、温度係数TCC、抗折強度を測定したところ、表2▲1▼,▲2▼に示す通りであった。
【0037】
なお、電気的特性及び機械的特性は次の要領で測定した。
【0038】
(A)比誘電率εs、品質係数Q
LCRメータを用い、温度25℃、周波数1MHz、交流電圧1V(実効値)の条件で、静電容量を測定した。得られた静電容量と内部電極の交差面積と誘電体層1層当たりの厚みから、比誘電率εsを算出した。
【0039】
(B)温度係数TCC
25℃及び125℃の場合の静電容量を上記のようにして測定し、この静電容量から温度変化に対する容量変化率を算出した。
【0040】
(C)抗折強度
グリーンシートのみを積層した積層体を、上述の積層体チップと同条件で焼成し、試料を作成した。これを用いて3点曲げ試験を行い、抗折強度(kgf/mm)を求めた。
【0041】
【表2▲1▼】
Figure 2004075452
【0042】
【表2▲2▼】
Figure 2004075452
【0043】
表2▲1▼,▲2▼に示す結果から、試料No.42に示すようにkの値が0.85の場合はQが4300と目標値である5000が得られず、試料No.45に示すようにkの値が1.15の場合はQが3900と目標値である5000が得られず、且つ抗折強度が13400kgf/mmと目標値である14000kgf/mmが得られないが、試料No.43,44に示すようにkの値が0.9〜1.1の場合は所望の特性が得られることがわかる。
【0044】
また、表2▲1▼,▲2▼に示す結果から、試料No.34に示すようにxの値が0の場合は温度係数TCCが−1103ppmと目標値である−1000ppm〜−50ppmを外れ、試料No.37に示すようにxの値が1の場合は誘電率εsが46と目標値である50が得られないが、試料No.35,36に示すようにxの値が0.1〜0.9の場合は所望の特性が得られることがわかる。
【0045】
また、表2▲1▼,▲2▼示す結果から、LはBa+Srの形での添加だけでなく、試料No.38〜41に示すように、Ba単独でもよいし、Sr単独でも良いことがわかる。
【0046】
また、表2▲1▼,▲2▼に示す結果から、試料No.30に示すようにyの値が0.13の場合は誘電率εsが45と目標値である50が得られず、且つ温度係数TCCが−43ppmと目標値である−1000ppm〜−50ppmを外れ、試料No.33に示すようにyの値が0.6の場合は温度係数TCCが−1230と目標値である−1000ppm〜−50ppmを外れてしまうが、試料No.31,32に示すようにyの値が0.15〜0.50の場合は所望の特性が得られることがわかる。
【0047】
また、表2▲1▼,▲2▼に示す結果から、試料No.20に示すようにガラス成分としてのSiOの割合が0の場合はQが2300と目標値である5000が得られず、試料No.23に示すようにSiOの割合が10wt%の場合は抗折強度が13900kgf/mmと目標値である14000kgf/mmが得られないが、試料No.21,22に示すようにSiOの割合が0.1〜5wt%の場合は所望の特性が得られることがわかる。なお、試料No.24〜29に示すように、SiOの代わりにLi−SiO系ガラス、B−SiO系を用いても同様の特性が得られる。
【0048】
また、表2▲1▼,▲2▼に示す結果から、試料No.16に示すようにMnの割合がMnとして0.05atmの場合はQが4400と目標値である5000が得られず、試料No.19に示すようにMnの割合がMnとして4atm%の場合は抗折強度が13600kgf/mmと目標値である14000kgf/mmが得られなくなるが、試料No.17,18に示すようにMnの割合がMnとして0.1〜3atm%の場合は所望の特性が得られることがわかる。
【0049】
また、表2▲1▼,▲2▼に示す結果から、試料No.1に示すようにMOの割合がMとして0atm%の場合は抗折強度が12900kgf/mmと、目標値である14000kgf/mmが得られず、試料No.5に示すようにMOの割合がMとして4atm%の場合はQが3800と目標値である5000が得られないが、MOの割合がMとして0.05〜2atm%の場合は所望の特性が得られることがわかる。
【0050】
また、表2▲1▼,▲2▼に示す結果から、試料No.6〜15に示すように、MOはCrO3/2に限定されるものではなく、CrO3/2,NiO,CoO3/2及びVO5/2から選択された1種又は2種以上の酸化物であれば同様の結果が得られることがわかる。
【0051】
また、表2▲1▼,▲2▼に示す結果から、試料No.46〜55に示すように、x,y,k,tが組成限界値(最大値)になっている場合、CrO3/2添加量が最低量であっても抗折強度の向上が認められることがわかる。
【0052】
【発明の効果】
この発明によれば、比誘電率εs が50以上、Qが5000以上、温度係数TCCが−1000ppm〜−50ppm、抗折強度が14000kgf/mm以上の特性を備えた耐還元性を有する誘電体磁器組成物及び磁器コンデンサを提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a dielectric ceramic composition having reduction resistance and suitable as a material for a dielectric layer of a ceramic capacitor for temperature compensation using a base metal such as Ni as a material of an internal electrode, and a dielectric ceramic composition comprising the same. The present invention relates to a ceramic capacitor used as a material of a body layer.
[0002]
[Prior art]
As a porcelain capacitor, for example, a laminated type porcelain capacitor is manufactured by the following method. That is, a ceramic green sheet is prepared by a doctor blade method or the like, a paste of a metal powder to be used as an internal electrode is printed on the green sheet, a plurality of these are stacked and thermocompression-bonded, and a temperature of 1300 ° C. or more is set in an air atmosphere. To form a sintered body, and external electrodes that are electrically connected to the internal electrodes are baked on the end face of the sintered body.
[0003]
Here, as a material of the internal electrode, if it is a noble metal such as palladium, platinum or silver-palladium, it will not be oxidized even under the above manufacturing conditions, and thus such a noble metal has been used in many laminated ceramic capacitors. Was.
[0004]
However, such a noble metal as described above has excellent characteristics as a material for the internal electrode, but on the other hand, it is expensive and causes high cost. In order to solve such a problem, attempts have been made to use a base metal such as nickel as the material of the internal electrode.
[0005]
However, if, for example, nickel is used as the material of the internal electrode, the nickel is oxidized by firing in the air atmosphere, so that the internal electrode cannot be formed. In order to prevent such oxidation of the base metal, firing must be performed in a reducing atmosphere. However, when firing is performed in a reducing atmosphere, the ceramic is reduced to a semiconductor and the insulating properties are reduced, and the ceramic functions as a capacitor. No longer.
[0006]
Therefore, various dielectric materials having high insulating properties, which do not become semiconductor even when fired in a reducing atmosphere, have been developed. As one of such materials, a Ca—Ba—Sr—Ti—Zr—O composite perovskite ceramic composition having reduction resistance has been used as a material for a dielectric layer of a ceramic capacitor for temperature compensation. .
[0007]
[Problems to be solved by the invention]
However, the Ca-Ba-Sr-Ti-Zr-O composite perovskite-based dielectric porcelain composition has a problem that grains are easily grown by firing in a reducing atmosphere, and thus mechanical strength is liable to be deteriorated. .
[0008]
An object of the present invention is to provide a ceramic capacitor including a Ca—Ba—Sr—Ti—Zr—O composite perovskite-based dielectric ceramic composition having as high a mechanical strength as possible.
[0009]
Specifically, the dielectric ceramic composition obtained at a firing temperature of 1250 ° C. or lower in a non-oxidizing atmosphere has a relative dielectric constant εs of 50 or higher, Q of 5000 or higher, and a temperature coefficient of An object of the present invention is to provide a dielectric ceramic composition and a ceramic capacitor having a TCC of -1000 ppm to -50 ppm and a transverse rupture strength of 14000 kgf / mm 2 , which are more excellent in characteristics than conventional ones.
[0010]
[Means for Solving the Problems]
The dielectric ceramic composition according to this invention comprises by firing a mixture obtained by adding the auxiliary component as a main component that is sintered, the main component, (Ca 1-x L x ) k (Zr 1-y Ti y ) O 3 (where L is Ba and / or Sr, x is 0.1 to 0.9, k is 0.9 to 1.1, and y is 0.15 to 0.50) Wherein the auxiliary component is a glass component, Mn 2 O 3 , and MO (MO is one or more selected from CrO 3/2 , NiO, CoO 3/2 and VO 5/2) The glass component is added in an amount of 0.1 to 5 wt% with respect to the main component, the Mn 2 O 3 is added in an amount of 0.1 to 3 atm% as Mn, and the MO is added. Is 0.05 to 2 atm% as M (one or more elements selected from Cr, Ni, Co and V). It is characterized by the following.
[0011]
Further, a ceramic capacitor according to the present invention includes a dielectric layer made of one or more base metals, and at least two or more internal electrodes sandwiching the dielectric layer, and the dielectric layer mainly includes The dielectric porcelain composition is obtained by sintering and sintering a mixture obtained by adding subcomponents to the components in a non-oxidizing atmosphere.
[0012]
Here, the reason why the value of k, which is the A / B ratio of the main component, is 0.9 to 1.1 is that if the value of k is less than 0.9, or if it exceeds 1.1, the sinterability will be poor. The reason for this is that although the value worsens or Q deteriorates, such a phenomenon does not occur when the value of k is in the range of 0.9 to 1.1.
[0013]
Further, the value of x, which is the ratio of L (Ba and / or Sr), is set to 0.1 to 0.9 because the temperature coefficient TCC fluctuates negatively when the value of x is less than 0.1, When the value exceeds 0.9, the dielectric constant εs decreases, but this does not occur when the value of x is in the range of 0.1 to 0.9.
[0014]
The reason why the value of y, which is the proportion of Ti, is 0.15 to 0.50 is that when the value of y is less than 0.15, the dielectric constant εs decreases, and when the value of y exceeds 0.50, This is because the temperature coefficient TCC fluctuates in the minus direction, but this does not occur when the value of y is in the range of 0.15 to 0.50.
[0015]
Further, the reason why the ratio of the glass component is set to 0.1 to 5 wt% with respect to the main component is that when the ratio of the glass component is less than 0.1 wt%, sinterability deteriorates, Q deteriorates, and SiO 2 is deteriorated. If the ratio exceeds 5 wt%, the mechanical strength decreases due to grain growth, but such a phenomenon does not occur when the ratio of the glass component is in the range of 0.1 to 5 wt%. As the glass component, Li-SiO 2 based glass, B-SiO 2 based glass or SiO 2 can be used.
[0016]
Further, the reason that the ratio of Mn 2 O 3 is 0.1 to 3 atm% as Mn is that when the ratio of Mn 2 O 3 is less than 0.1 atm% as Mn, it turns into a semiconductor and Q is reduced, and Mn 2 O 3 When the ratio of Mn exceeds 3 atm% as Mn, the strength decreases due to grain growth, but when the ratio of Mn 2 O 3 is 0.1 to 3 atm% as Mn, such a phenomenon does not occur.
[0017]
The proportion of MO (MO is one or more oxides selected from CrO 3/2 , NiO, CoO 3/2 and VO 5/2 ) is selected from M (Cr, Ni, Co and V). (At least one element selected from the group consisting of one or more elements) is determined to be 0.05 to 2 atm%, because when the proportion of MO is less than 0.05 atm% as M, the mechanical strength decreases due to grain growth, and the proportion of MO decreases. This is because if M exceeds 2 atm%, Q decreases due to semiconductor conversion, but this does not occur when the MO ratio is in the range of 0.05 to 2 atm% as M.
[0018]
【Example】
99.9% pure calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), barium carbonate (BaCO 3 ), zirconium oxide (ZrO 2 ), and titanium oxide (TiO 2 ) were prepared as starting materials. The dielectric compositions obtained after mixing and sintering these were weighed so as to satisfy the conditions shown in Tables 1-1 and 1-2.
[0019]
[Table 1 [1]]
Figure 2004075452
[0020]
[Table 1-2]
Figure 2004075452
[0021]
Here, Table 1 ▲ 1 ▼, Table 1 ▲ 2 ▼ column of x and L in the main component of the composition formula (Ca 1-x L x) k (Zr 1-y Ti y) O 3 and (L + Ca) , The y column shows the ratio (y) between Ti and (Ti + Zr) in the composition formula of the main component, and the k column shows the ratio (k) of (Ca + L) in the composition formula of the main component. ing. In addition, L means Ba and / or Sr.
[0022]
Next, 100 parts by weight of the starting materials of these main components, 300 parts by weight of zirconia balls and 300 parts by weight of pure water are put into a pot mill, stirred for 15 hours in a wet system, and the obtained slurry is transferred to a stainless steel vat and dried with hot air. It was put on a machine and dried at 150 ° C. for 4 hours.
[0023]
Next, the solid obtained by this drying is coarsely pulverized, and the obtained coarse powder is put into a tunnel furnace, and calcined at 1200 ° C. for 2 hours in an air atmosphere to obtain a main component material (base of dielectric). Material).
[0024]
Next, each material was mixed such that the dielectric composition after mixing and sintering the main component material and the subcomponent material had the ratios shown in Tables 1-1 and 1-2. Were weighed and mixed.
[0025]
Here, silicon oxide (SiO 2 ) having a purity of 99% as a glass component of the material of the subcomponent substance is manganese (III) oxide (Mn 2 O 3 ), chromium (III) oxide (Cr 2 O 3 ). In each case, those having a purity of 99.9% were used. Further, the sample No. 3 except, NiO, both of Co 2 O 3, V 2 O 5 was used in a purity of 99.9%.
[0026]
Next, 15 parts by weight of polybutyl phthalate as an organic binder, 40 parts by weight of dioctyl phthalate (DOP) as a plasticizer, and 150 parts by weight of toluene as a solvent are added to 100 parts by weight of the dielectric material, and a ball mill is used. The mixture was stirred and mixed for 15 hours to prepare a slurry.
[0027]
Next, this slurry was put into a vacuum defoaming machine to defoam, and this slurry was applied on a polyester film by a reverse roll coater in the form of a thin film. A sheet (ceramic green sheet) was obtained.
[0028]
On the other hand, a Ni powder having an average particle size of 0.5 μm and a solution of ethyl cellulose dissolved in butyl carbitol were placed in a stirrer, mixed and kneaded sufficiently to obtain a conductive paste for an internal electrode.
[0029]
Then, a strip-shaped conductive pattern was screen-printed on the unsintered sheet using the conductive paste. At this time, two types of conductive patterns were printed so that the conductive patterns were shifted by about 1/3 in the longitudinal direction.
[0030]
Next, two types of unsintered sheets on which two types of conductive patterns are printed are alternately stacked (50 dielectric layers), and conductive patterns are printed on the upper and lower sides of the laminate obtained by this stacking. No unsintered sheets were laminated.
[0031]
Then, the laminate was pressed at a temperature of 70 ° C. by applying a pressure of 50 MPa, and these were pressed. Thereafter, the laminate was cut into a lattice to obtain a laminate chip (element).
[0032]
Next, the temperature of the laminated chip was raised to 600 ° C. at a rate of 100 ° C./hour in an air atmosphere, and the organic binder contained in the laminated chip was removed by heating. Then, the atmosphere of the furnace was switched from the air atmosphere to a mixed atmosphere of H 2 (2% by volume) + N 2 (98% by volume), the temperature was raised to 1250 ° C. (sintering temperature) at a rate of 100 ° C./hour, and held for 2 hours. After that, the temperature was lowered to 600 ° C. at a rate of 100 ° C./hour, the atmosphere was switched to an air atmosphere, and the oxidation treatment was performed at 600 ° C. for 30 hours, followed by cooling to room temperature.
[0033]
In this way, the laminated chip is fired, and a conductive paste composed of Ni powder, glass frit and vehicle is applied to the side surface of the sintered chip sintered with the electrodes exposed, and dried, Baking is performed at 550 ° C. for 15 minutes to form a Ni electrode layer.
[0034]
Further, Cu was deposited thereon by electroless plating, and a Pb-Sn solder layer was deposited thereon by electrolytic plating to form a pair of external electrodes to obtain a multilayer ceramic capacitor.
[0035]
The obtained multilayer ceramic capacitor was 2 mm (L) × 1.25 mm (W) × 1 mm (T) (212 type), the cross area of the internal electrodes was 1 mm 2 , and the dielectric layer per dielectric layer was 1 mm 2 . The thickness was 4 μm.
[0036]
Next, the relative dielectric constant εs, quality factor Q, temperature coefficient TCC, and bending strength of the completed multilayer ceramic capacitor were measured, and the results were as shown in Tables 2-1 and 2-2.
[0037]
The electrical characteristics and the mechanical characteristics were measured as follows.
[0038]
(A) dielectric constant εs, quality factor Q
The capacitance was measured using an LCR meter under the conditions of a temperature of 25 ° C., a frequency of 1 MHz, and an AC voltage of 1 V (effective value). The relative dielectric constant εs was calculated from the obtained capacitance, the intersection area of the internal electrodes, and the thickness per dielectric layer.
[0039]
(B) Temperature coefficient TCC
The capacitance at 25 ° C. and 125 ° C. was measured as described above, and the capacitance change rate with respect to temperature change was calculated from the capacitance.
[0040]
(C) A laminate in which only the bending strength green sheets were laminated was fired under the same conditions as the above-mentioned laminated chip to prepare a sample. Using this, a three-point bending test was performed to determine the bending strength (kgf / mm 2 ).
[0041]
[Table 2-1]
Figure 2004075452
[0042]
[Table 2 (2)]
Figure 2004075452
[0043]
From the results shown in Tables 2 (1) and (2), Sample No. 42, when the value of k is 0.85, Q is 4300 and the target value of 5000 cannot be obtained. As shown by 45, when the value of k is 1.15, Q is 3900 and the target value of 5000 cannot be obtained, and the transverse rupture strength is 13400 kgf / mm 2 and the target value of 14000 kgf / mm 2 is obtained. No, but sample no. As shown in 43 and 44, when the value of k is 0.9 to 1.1, it can be seen that desired characteristics can be obtained.
[0044]
Also, from the results shown in Tables 2 (1) and (2), Sample No. As shown in FIG. 34, when the value of x is 0, the temperature coefficient TCC is −1103 ppm, which is outside the target value of −1000 ppm to −50 ppm. As shown in FIG. 37, when the value of x is 1, the dielectric constant εs is 46 and the target value of 50 cannot be obtained, but the sample No. As shown in 35 and 36, when the value of x is 0.1 to 0.9, desired characteristics can be obtained.
[0045]
In addition, from the results shown in Tables 2 (1) and 2), not only L was added in the form of Ba + Sr, As shown in 38 to 41, Ba alone or Sr alone may be used.
[0046]
Also, from the results shown in Tables 2 (1) and (2), Sample No. As shown in FIG. 30, when the value of y is 0.13, the dielectric constant .epsilon.s is 45 and the target value of 50 cannot be obtained, and the temperature coefficient TCC is -43 ppm and deviates from the target value of -1000 ppm to -50 ppm. , Sample No. 33, when the value of y is 0.6, the temperature coefficient TCC is -1230, which is out of the target value of -1000 ppm to -50 ppm. As shown in FIGS. 31 and 32, when the value of y is 0.15 to 0.50, desired characteristics can be obtained.
[0047]
Also, from the results shown in Tables 2 (1) and (2), Sample No. As shown in FIG. 20, when the ratio of SiO 2 as the glass component was 0, Q was 2300, which was the target value of 5000, and the sample No. 20 was not obtained. As shown in FIG. 23, when the ratio of SiO 2 was 10 wt%, the transverse rupture strength was 13900 kgf / mm 2 and the target value of 14000 kgf / mm 2 could not be obtained. As shown in FIGS. 21 and 22, it can be seen that desired characteristics can be obtained when the ratio of SiO 2 is 0.1 to 5 wt%. The sample No. As shown in 24~29, Li-SiO 2 based glass in place of SiO 2, the same characteristics using B-SiO 2 system is obtained.
[0048]
Also, from the results shown in Tables 2 (1) and (2), Sample No. As shown in FIG. 16, when the ratio of Mn 2 O 3 was 0.05 atm as Mn, Q was 4400 and the target value of 5000 could not be obtained. As shown in FIG. 19, when the ratio of Mn 2 O 3 is 4 atm% as Mn, the transverse rupture strength of 13600 kgf / mm 2 and the target value of 14000 kgf / mm 2 cannot be obtained. As shown in FIGS. 17 and 18, when the ratio of Mn 2 O 3 is 0.1 to 3 atm% as Mn, desired characteristics can be obtained.
[0049]
Also, from the results shown in Tables 2 (1) and (2), Sample No. As shown in FIG. 1, when the proportion of MO was 0 atm% as M, the transverse rupture strength was 12900 kgf / mm 2 and the target value of 14000 kgf / mm 2 was not obtained. As shown in FIG. 5, when the ratio of MO is 4 atm% as M, Q is 3800 and the target value of 5000 cannot be obtained, but when the ratio of MO is 0.05 to 2 atm%, the desired characteristics are not obtained. It can be seen that it can be obtained.
[0050]
Also, from the results shown in Tables 2 (1) and (2), Sample No. As shown in 6 to 15, MO is not limited to CrO 3/2, CrO 3/2, NiO, 1 or selected from CoO 3/2 and VO 5/2 or more oxide It can be seen that a similar result can be obtained if the object is a material.
[0051]
Also, from the results shown in Tables 2 (1) and (2), Sample No. As shown in 46 to 55, when x, y, k, and t are composition limit values (maximum values), improvement in transverse rupture strength is observed even when the amount of CrO 3/2 added is the minimum. You can see that.
[0052]
【The invention's effect】
According to the present invention, a reduction-resistant dielectric having characteristics of a relative dielectric constant εs of 50 or more, a Q of 5000 or more, a temperature coefficient TCC of -1000 ppm to -50 ppm, and a flexural strength of 14000 kgf / mm 2 or more. A porcelain composition and a porcelain capacitor can be provided.

Claims (4)

主成分に副成分を添加してなる混合物を焼成して焼結させたものからなり、前記主成分が、(Ca1−x(Zr1−yTi)O(但し、LはBa及び又はSr、xは0.1〜0.9、kは0.9〜1.1、yは0.15〜0.50)で表わされる物質からなり、前記副成分が、ガラス成分と、Mnと、MO(MOはCrO3/2,NiO,CoO3/2及びVO5/2から選択された1種又は2種以上の酸化物)とからなり、該ガラス成分の添加量が前記主成分に対して0.1〜5wt%、該Mnの添加量がMnとして0.1〜3atm%、該MOの添加量がM(Cr,Ni,Co及びVから選択された1種又は2種以上の元素)として0.05〜2atm%であることを特徴とする誘電体磁器組成物。A mixture obtained by firing and sintering a mixture obtained by adding an auxiliary component to a main component, wherein the main component is (Ca 1-x L x ) k (Zr 1-y Ti y ) O 3 (however, L is Ba and / or Sr, x is 0.1 to 0.9, k is 0.9 to 1.1, y is 0.15 to 0.50), and the subcomponent is glass. A glass component comprising Mn 2 O 3 and MO (MO is one or more oxides selected from CrO 3/2 , NiO, CoO 3/2 and VO 5/2 ) Is 0.1 to 5 wt% with respect to the main component, the addition amount of Mn 2 O 3 is 0.1 to 3 atm% as Mn, and the addition amount of MO is M (Cr, Ni, Co and V). Characterized in that it is 0.05 to 2 atm% as one or more elements selected from the group consisting of: object. 前記ガラス成分が、Li−SiO系ガラス、B−SiO系ガラスまたはSiOであることを特徴とする請求項1に記載の誘電体磁器組成物。The glass component, Li-SiO 2 type glass, dielectric ceramic composition according to claim 1, characterized in that the B-SiO 2 based glass or SiO 2. 誘電体磁器組成物からなる1又は2以上の誘電体層と、該誘電体層を各々挟持している少なくとも2以上の卑金属を材料とする内部電極とを備えた磁器コンデンサにおいて、前記誘電体磁器組成物が、主成分に副成分を添加してなる混合物を非酸化性雰囲気中で焼成して焼結させ、その後酸化性雰囲気中でこの焼成温度より低い温度で焼成して酸化処理したものからなり、前記主成分が、(Ca1−x(Zr1−yTi)O(但し、LはBa及び又はSr、xは0.1〜0.9、kは0.9〜1.1、yは0.15〜0.50)で表わされる物質からなり、前記副成分が、ガラス成分と、Mnと、MO(MOはCrO3/2,NiO,CoO3/2及びVO5/2から選ばれた1種又は2種以上の酸化物)とからなり、該ガラス成分の添加量が前記主成分に対して0.1〜5wt%、該Mnの添加量がMnとして0.1〜3atm%、該MOの添加量がM(Cr,Ni,Co及びVから選択された1種又は2種以上の元素)として0.05〜2atm%であることを特徴とする磁器コンデンサ。A porcelain capacitor comprising one or more dielectric layers made of a dielectric porcelain composition and internal electrodes made of at least two or more base metals sandwiching each of the dielectric layers, wherein the dielectric porcelain comprises: The composition is obtained by firing and sintering a mixture obtained by adding an accessory component to a main component in a non-oxidizing atmosphere, and then firing in an oxidizing atmosphere at a temperature lower than the firing temperature. becomes the main component, (Ca 1-x L x ) k (Zr 1-y Ti y) O 3 ( where, L is Ba and or Sr, x is 0.1 to 0.9, k is 0. 9 to 1.1, y is made of a material represented by 0.15 to 0.50), the secondary component is a glass component, and Mn 2 O 3, MO (MO is CrO 3/2, NiO, CoO One or two or more oxides selected from 3/2 and VO 5/2 ) and The glass component is added in an amount of 0.1 to 5 wt% with respect to the main component, the Mn 2 O 3 is added in an amount of 0.1 to 3 atm% as Mn, and the MO is added in an amount of M (Cr , Ni, Co and V) is 0.05 to 2 atm%. 前記ガラス成分が、Li−SiO系ガラス、B−SiO系ガラスまたはSiOであることを特徴とする請求項3に記載の磁器コンデンサ。Ceramic capacitor according to claim 3, wherein the glass component, characterized in that it is a Li-SiO 2 based glass, B-SiO 2 based glass or SiO 2.
JP2002237326A 2002-08-16 2002-08-16 Dielectric ceramic composition and ceramic capacitor Pending JP2004075452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002237326A JP2004075452A (en) 2002-08-16 2002-08-16 Dielectric ceramic composition and ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002237326A JP2004075452A (en) 2002-08-16 2002-08-16 Dielectric ceramic composition and ceramic capacitor

Publications (1)

Publication Number Publication Date
JP2004075452A true JP2004075452A (en) 2004-03-11

Family

ID=32021119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002237326A Pending JP2004075452A (en) 2002-08-16 2002-08-16 Dielectric ceramic composition and ceramic capacitor

Country Status (1)

Country Link
JP (1) JP2004075452A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055835A (en) * 2005-08-23 2007-03-08 Tdk Corp Dielectric ceramic composition and electronic component
US7923395B2 (en) * 2005-04-07 2011-04-12 Kemet Electronics Corporation C0G multi-layered ceramic capacitor
KR101339396B1 (en) 2012-03-19 2013-12-09 삼화콘덴서공업주식회사 Non-reducible low temperature sinterable dielectric ceramic composition for multi layer ceramic capacitor and manufacturing method thereof
WO2014156410A1 (en) * 2013-03-26 2014-10-02 日本碍子株式会社 Dielectric porcelain composition and composite ceramic structural body
JP2017014094A (en) * 2015-07-06 2017-01-19 サムソン エレクトロ−メカニックス カンパニーリミテッド. Dielectric ceramic composition and multilayer ceramic capacitor containing the same
KR20200034977A (en) * 2018-08-06 2020-04-01 삼성전기주식회사 Dielectric composition and electronic component using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923395B2 (en) * 2005-04-07 2011-04-12 Kemet Electronics Corporation C0G multi-layered ceramic capacitor
JP2007055835A (en) * 2005-08-23 2007-03-08 Tdk Corp Dielectric ceramic composition and electronic component
KR101339396B1 (en) 2012-03-19 2013-12-09 삼화콘덴서공업주식회사 Non-reducible low temperature sinterable dielectric ceramic composition for multi layer ceramic capacitor and manufacturing method thereof
WO2014156410A1 (en) * 2013-03-26 2014-10-02 日本碍子株式会社 Dielectric porcelain composition and composite ceramic structural body
US9505661B2 (en) 2013-03-26 2016-11-29 Ngk Insulators, Ltd. Dielectric ceramic composition and composite ceramic structure
JP2017014094A (en) * 2015-07-06 2017-01-19 サムソン エレクトロ−メカニックス カンパニーリミテッド. Dielectric ceramic composition and multilayer ceramic capacitor containing the same
KR20200034977A (en) * 2018-08-06 2020-04-01 삼성전기주식회사 Dielectric composition and electronic component using the same
KR102409109B1 (en) * 2018-08-06 2022-06-15 삼성전기주식회사 Dielectric composition and electronic component using the same

Similar Documents

Publication Publication Date Title
KR101200129B1 (en) Dielectric ceramic composition, and laminated ceramic capacitor
JP3746763B2 (en) Reduction-resistant low-temperature fired dielectric ceramic composition, multilayer ceramic capacitor using the same, and manufacturing method thereof
KR100414331B1 (en) Nonreducing dielectric ceramic and monolithic ceramic capacitor using the same
JP3039397B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP5423682B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JP6753221B2 (en) Dielectric composition and laminated electronic components
CN114914085B (en) Dielectric composition, electronic component, and laminated electronic component
JP5240199B2 (en) Dielectric ceramic and multilayer ceramic capacitor
JP2004323315A (en) Dielectric ceramic composition, its production method, and multilayer ceramic capacitor obtained by using the same
JP3323801B2 (en) Porcelain capacitors
JP2019099427A (en) Dielectric composition, electronic component, and laminate electronic component
JP3438736B2 (en) Manufacturing method of laminated semiconductor porcelain
JP2004075452A (en) Dielectric ceramic composition and ceramic capacitor
JP4729847B2 (en) Non-reducing dielectric ceramic and multilayer ceramic capacitors
JP4614656B2 (en) Dielectric porcelain, multilayer electronic component, and method of manufacturing multilayer electronic component
JPH0925162A (en) Nonreducing dielectric porcelain composition and laminated ceramic capacitor using the same
JP4111754B2 (en) Ceramic capacitor, dielectric composition thereof, and method for producing the same
KR20010039802A (en) Laminated Type Semiconductor Ceramic Element and Production Method for the Laminated Type Semiconductor Ceramic Element
JP2022122145A (en) Dielectric composition, electronic part, and multilayer electronic part
JPH0734327B2 (en) Non-reducing dielectric ceramic composition
JP5000088B2 (en) Method for manufacturing dielectric ceramic composition and method for manufacturing ceramic capacitor
JP4369650B2 (en) Dielectric porcelain, porcelain capacitor and manufacturing method thereof
JPH02270313A (en) Dielectric porcelain composition, laminated ceramic capacitor using the composition and manufacture thereof
KR100916135B1 (en) Stacked ptc thermistor composition and its manufacturing method
JP2006160531A (en) Dielectric ceramic composition, ceramic capacitor, and their production methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310