JP2504226B2 - Stacked Varistor - Google Patents

Stacked Varistor

Info

Publication number
JP2504226B2
JP2504226B2 JP1277689A JP27768989A JP2504226B2 JP 2504226 B2 JP2504226 B2 JP 2504226B2 JP 1277689 A JP1277689 A JP 1277689A JP 27768989 A JP27768989 A JP 27768989A JP 2504226 B2 JP2504226 B2 JP 2504226B2
Authority
JP
Japan
Prior art keywords
laminated
varistor
internal electrode
layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1277689A
Other languages
Japanese (ja)
Other versions
JPH03139804A (en
Inventor
政彦 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP1277689A priority Critical patent/JP2504226B2/en
Publication of JPH03139804A publication Critical patent/JPH03139804A/en
Application granted granted Critical
Publication of JP2504226B2 publication Critical patent/JP2504226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電圧非直線性抵抗として機能する積層型バ
リスタに関し、特に内部電極の変質を防止してバリスタ
特性の悪化を回避しながら、抵抗値ばらつきを回避でき
るようにした構造に関する。
Description: TECHNICAL FIELD The present invention relates to a laminated varistor functioning as a voltage non-linear resistance, and in particular, it prevents deterioration of internal electrodes to prevent deterioration of varistor characteristics, while improving resistance. The present invention relates to a structure capable of avoiding variation in values.

〔従来の技術〕[Conventional technology]

一般に、バリスタは、印加電圧に応じて抵抗値が非直
線的に変化する抵抗体素子であり、このようなバリスタ
として、従来、第8図に示すような直方体状の積層型バ
リスタがある(例えば特公昭58-23921号公報参照)。こ
の積層型バリスタ10は、ZnOを主成分とするセラミクス
層11と内部電極12とを交互に積層して一体焼結するとと
もに、該焼結体13の左,右端面13a,13bに外部電極14を
形成して構成されている。また、上記各内部電極12の一
端面12aは、上記焼結体13の左,右端面13a,13bに交互に
露出されて上記外部電極14に接続されている。
Generally, a varistor is a resistor element whose resistance value changes non-linearly according to an applied voltage. As such a varistor, there is a conventional rectangular parallelepiped laminated varistor as shown in FIG. 8 (for example, See Japanese Patent Publication No. 58-23921). The laminated varistor 10 has ceramic layers 11 containing ZnO as a main component and internal electrodes 12 alternately laminated and integrally sintered, and the external electrodes 14 are formed on the left and right end faces 13a and 13b of the sintered body 13. Is formed. Further, one end surface 12a of each internal electrode 12 is alternately exposed to the left and right end surfaces 13a and 13b of the sintered body 13 and is connected to the external electrode 14.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、上記従来の積層型バリスタ10は、焼結
体13として見れば、内部電極12の一端面12aが外部に露
出した構造であるから、湿度の高い雰囲気中においては
上記内部電極12の露出部分から変質し易く、その結果バ
リスタ特性が悪化し、品質に対する信頼性に劣るという
問題点がある。また、上記従来の積層型バリスタ10にお
いては、めっき処理により外部電極14を形成したり、あ
るいは該外部電極14のはんだ付け性を向上させる目的か
ら、これの表面にめっき処理を施したりする際に、めっ
き液が内部電極12の露出部分から侵入し易く、この点か
らも特性が悪化するという問題点がある。
However, the conventional laminated varistor 10 has a structure in which one end face 12a of the internal electrode 12 is exposed to the outside when viewed as a sintered body 13, and therefore, in an atmosphere of high humidity, the exposed portion of the internal electrode 12 is exposed. Therefore, there is a problem that the quality is easily changed, and as a result, the varistor characteristics are deteriorated and the reliability of the quality is poor. Further, in the above-mentioned conventional laminated varistor 10, when the external electrode 14 is formed by plating or when the surface of the external electrode 14 is subjected to plating for the purpose of improving the solderability of the external electrode 14. However, there is a problem that the plating solution easily enters from the exposed portion of the internal electrode 12, which also deteriorates the characteristics.

ここで本件出願人は、上述した高湿度雰囲気により、
あるいはめっき液の侵入により内部電極が変質するのを
防止するために、第7図に示すような積層型バリスタを
提案した(特願昭63-225849号)。この積層型バリスタ2
0は、焼結体21内に内部電極22を、これの一端面22aが露
出しないよう埋設し、この焼結体21の左,右端面21a,21
b部分に、Al等の金属を固溶させてなる低抵抗値の導出
層23を形成し、該導出層23を介して上記内部電極22の一
端面22aを交互に外部電極24に接続してなるものであ
る。この積層型バリスタ20によれば、内部電極22を焼結
体21内に封入して露出部分を完全になくしたので、湿度
の高い雰囲気中で使用した場合でも、また外部電極を形
成する際のメッキ液に浸した場合でも内部電極の変質を
防止でき、その結果特性の劣化を回避できる。
Here, the applicant of the present invention, due to the above-mentioned high humidity atmosphere,
Alternatively, in order to prevent the internal electrodes from deteriorating due to the penetration of the plating solution, a multilayer varistor as shown in FIG. 7 has been proposed (Japanese Patent Application No. 63-225849). This stacked varistor 2
In the case of 0, the internal electrode 22 is embedded in the sintered body 21 so that one end surface 22a thereof is not exposed, and the left and right end surfaces 21a, 21
In the b portion, a lead layer 23 having a low resistance value formed by solid-solving a metal such as Al is formed, and one end face 22a of the internal electrode 22 is alternately connected to the outer electrode 24 via the lead layer 23. It will be. According to this laminated varistor 20, since the internal electrode 22 is enclosed in the sintered body 21 to completely eliminate the exposed portion, even when used in a high-humidity atmosphere, when forming an external electrode. Even when immersed in a plating solution, the internal electrodes can be prevented from deteriorating, and as a result, the deterioration of characteristics can be avoided.

ところで、上記積層型バリスタ20のように内部電極22
を焼結体21内に埋設する構造では、該内部電極22を外部
電極24に接続するために上記焼結体21の左,右端面21a,
21b部分に低抵抗値の導出層23を形成する必要がある。
この場合、上記焼結体21の両端面21a,21bにAl2O3,Fe2O3
等の半導体化剤を塗布し、これを1100℃で焼成して該両
端面21a,21b部分を半導体化させ、これにより内部電極2
2と導通をとるようにしている。ところが、上記焼結体2
1にAl等を固溶させて導出層23を形成する場合、この導
出層23の厚さtのコントロールが難しく、場合によって
は導出層23が内部電極22の他端面22bに達して短絡する
おそれがあり、しかも上記導出層23の抵抗値にばらつき
が生じ易いということが判明した。
By the way, as in the laminated varistor 20, the internal electrode 22
In the structure in which the sintered body 21 is embedded in the sintered body 21, in order to connect the internal electrode 22 to the external electrode 24, the left and right end faces 21a,
It is necessary to form the lead layer 23 having a low resistance value in the portion 21b.
In this case, Al 2 O 3 , Fe 2 O 3 on both end faces 21a, 21b of the sintered body 21
Etc. and applying a semiconducting agent, etc., and baking this at 1100 ° C. to semiconduct the both end surfaces 21a, 21b.
I am trying to establish continuity with 2. However, the sintered body 2
When forming the lead-out layer 23 by dissolving Al or the like in 1 as a solid solution, it is difficult to control the thickness t of the lead-out layer 23, and the lead-out layer 23 may reach the other end surface 22b of the internal electrode 22 to cause a short circuit in some cases. It was found that the resistance value of the lead-out layer 23 is likely to vary.

本発明の目的は、焼結体内に内部電極を埋設して高湿
度やめっき液の侵入による内部電極の変質を防止するよ
うにした場合の抵抗値のばらつきを回避できる積層型バ
リスタを提供することにある。
An object of the present invention is to provide a laminated varistor capable of avoiding variations in resistance value when the internal electrode is embedded in a sintered body to prevent the internal electrode from being deteriorated due to high humidity or penetration of a plating solution. It is in.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明は、バリスタ層と内部電極とを交互に積
層して積層体を形成してなる積層型バリスタにおいて、
上記積層体はバリスタ層と内部電極との積層部分と、こ
の積層部分の両端に形成されたバリスタ特性を示さない
半導体セラミクス層との一体焼結体からなることを特徴
としている。
Therefore, the present invention provides a laminated varistor in which a varistor layer and internal electrodes are alternately laminated to form a laminated body,
The above-mentioned laminated body is characterized by being formed of an integral sintered body of a laminated portion of a varistor layer and an internal electrode, and semiconductor ceramic layers formed on both ends of this laminated portion and having no varistor characteristic.

ここで、本発明におけるバリスタ特性を示さない半導
体セラミクス層は、例えばZnOを主成分とし、これにAl2
O3,Fe2O3,Y2O3,Ln2O3,Ga2O3,In2O3,Sc2O3から選ばれた
少なくとも一種以上を混合し、これをペースト状に形成
したものを上記積層体に塗布したり、あるいはこれを熱
処理することにより実現できる。
Here, the semiconductor ceramic layer that does not exhibit varistor characteristics in the present invention contains, for example, ZnO as a main component, and Al 2
O 3, Fe 2 O 3, Y 2 O 3, Ln 2 O 3, Ga 2 O 3, In 2 O 3, Sc 2 O 3 were mixed at least one kind selected from, which was formed into a paste It can be realized by applying a material to the above-mentioned laminated body or by heat-treating it.

また、上記半導体セラミクス層は、焼成した焼結体に
付与してもよく、あるいは焼成する前の積層体に付与
し、しかる後同時に一体焼結してもよい。
Further, the semiconductor ceramics layer may be applied to a fired sintered body, or may be applied to a laminated body before firing and thereafter sintered together at the same time.

〔作用〕[Action]

本発明に係る積層型バリスタによれば、積層部分の端
面に半導体セラミクス層を付与したので、上記内部電極
の一端面、つまり該内部電極の露出部分を上記セラミク
ス層により完全に覆うことができるから、高湿度の雰囲
気中においても内部電極の変質を防止できるとともに、
外部電極を形成する際のめっき液の侵入を阻止でき、品
質の信頼性を向上できる。
According to the laminated varistor of the present invention, since the semiconductor ceramics layer is provided on the end face of the laminated portion, one end face of the internal electrode, that is, the exposed portion of the internal electrode can be completely covered with the ceramics layer. In addition to preventing deterioration of internal electrodes even in high humidity atmosphere,
The plating solution can be prevented from entering when forming the external electrodes, and the reliability of quality can be improved.

また、本発明では、積層部分の端面に半導体セラミク
ス層を塗布等によって積層体を構成する構造であるか
ら、該セラミクス層の厚さを予め設定することができ、
上述の積層体にAl等の金属を固溶させる場合に比べて厚
さのコントロールが容易確実にでき、その結果上記セラ
ミクス層と他の内部電極との短絡を防止できるととも
に、抵抗値のばらつきを回避でき、内部電極を外部に導
出する際の安定化が図れる。
Further, in the present invention, the thickness of the ceramics layer can be set in advance, because it has a structure in which a semiconductor ceramics layer is formed on the end surface of the laminated portion by coating or the like.
The thickness can be controlled more easily and surely as compared with the case where a metal such as Al is solid-dissolved in the above-mentioned laminated body, and as a result, it is possible to prevent a short circuit between the ceramic layer and other internal electrodes, and to prevent variations in resistance value. This can be avoided and the internal electrode can be stabilized when it is led out.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図ないし第4図は本発明の一実施例による積層型
バリスタを説明するための図である。
1 to 4 are views for explaining a laminated varistor according to an embodiment of the present invention.

図において、1は本実施例の積層型バリスタであり、
このバリスタ1は直方体状のもので、その基本的構成
は、ZnOを主成分とするバリスタ層2と、Ptからなる内
部電極3とを交互に積層し、これを一体焼成してなる積
層部分4の左,右端面4a,4bにAg/Pdからなる外部電極5
を被覆形成した構成となっている。また、上記各内部電
極3の一端面3aは互い違いに上記積層部分4の左,右端
面4a,4bに露出しており、他端面3bは積層部分4の左,
右端面4a,4bから少し離れて位置している。
In the drawing, reference numeral 1 denotes a multilayer varistor of the present embodiment,
The varistor 1 has a rectangular parallelepiped shape, and its basic structure is that a varistor layer 2 containing ZnO as a main component and an internal electrode 3 made of Pt are alternately laminated and integrally fired to form a laminated portion 4 External electrodes 5 made of Ag / Pd on the left and right end faces 4a, 4b of the
Is formed by coating. Further, one end surface 3a of each internal electrode 3 is alternately exposed to the left and right end surfaces 4a, 4b of the laminated portion 4, and the other end surface 3b is left of the laminated portion 4.
It is located slightly away from the right end faces 4a and 4b.

そして、上記積層部分4の左,右端面4a,4bと上記外
部電極5との間にはバリスタ特性を示さない半導体セラ
ミクス層6が付与されている。このセラミクス層6は上
記積層部分4の両端面4a,4bを覆うとともに、露出した
内部電極3の一端面3aに接続されており、これにより内
部電極3は上記セラミクス層6を介して上記外部電極5
に電気的に接続されている。上記半導体セラミクス層6
は、酸化物半導体のセラミクスペーストを上記積層部分
4の両端面4a,4bに塗布し、これを加熱焼成することに
より形成されたものである。
Then, between the left and right end surfaces 4a, 4b of the laminated portion 4 and the external electrode 5, a semiconductor ceramic layer 6 having no varistor characteristic is provided. The ceramic layer 6 covers both end surfaces 4a and 4b of the laminated portion 4 and is connected to the exposed one end surface 3a of the internal electrode 3, whereby the internal electrode 3 is connected to the external electrode via the ceramic layer 6. 5
Is electrically connected to The above semiconductor ceramic layer 6
Is formed by applying an oxide semiconductor ceramic paste to both end surfaces 4a and 4b of the laminated portion 4 and heating and baking the same.

次に本実施例の積層型バリスタ1の製造方法について
説明する。
Next, a method of manufacturing the laminated varistor 1 of this embodiment will be described.

ZnOを主成分とし、これに不純物として、Bi2O3,Pr6O
11,CoO,MnO,Sb2O3,Cr2O3,SiO2等の少なくとも1種以上
を混合してなるセラミクス組成物によるグリーンシート
を形成し、このグリーンシートを所定サイズの矩形状に
カットして、多数のバリスタ層となるセラミクス層2を
形成する。
The main component is ZnO, and impurities such as Bi 2 O 3 and Pr 6 O
A green sheet is formed from a ceramic composition made by mixing at least one of 11 , 11 , CoO, MnO, Sb 2 O 3 , Cr 2 O 3 , and SiO 2 , and the green sheet is cut into a rectangular shape of a predetermined size. Then, the ceramics layer 2 which becomes many varistor layers is formed.

上記各セラミクス層2の上面に、Ptにビヒクルを混合
してなるペーストを印刷して内部電極3を形成する。こ
の場合、該内部電極3の一端面3aが上記セラミクス層2
の一端面に露出するようにするとともに、他端面3bがセ
ラミクス層2の内側に位置するようにする。
An internal electrode 3 is formed by printing a paste made by mixing Pt with a vehicle on the upper surface of each ceramic layer 2. In this case, the one end surface 3a of the internal electrode 3 has the above-mentioned ceramic layer 2
Is exposed on one end surface of the ceramics and the other end surface 3b is located inside the ceramics layer 2.

次に、第3図に示すように、内部電極3とセラミクス
層2とが交互に重なるように、かつ内部電極3の一端面
3aが交互に位置するように順次積層し、さらにこの積層
体の上,下面にダミーとしてのセラミクス層8を重ね、
これをプレスで加圧,圧着して積層部分4′を形成す
る。すると第4図に示すように、各内部電極3の一端面
3aのみが積層部分4′の左,右端面に露出することにな
る。
Next, as shown in FIG. 3, one end surface of the internal electrode 3 is formed so that the internal electrode 3 and the ceramics layer 2 are alternately superposed.
3a are sequentially laminated so that they are alternately located, and a ceramic layer 8 as a dummy is further laminated on the upper and lower surfaces of this laminated body,
This is pressed and pressed by a press to form a laminated portion 4 '. Then, as shown in FIG. 4, one end surface of each internal electrode 3
Only 3a is exposed on the left and right end faces of the laminated portion 4 '.

次に、ZnOを主成分とし、これにAl2O3,Fe2O3,Y2O3,Ln
2O3,Ga2O3,In2O3,Sc2O3から選ばれた少なくとも一種以
上を混合し、熱処理により半導体化するセラミクスペー
ストを形成する。このペーストを上記積層部分4′の
左,右端面に、厚さ5〜10μmとなるよう塗布し、しか
る後これを空気中にて1000〜1300℃で加熱焼成し、焼結
された積層部分4を得る。すると、この加熱焼成により
抵抗値が減少した半導体セラミクス層6が形成され、そ
の結果該セラミクス層6と内部電極3の一端面3aとが接
続されることとなる。
Next, a ZnO as a main component, to which Al 2 O 3, Fe 2 O 3, Y 2 O 3, Ln
At least one selected from 2 O 3 , Ga 2 O 3 , In 2 O 3 , and Sc 2 O 3 is mixed, and a heat treatment is performed to form a ceramics paste that becomes a semiconductor. This paste is applied to the left and right end faces of the laminated portion 4'to have a thickness of 5 to 10 .mu.m, and then this is heated and baked in air at 1000 to 1300.degree. To get Then, the semiconductor ceramics layer 6 having a reduced resistance value is formed by the heating and firing, and as a result, the ceramics layer 6 and the one end surface 3a of the internal electrode 3 are connected.

ここで、上記半導体セラミクス層6は、上記工程で
予め焼結体を作成しておき、この後セラミクスペースト
を塗布し、焼き付け形成する方法も採用できる。また、
焼き付け不要のセラミクスペーストを採用し、これを塗
布するだけで半導体セラミクス層を形成することもでき
る。さらに半導体セラミクス層6はこれをシート状に形
成したものを圧着させてもよい。
Here, as the semiconductor ceramics layer 6, a method in which a sintered body is prepared in advance in the above step, and then a ceramics paste is applied and baked is also applicable. Also,
It is also possible to form the semiconductor ceramic layer by adopting a ceramic paste that does not require baking and applying it. Further, the semiconductor ceramics layer 6 may be formed by pressing it into a sheet shape.

最後に、上記積層部分4の左,右端面4a,4bを除く外
表面にマスクを被覆し、この状態で電解めっき処理を施
して上記半導体セラミクス層6の外表面に外部電極5を
形成する。なお、上記外部電極5は、上記積層部分4に
Agを主体としてPdを添加してなるペーストを塗布した
後、焼き付けて形成してもよい。これにより、本実施例
の積層型バリスタ1が製造される。
Finally, the outer surface of the laminated portion 4 excluding the left and right end surfaces 4a and 4b is covered with a mask, and in this state, electrolytic plating is performed to form the external electrode 5 on the outer surface of the semiconductor ceramic layer 6. In addition, the external electrode 5 is provided on the laminated portion 4.
It may be formed by applying a paste containing Ag as a main component and adding Pd and then baking it. Thus, the multilayer varistor 1 of the present embodiment is manufactured.

次に本実施例の作用効果について説明する。 Next, the function and effect of this embodiment will be described.

本実施例の積層型バリスタ1によれば、積層部分4の
左,右端面4a,4bに露出した内部電極3の一端面3aを半
導体セラミクス層6で完全に覆ったので、高湿度の雰囲
気中で使用しても内部電極3が変質することはなく、ま
た積層部分4を電解めっき液中に浸漬しても該めっき液
が侵入することはないから、バリスタ特性の悪化を防止
でき、品質を向上できる。
According to the laminated varistor 1 of the present embodiment, since the one end faces 3a of the internal electrodes 3 exposed on the left and right end faces 4a, 4b of the laminated portion 4 are completely covered with the semiconductor ceramics layer 6, it is possible to operate in a high humidity atmosphere. The internal electrode 3 does not change in quality even when it is used, and the plating solution does not enter even when the laminated portion 4 is dipped in the electrolytic plating solution. Therefore, deterioration of varistor characteristics can be prevented, and the quality can be improved. Can be improved.

また、本実施例では、各内部電極3を外部電極5に接
続する半導体セラミクス層6を積層部分4′の両端面に
塗布し、これを焼き付ける構造であるから、該セラミク
ス層6の厚さのコントロールが容易となり、上述の金属
を固溶させる場合と比べて短絡不良を大幅に低減でき
る。しかも上記半導体セラミクス層6は、予め添加物を
別途調整することにより安定した抵抗値を得ることがで
き、ひいては低抵抗化ができ、非直線係数αを向上でき
る。
In addition, in this embodiment, since the semiconductor ceramics layer 6 for connecting each internal electrode 3 to the external electrode 5 is applied to both end faces of the laminated portion 4'and baked, the thickness of the ceramics layer 6 is reduced. Control becomes easy, and short circuit defects can be significantly reduced as compared with the case where the above-mentioned metal is dissolved. Moreover, the semiconductor ceramics layer 6 can obtain a stable resistance value by adjusting the additive separately in advance, thereby lowering the resistance value and improving the nonlinear coefficient α.

次に、本実施例の効果を確認するために行った実験に
ついて説明する。
Next, an experiment conducted to confirm the effect of this embodiment will be described.

実験1 まず、本実験に採用した積層型バリスタについて説明
する。なお、係る製造方法は上記実施例の〜工程と
略同様である。
Experiment 1 First, the laminated varistor used in this experiment will be described. The manufacturing method is substantially the same as the steps 1 to 3 in the above embodiment.

まず、ZnO(98.0mol%),Bi2O3(0.5mol%),CoO
(0.5mol%),MnO(0.5mol%),Sb2O3(0.5mol%)を
混合してなるセラミクス組成物をグリーンシートに形成
し、Ag-Pdからなる内部電極を印刷した後、圧着し積層
部分を形成した。
First, ZnO (98.0mol%), Bi 2 O 3 (0.5mol%), CoO
(0.5mol%), MnO (0.5mol%), Sb 2 O 3 (0.5mol%) mixed ceramic composition is formed on the green sheet, and the internal electrode made of Ag-Pd is printed and then pressure-bonded. Then, a laminated portion was formed.

次に、ZnO(99.45mol%),Al2O3(0.05mol%),B2O
3(0.5wt%)を混合してなる半導体セラミクスペースト
を上記積層部分の両端面に、厚さ5〜10μmとなるよう
塗布し、この後1100℃×2時間で焼成し、しかる後この
焼結体の半導体セラミクス層の外表面に外部電極を形成
し、これにより本実施例試料を作成した。
Next, ZnO (99.45mol%), Al 2 O 3 (0.05mol%), B 2 O
3 (0.5 wt%) mixed semiconductor ceramics paste is applied to both end faces of the above-mentioned laminated portion so as to have a thickness of 5 to 10 μm, followed by firing at 1100 ° C. for 2 hours, and then this sintering An external electrode was formed on the outer surface of the semiconductor ceramics layer of the body, and thus a sample of this example was prepared.

次に、上記作成した積層型バリスタを温度60℃,相対
湿度90%の雰囲気中に1000時間放置し、これのV1mA,V
0.1mAの変化率を調べた。また、非直線係数αのばらつ
きについても調べた。なお、比較するために焼結体の両
端面にAl金属を拡散させてなる積層型バリスタ(第7図
の構造)を比較試料として採用し、さらに内部電極の端
面を焼結体の表面に露出してなる積層型バリスタ(第8
図の構造)を従来試料として採用し、これらについても
同様の試験を行った。
Next, the laminated varistor created above was left for 1000 hours in an atmosphere of a temperature of 60 ° C. and a relative humidity of 90%, and the V1mA , V
The rate of change of 0.1 mA was investigated. Moreover, the variation of the nonlinear coefficient α was also investigated. For comparison, a laminated varistor (structure of FIG. 7) made by diffusing Al metal on both end faces of the sintered body was adopted as a comparative sample, and the end face of the internal electrode was exposed on the surface of the sintered body. Multilayer varistor (8th
The structure shown in the figure) was adopted as a conventional sample, and the same test was performed for these samples.

第5図はV1mAの変化率と経過時間との関係を示し、第
6図はV0.1mAの変化率と経過時間との関係を示す。図
中、曲線A(一点鎖線)は本実施例試料、曲線B(破
線)は比較試料、曲線C(実線)は従来試料を示す。
FIG. 5 shows the relationship between the change rate of V 1 mA and the elapsed time, and FIG. 6 shows the relationship between the change rate of V 0.1 mA and the elapsed time. In the figure, curve A (dashed-dotted line) shows the sample of this example, curve B (dashed line) shows the comparative sample, and curve C (solid line) shows the conventional sample.

同図からも明らかなように、従来試料(曲線C)の場
合はV1mAの変化率で−9%,V0.1mAの変化率で−25%と
大きく変化している。これに対して、内部電極の露出部
分を完全になくした本実施例試料(曲線A),比較試料
(曲線B)の場合は、いずれもV1mAで−4%,V0.1mA
−9%と大幅に改善されており、耐湿性が向上している
ことがわかる。
As is clear from the figure, in the case of the conventional sample (curve C), the rate of change of V 1 mA is -9%, and the rate of change of V 0.1 mA is -25%. On the other hand, in the case of the sample of the present example (curve A) and the comparative sample (curve B) in which the exposed portion of the internal electrode was completely removed, V 1 mA was -4% and V 0.1 mA was -9%. That is, it can be seen that the moisture resistance is improved.

第1表は、非直線係数αのばらつきを示す。表中、第
1欄は本実施例試料,第2欄は比較試料,第3欄は従来
試料を示す。同表からも明らかなように、各試料ともα
0.1-1mAでは32〜35と大きな差はないものの、α1-10mA
及びα0.1-1Aのばらつき(3CV%)では比較試料が29.0
(10.0%),13.1(20.6%)と増大しており、特性が劣
化している。これに対して、本実施例試料ではα1-10mA
で30.2(5.2%)、α0.1-1Aで17.6(7.2%)と大幅に低
減しており、従来試料と略同等レベルとなっていること
がわかる。また、本実施例試料における短絡不良率は、
比較試料の10%から0.1%と大幅に改善できた。
Table 1 shows the variation of the nonlinear coefficient α. In the table, the first column shows the sample of this example, the second column shows the comparative sample, and the third column shows the conventional sample. As is clear from the table, each sample has α
At 0.1-1mA , there is no big difference from 32 to 35, but α 1-10mA
And the variation of α 0.1-1A (3CV%) was 29.0 for the comparative sample.
(10.0%) and 13.1 (20.6%), and the characteristics deteriorate. On the other hand, in the sample of this example, α 1-10 mA
30.2 (5.2%) and α 0.1-1A significantly decreased to 17.6 (7.2%), which is almost the same level as the conventional sample. Further, the short circuit failure rate in the sample of this example is
It was significantly improved from 10% of the comparative sample to 0.1%.

実験2 この実験は、上記実験1と同様の積層部分を作成し、
該積層部分の両端面に、第2表に示すような各種(No.1
〜11)の半導体セラミクスペーストを塗布し、それぞれ
のV1mA,α1-10mA,α0.1-1A,及び耐湿性について調べ
た。なお、上記半導体セラミクスペーストは厚さ5〜10
μmとし、焼成温度は1100〜1150℃で積層部分と同時焼
成し、しかる後外部電極を形成した。
Experiment 2 In this experiment, the same laminated portion as in Experiment 1 above was created.
On both end faces of the laminated part, various kinds (No. 1
11 to 11), the semiconductor ceramic paste was applied, and the respective V 1mA , α 1-10mA , α 0.1-1A , and moisture resistance were examined. The semiconductor ceramic paste has a thickness of 5-10.
μm, and the firing temperature was 1100-1150 ° C. and the firing was performed at the same time as the laminated portion, and thereafter the external electrodes were formed.

第2表からも明らかなように、No.1〜No.11の各半導
体セラミクスペーストを採用した場合においても、V1mA
で11.6〜14.5、α1-10mAで28.1〜33.7、α0.1-1Aで11.6
〜19.8と改善されており、耐湿性ではいずれの試料も満
足できる結果が得られている。
As is clear from Table 2, even when the No. 1 to No. 11 semiconductor ceramic pastes are used, V 1mA
11.6 to 14.5, α 1-10mA to 28.1 to 33.7, α 0.1-1A to 11.6
It was improved to ~ 19.8, and satisfactory results were obtained for all samples in terms of moisture resistance.

〔発明の効果〕〔The invention's effect〕

以上のように本発明に係る積層型バリスタによれば、
積層部分の端面に露出された内部電極の一端面を覆うよ
うに半導体セラミクス層を付与したので、高湿度やめっ
き液の侵入による内部電極の変質を防止できる効果があ
り、さらには内部電極を外部に導出する際の短絡不良を
低減できるとともに、抵抗値のばらつきを回避でき、非
直線係数を向上できる効果がある。
As described above, according to the multilayer varistor according to the present invention,
Since the semiconductor ceramics layer is applied so as to cover the one end surface of the internal electrode exposed on the end surface of the laminated portion, it has the effect of preventing the deterioration of the internal electrode due to high humidity or invasion of the plating solution. It is possible to reduce the short circuit failure when deriving the value, and to avoid the variation of the resistance value and improve the nonlinear coefficient.

【図面の簡単な説明】[Brief description of drawings]

第1図ないし第4図は本発明の一実施例による積層型バ
リスタを説明するための図であり、第1図はその断面
図、第2図はその斜視図、第3図はその製造工程を示す
分解斜視図、第4図(a)ないし第4図(c)はそれぞ
れその斜視図、第5図及び第6図はそれぞれ本実施例の
効果を示す特性図、第7図は本発明の成立の背景となっ
た積層型バリスタの断面図、第8図は従来の積層型バリ
スタを示す断面図である。 図において、1は積層型バリスタ、2はセラミクス層、
3は内部電極、3aは一端面、4は積層部分、4a,4bは
左,右端面、6は半導体セラミクス層である。
1 to 4 are views for explaining a laminated varistor according to an embodiment of the present invention. FIG. 1 is its sectional view, FIG. 2 is its perspective view, and FIG. 3 is its manufacturing process. 4 (a) to 4 (c) are perspective views thereof, FIGS. 5 and 6 are characteristic diagrams showing the effect of the present embodiment, and FIG. 7 is the present invention. FIG. 8 is a cross-sectional view of a laminated varistor which is the background of the establishment of the above, and FIG. 8 is a sectional view showing a conventional laminated varistor. In the figure, 1 is a multilayer varistor, 2 is a ceramics layer,
3 is an internal electrode, 3a is one end face, 4 is a laminated portion, 4a and 4b are left and right end faces, and 6 is a semiconductor ceramics layer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】バリスタ層と内部電極とを交互に積層して
積層体を形成してなり、電圧非直線性抵抗として機能す
る積層型バリスタにおいて、上記積層体はバリスタ層と
内部電極との積層部分と、この積層部分の両端に形成さ
れたバリスタ特性を示さない半導体セラミクス層との一
体焼結体からなることを特徴とする積層型バリスタ。
1. A laminated varistor formed by alternately laminating a varistor layer and an internal electrode to form a laminated body, which functions as a voltage non-linear resistance, wherein the laminated body is a laminated body of a varistor layer and an internal electrode. A laminated varistor comprising a portion and a semiconductor ceramic layer formed on both ends of the laminated portion and having no varistor characteristic, which is an integral sintered body.
JP1277689A 1989-10-25 1989-10-25 Stacked Varistor Expired - Fee Related JP2504226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1277689A JP2504226B2 (en) 1989-10-25 1989-10-25 Stacked Varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1277689A JP2504226B2 (en) 1989-10-25 1989-10-25 Stacked Varistor

Publications (2)

Publication Number Publication Date
JPH03139804A JPH03139804A (en) 1991-06-14
JP2504226B2 true JP2504226B2 (en) 1996-06-05

Family

ID=17586933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1277689A Expired - Fee Related JP2504226B2 (en) 1989-10-25 1989-10-25 Stacked Varistor

Country Status (1)

Country Link
JP (1) JP2504226B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201405753D0 (en) * 2014-03-31 2014-05-14 M & I Materials Ltd Varistor

Also Published As

Publication number Publication date
JPH03139804A (en) 1991-06-14

Similar Documents

Publication Publication Date Title
US5075665A (en) Laminated varistor
US6232867B1 (en) Method of fabricating monolithic varistor
JPH113834A (en) Multilayer ceramic capacitor and its manufacture
US20040140595A1 (en) Method for manufacturing multilayer ceramic electronic component
US6260258B1 (en) Method for manufacturing varistor
JPH02135702A (en) Lamination type varistor
US5091820A (en) Ceramic piezoelectric element with electrodes formed by reduction
JP2504226B2 (en) Stacked Varistor
JP4300770B2 (en) Manufacturing method of electronic parts
JPH11340090A (en) Manufacture of grain boundary insulated multilayer ceramic capacitor
JPH05226116A (en) Laminated varistor
JP2983096B2 (en) Manufacturing method of laminated voltage non-linear resistor
JP2666605B2 (en) Stacked varistor
JPH0547513A (en) Manufacture of laminated type varistor
JP4802353B2 (en) Multilayer piezoelectric ceramic electronic component and manufacturing method thereof
JPH0536503A (en) Laminated varistor
JP3286855B2 (en) Manufacturing method of chip type PTC thermistor
CN115036135B (en) Ceramic electronic component
JPH07114174B2 (en) Method for manufacturing laminated semiconductor porcelain electronic component
JPH0770373B2 (en) Method of manufacturing laminated chip varistor
JPH0547508A (en) Laminated semiconductor porcelain and manufacture thereof
JPH0344004A (en) Stacked varistor
JPH02220408A (en) Laminated varistor
JP3289354B2 (en) Laminated semiconductor porcelain with positive resistance temperature characteristics
JPH02220407A (en) Laminated varistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees