JP3419285B2 - Manufacturing method of ceramic electronic components - Google Patents

Manufacturing method of ceramic electronic components

Info

Publication number
JP3419285B2
JP3419285B2 JP34487597A JP34487597A JP3419285B2 JP 3419285 B2 JP3419285 B2 JP 3419285B2 JP 34487597 A JP34487597 A JP 34487597A JP 34487597 A JP34487597 A JP 34487597A JP 3419285 B2 JP3419285 B2 JP 3419285B2
Authority
JP
Japan
Prior art keywords
powder
ceramic
ceramic electronic
electronic component
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34487597A
Other languages
Japanese (ja)
Other versions
JPH11176613A (en
Inventor
理穂 佐々木
康男 若畑
英晃 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP34487597A priority Critical patent/JP3419285B2/en
Publication of JPH11176613A publication Critical patent/JPH11176613A/en
Application granted granted Critical
Publication of JP3419285B2 publication Critical patent/JP3419285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば電気回路の
過電圧の保護を目的とするバリスタ素子などのセラミッ
ク電子部品の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a ceramic electronic component such as a varistor element for the purpose of protecting an electric circuit from overvoltage.

【0002】[0002]

【従来の技術】従来、バリスタ素子は、特開平8−93
973号公報に示されるように、ZnOを主成分とし、
Bi23などの副成分からなるセラミック原料と有機バ
インダとを混合した混合物を成形し、その成形体を酸化
アルミニウムなどの反応不活性な粉末中に埋め込んで電
気炉の中に設置し、焼成することにより製造していた。
2. Description of the Related Art Conventionally, a varistor element has been disclosed in Japanese Patent Laid-Open No. 8-93.
As disclosed in Japanese Patent No. 973, ZnO is a main component,
A mixture obtained by mixing a ceramic raw material composed of auxiliary components such as Bi 2 O 3 and an organic binder is molded, and the molded body is embedded in a reaction inert powder such as aluminum oxide and placed in an electric furnace and fired. It was manufactured by

【0003】[0003]

【発明が解決しようとする課題】この方法によると、B
23が焼成中に急激に飛散することを抑制し、空孔の
数が少ないセラミック焼結体が得られるが、反応不活性
な粉末の充填のみによりBi23の飛散を制御するため
に、その充填率の違いなどにより、バリスタ素子の電気
特性がばらつくことが多かった。
According to this method, B
Although i 2 O 3 is prevented from being suddenly scattered during firing, a ceramic sintered body having a small number of pores can be obtained, but the scattering of Bi 2 O 3 is controlled only by filling the powder with a reaction inactive substance. Therefore, the electrical characteristics of the varistor element often vary due to the difference in the filling rate.

【0004】そこで本発明は、空孔の数が少なく、かつ
電気特性ばらつきの少ないセラミック電子部品を提供す
ることを目的としている。
Therefore, an object of the present invention is to provide a ceramic electronic component having a small number of holes and a small variation in electric characteristics.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に、本発明は、焼成中に飛散する可能性を有する物質を
含有したセラミック成形体の表面を、前記飛散する物質
に対して反応活性な粉末と前記飛散する物質に対して
応不活性な粉末の混合物と接触させて熱処理するもので
あり、前記混合物は前記反応不活性な粉末に対する前記
反応活性な粉末の割合を0.5〜20wt%とするもの
で、この方法によると熱処理中に飛散する可能性を有す
る物質が反応活性な粉末との反応のために、ほぼ一定量
がセラミック成形体から反応活性な粉末の方に移動する
ため、セラミック焼成体に残る飛散する可能性を有する
物質の量が制御でき、その結果、電気特性ばらつきの少
ないセラミック電子部品を提供することが可能となる。
To SUMMARY OF THE INVENTION To achieve this object, the present invention, the surface of the ceramic molded body containing a substance having a potential to be scattered during firing, said scattering material
Is heat-treated by bringing it into contact with a mixture of a powder reactive with respect to the powder and a powder inert with respect to the scattered substance , and the mixture is heated against the powder inert to the reaction.
The ratio of reactive powder is 0.5 to 20 wt%
In order to move to substances that have the potential to scatter during the heat treatment According to this method of reaction with the reactive powder, substantially constant amount toward the reactive powder of a ceramic molded body, a ceramic fired body It is possible to control the amount of the remaining substances that may scatter, and as a result, it is possible to provide a ceramic electronic component with little variation in electrical characteristics.

【0006】[0006]

【発明の実施の形態】本発明の請求項1に記載の発明
は、焼成中に飛散する可能性を有する物質を含有したセ
ラミック成形体の表面を、前記飛散する物質に対して
応活性な粉末と前記飛散する物質に対して反応不活性な
粉末の混合物と接触させて熱処理するものであり、前記
混合物は前記反応不活性な粉末に対する前記反応活性な
粉末の割合を0.5〜20wt%とするもので、この方
法によると、セラミック焼結体に残る飛散する可能性を
有する物質の量が制御できるため、電気特性ばらつきの
少ないセラミック電子部品を提供することができる。
The invention according to claim 1 of the embodiment of the present invention is anti-surface of the ceramic molded body containing a substance having a potential to be scattered during firing, with respect to the scattering substance <br / > response to応活with powder and the scattering substance in contact with an inert mixture of powders is intended to heat treatment, the
The mixture contains the reaction-active powder to the reaction-inactive powder.
The ratio of the powder is 0.5 to 20 wt%. According to this method, the amount of the substance that may remain in the ceramic sintered body and may be scattered can be controlled, so that a ceramic electronic component with less variation in electrical characteristics can be provided. can do.

【0007】[0007]

【0008】請求項に記載の発明は、反応活性な粉末
として、SiO2を用いるものであり、この方法による
と、セラミック焼結体に残る飛散する可能性を有する物
質の量が制御できるため、電気特性ばらつきの少ないセ
ラミック電子部品を提供することができる。
According to the second aspect of the present invention, SiO 2 is used as the reactive powder. According to this method, it is possible to control the amount of the substance that remains in the ceramic sintered body and may be scattered. It is possible to provide a ceramic electronic component with less variation in electrical characteristics.

【0009】請求項に記載の発明は、反応不活性な粉
末として、酸化アルミニウム、酸化マグネシウム、酸化
亜鉛、酸化ジルコニウムの内、少なくとも一種類を用い
ものであり、この方法によると、セラミック焼結体に
残る飛散する可能性を有する物質の量が制御できるた
め、電気特性ばらつきの少ないセラミック電子部品を提
供することができる。
According to the third aspect of the invention, at least one of aluminum oxide, magnesium oxide, zinc oxide and zirconium oxide is used as the reaction-inert powder.
That is intended, according to this method, can be controlled in the amount of substances that have the potential to scatter remains in the ceramic sintered body, it is possible to provide an electric characteristic variation less ceramic electronic component.

【0010】請求項に記載の発明は、セラミック成形
体を粉末の混合物に埋没させて熱処理するものであり、
この方法によると、セラミック焼結体に残る飛散する可
能性を有する物質の量が制御できるため、電気特性ばら
つきの少ないセラミック電子部品を提供することができ
る。
According to a fourth aspect of the present invention, the ceramic compact is immersed in a powder mixture and heat-treated.
According to this method, the amount of the substance that may remain in the ceramic sintered body and may be scattered can be controlled, so that it is possible to provide a ceramic electronic component with less variation in electrical characteristics.

【0011】請求項に記載の発明は、セラミック成形
体と粉末の混合物を容器内に収納し、次に前記容器を回
転させながら熱処理するものであり、この方法による
と、セラミック焼結体に残る飛散する可能性を有する物
質の量が制御できるため、電気特性ばらつきの少ないセ
ラミック電子部品を提供することができる。
According to a fifth aspect of the present invention, the mixture of the ceramic compact and the powder is contained in a container, and then the container is heat-treated while rotating the container. Since the amount of the remaining substance having a possibility of scattering can be controlled, it is possible to provide a ceramic electronic component with less variation in electrical characteristics.

【0012】(実施の形態1)まず、セラミック成形体
と反応不活性である酸化アルミニウム粉末に反応活性で
あるSiO2粉末を0〜20wt%添加、充分混合し、
粉末混合物を得る。
(Embodiment 1) First, 0 to 20 wt% of reactive SiO 2 powder is added to a ceramic compact and aluminum oxide powder which is inert to reaction, and they are sufficiently mixed,
A powder mixture is obtained.

【0013】図1はこの粉末混合物中にセラミック成形
体を埋め込んだ状態を示す断面図であり、酸化アルミニ
ウム板3上において、セラミック成形体1表面を粉末混
合物2で覆っている。図2は一般的なディスクタイプの
酸化亜鉛バリスタ素子の断面図を示すもので、焼結体5
とこの焼結体5の上、下両面に設けた銀電極6で構成さ
れている。
FIG. 1 is a cross-sectional view showing a state in which a ceramic compact is embedded in this powder mixture. The surface of the ceramic compact 1 is covered with the powder mixture 2 on the aluminum oxide plate 3. FIG. 2 shows a cross-sectional view of a general disk type zinc oxide varistor element.
And the silver electrodes 6 provided on both upper and lower surfaces of the sintered body 5.

【0014】まず、少なくとも酸化亜鉛と酸化ビスマス
とを含むセラミックス材料に有機バインダを加えて混合
し、次に直径10mm、厚さ1.2mmとなるように1t/
cm2の圧力をかけて円板状のセラミック成形体1を得
た。このようにして得たセラミック成形体1を500℃
で脱バインダした後、図1に示すように縦150mm、横
150mm、厚さ2mmの酸化アルミニウム板3の上に、粉
末混合物2を50ccのせた後、セラミック成形体1を設
置し、その上からさらに粉末混合物2を50ccのせるこ
とでセラミック成形体1を粉末混合物2中に完全に埋め
込み、930℃で焼成し、焼結体5を得た。なお、焼成
する際、直接セラミック成形体1同士が接することのな
いようにした。
First, an organic binder is added to and mixed with a ceramic material containing at least zinc oxide and bismuth oxide, and then 1 t / thickness so that the diameter is 10 mm and the thickness is 1.2 mm.
A disc-shaped ceramic molded body 1 was obtained by applying a pressure of cm 2 . The ceramic molded body 1 thus obtained is heated to 500 ° C.
After debindering with, the powder mixture 2 was placed on an aluminum oxide plate 3 having a length of 150 mm, a width of 150 mm and a thickness of 2 mm as shown in FIG. 1, and 50 cc of the powder mixture 2 was placed thereon. Further, by placing 50 cc of the powder mixture 2, the ceramic molded body 1 was completely embedded in the powder mixture 2 and fired at 930 ° C. to obtain a sintered body 5. It should be noted that the ceramic molded bodies 1 were prevented from directly contacting each other during firing.

【0015】粉末混合物2でセラミック成形体1の表面
を覆う目的は、セラミック成形体1に含まれるBi23
がその融点(825℃)以上の温度において、急激に蒸
気圧が上昇し、蒸発するのを遮蔽することと、セラミッ
ク成形体1中のBi23が、SiO2との反応のため、
各方向へ均一に移動し、焼結体5内のBi23の分布、
又、個々の焼結体5のBi23のばらつきを低減するこ
とである。
The purpose of covering the surface of the ceramic molded body 1 with the powder mixture 2 is to contain Bi 2 O 3 contained in the ceramic molded body 1.
At a temperature equal to or higher than its melting point (825 ° C.), a vapor pressure is suddenly increased to block evaporation, and Bi 2 O 3 in the ceramic molded body 1 reacts with SiO 2 ,
Distribution of Bi 2 O 3 in the sintered body 5 that moves uniformly in each direction,
Further, it is to reduce the variation of Bi 2 O 3 of each sintered body 5.

【0016】次に得られた焼結体5に図2に示すように
直径7mmの銀ペーストを塗布した後、800℃で焼付け
て銀電極6を形成し、酸化亜鉛バリスタ素子を得た。
Then, a silver paste having a diameter of 7 mm was applied to the obtained sintered body 5 as shown in FIG. 2 and then baked at 800 ° C. to form a silver electrode 6 to obtain a zinc oxide varistor element.

【0017】(表1)にAl23粉末に対するSiO2
の添加量と、焼結体5のセラミック成形体1に対する重
量減量(Bi23の飛散量に比例する)、及びバリスタ
電圧V1mA(電流1mAにおける電圧)のバラツキ(標
準偏差/平均値)の関係を示す。
Table 1 shows SiO 2 for Al 2 O 3 powder.
And the weight loss of the sintered body 5 with respect to the ceramic compact 1 (proportional to the amount of Bi 2 O 3 scattered) and the varistor voltage V 1mA (voltage at a current of 1 mA) (standard deviation / average value) Shows the relationship.

【0018】[0018]

【表1】 [Table 1]

【0019】(実施の形態2)セラミック成形体1と反
応不活性である酸化亜鉛粉末に、反応活性であるSiO
2粉末を0〜20wt%添加、充分混合し、粉末混合物
を得る。
(Embodiment 2) Zinc oxide powder that is inactive with the ceramic compact 1 is reacted with SiO that is reactive.
Add 0 to 20 wt% of 2 powders and mix well to obtain a powder mixture.

【0020】図3はこの粉末混合物2とセラミック成形
体1を円筒状さや11の中に投入した断面図である。図
4はこの円筒状さや11の斜視図である。
FIG. 3 is a cross-sectional view in which the powder mixture 2 and the ceramic molded body 1 are put into a cylindrical sheath 11. FIG. 4 is a perspective view of this cylindrical sheath 11.

【0021】まず、(実施の形態1)と同様の方法で作
製したセラミック成形体1を500℃で脱バインダした
後、図4に示すような直径7cm、長さ10cmの円筒状さ
や11に設けられた直径2cmの投入口12より投入し、
さらに粉末混合物2を100cc投入し、図3の状態を得
る。次にこの円筒状さや11を0.5r/minで回転
させながら930℃で焼成し、その後、粉末混合物2と
焼結体5を円筒状さや11より取り出し、ふるいにより
分離し、焼結体5を得た。
First, the ceramic molded body 1 produced by the same method as in (Embodiment 1) is debindered at 500 ° C., and then provided on a cylindrical sheath 11 having a diameter of 7 cm and a length of 10 cm as shown in FIG. Input from the input port 12 with a diameter of 2 cm,
Further, 100 cc of the powder mixture 2 is charged to obtain the state shown in FIG. Next, the cylindrical sheath 11 is fired at 930 ° C. while rotating at 0.5 r / min, and then the powder mixture 2 and the sintered body 5 are taken out from the cylindrical sheath 11, separated by a sieve, and the sintered body 5 is removed. Got

【0022】ここで焼成時に円筒状さや11を回転させ
る目的は、セラミック成形体1と粉末混合物2の接触機
会を均一にすることと、焼成時に充分酸素を拡散するこ
とにより電気特性、寿命特性に優れた焼結体5を得るこ
とである。
Here, the purpose of rotating the cylindrical sheath 11 at the time of firing is to make the contact opportunities between the ceramic compact 1 and the powder mixture 2 uniform, and to diffuse oxygen sufficiently during firing to improve electrical characteristics and life characteristics. To obtain an excellent sintered body 5.

【0023】こうして得られた焼結体5は、焼結体5内
部も焼結体5間もBi濃度分布が極めて小さく、特性ば
らつきの小さいものとなる。
The sintered body 5 thus obtained has an extremely small Bi concentration distribution both inside the sintered body 5 and between the sintered bodies 5, and has a small variation in characteristics.

【0024】(表2)にZnO粉末に対するSiO2
添加量と、焼結体5のセラミック成形体1に対する重量
減量(Bi23の飛散量に比例する)、及びV1mA(電
流1mAにおける電圧)のバラツキ(標準偏差/平均
値)の関係を示す。
Table 2 shows the amount of SiO 2 added to the ZnO powder, the weight loss of the sintered body 5 with respect to the ceramic compact 1 (proportional to the amount of Bi 2 O 3 scattered), and V 1mA (at a current of 1 mA ). The relation of the variation (standard deviation / average value) of voltage is shown.

【0025】[0025]

【表2】 [Table 2]

【0026】なお、(実施の形態1)では反応不活性な
粉末として酸化アルミニウム粉末を用いたが、焼成温度
においてセラミック成形体1と安定な酸化ジルコニウム
や酸化亜鉛、またそれらを混合した粉末など不活性な粉
末であればかまわない。
In the first embodiment, aluminum oxide powder was used as the reaction-inert powder, but zirconium oxide and zinc oxide, which are stable with the ceramic compact 1 at the firing temperature, and powders obtained by mixing them are not used. Any active powder will do.

【0027】酸化アルミニウム板3、円筒状さや11に
関しても同様で、焼成温度において粉末混合物2、成形
体1と安定な物質であればどのような材質でも構わな
い。
The same applies to the aluminum oxide plate 3 and the cylindrical sheath 11, and any material may be used as long as it is a stable substance with the powder mixture 2 and the compact 1 at the firing temperature.

【0028】焼結体5の形状はディスクタイプに限ら
ず、内部電極とセラミック層とを交互に積層した積層体
など、どのような形状の成形体でも同様の効果が見られ
る。
The shape of the sintered body 5 is not limited to the disk type, and the same effect can be obtained with a molded body of any shape such as a laminated body in which internal electrodes and ceramic layers are alternately laminated.

【0029】また、反応活性な粉末の混合割合は、焼結
体5の基本特性(例えばバリスタにおける非直線性)が
劣化しない範囲で多い方が良い。その割合は、0.5w
t%〜10wt%が適当である。
Further, the mixing ratio of the reactive powder is preferably as large as possible within the range where the basic characteristics of the sintered body 5 (for example, non-linearity in the varistor) are not deteriorated. The ratio is 0.5w
t% to 10 wt% is suitable.

【0030】さらに本実施の形態においてはバリスタを
例に説明したが、コンデンサやサーミスタ等他のセラミ
ック電子部品においても同様の効果が得られる。
Further, although the varistor has been described as an example in the present embodiment, the same effect can be obtained in other ceramic electronic parts such as capacitors and thermistors.

【0031】[0031]

【発明の効果】以上のように本発明によると、セラミッ
ク焼結体に残る飛散する可能性を有する物質の量が制御
でき、その結果、特性ばらつきの少ないセラミック電子
部品を提供することが可能となる。
As described above, according to the present invention, it is possible to control the amount of a substance that has a possibility of scattering in the ceramic sintered body, and as a result, it is possible to provide a ceramic electronic component with less characteristic variation. Become.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態におけるセラミック成形
体の焼成工程を説明するための断面図
FIG. 1 is a cross-sectional view for explaining a firing process of a ceramic molded body according to an embodiment of the present invention.

【図2】本発明の一実施の形態における酸化亜鉛バリス
タ素子の断面図
FIG. 2 is a sectional view of a zinc oxide varistor element according to an embodiment of the present invention.

【図3】本発明の一実施の形態における焼成工程を説明
するための断面図
FIG. 3 is a cross-sectional view for explaining a firing process according to an embodiment of the present invention.

【図4】本発明の一実施の形態におけるさやの斜視図FIG. 4 is a perspective view of a sheath according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 セラミック成形体 2 粉末混合物 3 酸化アルミニウム板 5 焼結体 6 銀電極 11 円筒状さや 12 投入口 1 Ceramic molded body 2 powder mixture 3 Aluminum oxide plate 5 Sintered body 6 silver electrode 11 Cylindrical pod 12 slot

フロントページの続き (56)参考文献 特開 平8−31616(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01C 7/02 - 7/22 Continuation of the front page (56) Reference JP-A-8-31616 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01C 7/ 02-7/22

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 焼成中に飛散する可能性を有する物質を
含有したセラミック成形体の表面を、前記飛散する物質
に対して反応活性な粉末と前記飛散する物質に対して
応不活性な粉末の混合物と接触させて熱処理するもので
あり、前記混合物は前記反応不活性な粉末に対する前記
反応活性な粉末の割合を0.5〜20wt%とするセラ
ミック電子部品の製造方法。
1. A surface of the ceramic molded body containing a substance having a potential to be scattered during firing, said scattering material
Intended to heat treatment in contact with a mixture of anti <br/>応不active powder against reactive powder and the scattering substance against
And said mixture is based on said reactive inert powder
A method for manufacturing a ceramic electronic component, wherein the proportion of reactive powder is 0.5 to 20 wt% .
【請求項2】 反応活性な粉末として、SiO2を用い
る請求項に記載のセラミック電子部品の製造方法。
As wherein reactive powder, a manufacturing method of a ceramic electronic component according to claim 1 using SiO 2.
【請求項3】 反応不活性な粉末として、酸化アルミニ
ウム、酸化マグネシウム、酸化亜鉛、酸化ジルコニウム
の内、少なくとも一種類を用いる請求項に記載のセラ
ミック電子部品の製造方法。
As 3. A reaction inert powder, aluminum oxide, magnesium oxide, zinc oxide, among zirconium oxide, a manufacturing method of a ceramic electronic component according to claim 1 using at least one type.
【請求項4】 セラミック成形体を粉末の混合物に埋没
させて熱処理する請求項に記載のセラミック電子部品
の製造方法。
4. The method for producing a ceramic electronic component according to claim 1 , wherein the ceramic compact is immersed in a powder mixture and heat-treated.
【請求項5】 セラミック成形体と粉末の混合物を容器
内に収納し、次に前記容器を回転させながら熱処理する
請求項に記載のセラミック電子部品の製造方法。
5. The method for producing a ceramic electronic component according to claim 1 , wherein the mixture of the ceramic compact and the powder is placed in a container and then heat treated while rotating the container.
JP34487597A 1997-12-15 1997-12-15 Manufacturing method of ceramic electronic components Expired - Fee Related JP3419285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34487597A JP3419285B2 (en) 1997-12-15 1997-12-15 Manufacturing method of ceramic electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34487597A JP3419285B2 (en) 1997-12-15 1997-12-15 Manufacturing method of ceramic electronic components

Publications (2)

Publication Number Publication Date
JPH11176613A JPH11176613A (en) 1999-07-02
JP3419285B2 true JP3419285B2 (en) 2003-06-23

Family

ID=18372672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34487597A Expired - Fee Related JP3419285B2 (en) 1997-12-15 1997-12-15 Manufacturing method of ceramic electronic components

Country Status (1)

Country Link
JP (1) JP3419285B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6511635B2 (en) * 2014-09-04 2019-05-15 パナソニックIpマネジメント株式会社 Method of manufacturing laminated varistor

Also Published As

Publication number Publication date
JPH11176613A (en) 1999-07-02

Similar Documents

Publication Publication Date Title
US6260258B1 (en) Method for manufacturing varistor
JPH0524646B2 (en)
JP3453857B2 (en) Manufacturing method of multilayer varistor
JP3419285B2 (en) Manufacturing method of ceramic electronic components
JPS604561B2 (en) Ceramic electrical resistor with non-linear voltage dependent characteristics and its manufacturing method
JPH11340090A (en) Manufacture of grain boundary insulated multilayer ceramic capacitor
JP2976250B2 (en) Manufacturing method of multilayer varistor
JPS584801B2 (en) How to make thick film varistors
JP3739853B2 (en) Manufacturing method of ceramic sintered body
JP3396973B2 (en) Manufacturing method of multilayer varistor
JPH07114174B2 (en) Method for manufacturing laminated semiconductor porcelain electronic component
JP2838249B2 (en) Manufacturing method of grain boundary insulated semiconductor porcelain
JP2504226B2 (en) Stacked Varistor
JP2634838B2 (en) Method of manufacturing voltage non-linear resistor
JP3149564B2 (en) Resistor
JPH10149904A (en) Manufacturing method of varistor
JP2520699B2 (en) Method of manufacturing voltage-dependent nonlinear resistor
JP2506286B2 (en) Method for manufacturing grain boundary insulated semiconductor porcelain
JP2990626B2 (en) Varistor manufacturing method
JPH02229416A (en) Formation of grain boundary layer of semiconductor porcelain
JPH06196305A (en) Manufacture of positive temperature coefficient thermistor
JPS63304601A (en) Semiconductor porcelain having positive resistance temperature characteristic
JPH09320815A (en) Manufacture of zno varistor
JPH06181108A (en) Semiconductor ceramic having positive resistance-temperature characteristic
JPS6250045B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees