JPH09290159A - Exhaust gas purification catalyst and production thereof - Google Patents

Exhaust gas purification catalyst and production thereof

Info

Publication number
JPH09290159A
JPH09290159A JP8126265A JP12626596A JPH09290159A JP H09290159 A JPH09290159 A JP H09290159A JP 8126265 A JP8126265 A JP 8126265A JP 12626596 A JP12626596 A JP 12626596A JP H09290159 A JPH09290159 A JP H09290159A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
gas purifying
parts
gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8126265A
Other languages
Japanese (ja)
Inventor
Shinji Yamamoto
伸司 山本
Yasuyuki Murofushi
康行 室伏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP8126265A priority Critical patent/JPH09290159A/en
Publication of JPH09290159A publication Critical patent/JPH09290159A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas purification catalyst having excellent NOX treating function even in a low temperature range and improved durability to high temperature and provide a production method of the catalyst. SOLUTION: This catalyst is an integrated structure type catalyst having a catalyst component layer and contains a mixed oxide containing nickel, gallium, and aluminum as a catalyst component. This mixed oxide has a chemical formula; Nia Gab Al(2.0-b) Oc wherein (a), (b), (c) stand for atomic ratio of each element and (a)=0.2-1.0, (b)=0.2-1.1, and (c) stands for the number of oxygens necessary to satisfy the atomic valences of respective components.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車エンジンな
どの内燃機関から排出される排気ガス中の炭化水素(H
C)、一酸化炭素(CO)及び窒素酸化物(NOx)を
浄化する、排気ガス浄化用触媒及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to hydrocarbons (H) in exhaust gas discharged from an internal combustion engine such as an automobile engine.
The present invention relates to an exhaust gas purifying catalyst for purifying carbon monoxide (CO) and nitrogen oxides (NOx) and a method for producing the same.

【0002】[0002]

【従来の技術】従来の排気ガス浄化用触媒としては、ア
ルミナや酸化セリウムなどに白金やパラジウム、ロジウ
ムなどを担持し、これをモノリス担体にコーティングし
た構造のものが使用されている。ところが、これら触媒
は、主として理論空燃比(以下、「ストイキ雰囲気」と
称す)における排気ガス浄化能の向上を重点とするた
め、かかる触媒を酸素過剰雰囲気(以下、「リーン雰囲
気」と称す)におけるNOx浄化用触媒として使用する
と十分な性能が得られない。このため、リーン雰囲気で
もNOx浄化性能に優れた排気ガス浄化用触媒の開発が
期待されている。
2. Description of the Related Art As a conventional exhaust gas purifying catalyst, one having a structure in which platinum, palladium, rhodium, etc. are supported on alumina, cerium oxide, etc. and coated on a monolith carrier is used. However, since these catalysts mainly focus on improving the exhaust gas purifying ability at the stoichiometric air-fuel ratio (hereinafter, referred to as “stoichiometric atmosphere”), the catalyst is used in an oxygen excess atmosphere (hereinafter referred to as “lean atmosphere”). When used as a NOx purification catalyst, sufficient performance cannot be obtained. Therefore, the development of an exhaust gas purifying catalyst that is excellent in NOx purification performance even in a lean atmosphere is expected.

【0003】かかるリーン雰囲気でのNOx浄化性能を
改良した触媒に関して、多数の提案がなされており、こ
れらのうち、アルミナを用いた排気ガス浄化用触媒とし
ては、特開平4−284843号公報や特開平4−35
8525号公報に記載されているようなものがある。こ
れらの排気ガス浄化用触媒では、触媒として金属を担持
したアルミナや金属元素とアルミナの複合酸化物である
金属アルミネート(スピネル型構造の複合酸化物)を用
いることにより、リーン雰囲気における排気ガス中のN
Oxを還元除去し、リーン雰囲気でも効率よくNOx、
CO、HCを浄化することにより触媒性能を向上させて
いる。
A number of proposals have been made regarding catalysts having improved NOx purification performance in such a lean atmosphere. Among these, as an exhaust gas purification catalyst using alumina, Japanese Patent Laid-Open No. 4-284843 and Japanese Patent Application Laid-Open No. Kaihei 4-35
There is one described in Japanese Patent No. 8525. In these exhaust gas purifying catalysts, by using alumina carrying metal as a catalyst or metal aluminate (complex oxide of spinel structure) which is a composite oxide of metal element and alumina, exhaust gas in a lean atmosphere N
Ox is reduced and removed, and NOx efficiently even in a lean atmosphere.
The catalytic performance is improved by purifying CO and HC.

【0004】また、ガリウムを用いた排気ガス浄化用触
媒としては、特開平7−24317号公報、特開平7−
265703号公報、特開平7−80300号公報、特
開平7−96191号公報や特開平7−284663号
公報に記載されているようなものがある。これらの排気
ガス浄化用触媒では、金属元素とガリウムの複合酸化物
(スピネル型構造の複合酸化物)を用いることにより、
リーン雰囲気における排気ガス中のNOxを還元除去
し、リーン雰囲気でも効率よくNOx、CO、HCを浄
化することにより触媒性能を向上させている。
Further, as an exhaust gas purifying catalyst using gallium, Japanese Patent Application Laid-Open Nos. 7-24317 and 7-
There are those described in JP-A-265703, JP-A-7-80300, JP-A-7-96191 and JP-A-7-284663. In these exhaust gas purification catalysts, by using a composite oxide of a metal element and gallium (a composite oxide having a spinel structure),
The catalyst performance is improved by reducing and removing NOx in exhaust gas in a lean atmosphere and efficiently purifying NOx, CO, and HC even in a lean atmosphere.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
ような排気ガス浄化用触媒において、アルミナを主成分
とした触媒では、排気ガス中の有害成分(HC、CO、
NOx)の浄化能うち、特にNOxの触媒浄化能が、排
気ガス組成(HC種)や温度及び排気ガス中に含まれる
水分の影響を強く受け、500℃以上の高温域でなけれ
ば十分なNOx浄化性能を発現しないため、低温域から
NOx浄化性能に優れた触媒が得られていないという課
題があった。
However, in the exhaust gas purifying catalyst as described above, the catalyst containing alumina as the main component does not contain harmful components (HC, CO, etc.) in the exhaust gas.
Of the NOx) purifying ability, especially the NOx catalytic purifying ability is strongly influenced by the exhaust gas composition (HC species) and temperature and the water content in the exhaust gas, and sufficient NOx unless the temperature is higher than 500 ° C. Since no purification performance is exhibited, there has been a problem that a catalyst excellent in NOx purification performance has not been obtained in a low temperature range.

【0006】また、ガリウムを主成分とした触媒では、
上記アルミナを主成分とした触媒に比べ、排気ガス中に
含まれる水分の影響が緩和されNOx浄化性能を期待で
きるものの、耐久後は低温活性や浄化性能そのものが悪
化するため、高温耐久性とNOx浄化性能とを両立し得
る触媒が得られていなかった。更に、ガリウムを主成分
とした触媒は、触媒原料が高価であるため、触媒コスト
が高く実用的でないという課題もあった。
Further, in the catalyst containing gallium as a main component,
Compared with the above-mentioned catalyst containing alumina as a main component, the effect of water contained in the exhaust gas is alleviated and the NOx purification performance can be expected, but the low temperature activity and the purification performance deteriorate after the endurance. No catalyst has been obtained that is compatible with purification performance. Further, the catalyst containing gallium as a main component has a problem that the catalyst raw material is expensive and thus the catalyst cost is high and not practical.

【0007】本発明は、このような従来技術の有する課
題に鑑みてなされたものであり、その目的とするところ
は、低温域からのNOx浄化性能に優れ、しかも高温耐
久性も向上した排気ガス浄化用触媒及びその製造方法を
提供することにある。
The present invention has been made in view of the above problems of the prior art, and an object thereof is to provide an exhaust gas having excellent NOx purification performance from a low temperature range and improved high temperature durability. It is intended to provide a purification catalyst and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意研究した結果、ニッケル、ガリウ
ム及びアルミニウムを一定の組成比率で含む複合酸化物
(スピネル構造型の複合酸化物)が、リーン雰囲気でも
低温域から高いNOx浄化性能を有し、しかも高温耐久
性にも優れていることを見出し、本発明に到達した。即
ち、請求項1記載の排気ガス浄化用触媒は、触媒成分層
を有する一体構造型触媒において、触媒成分として少な
くともニッケル、ガリウム及びアルミニウムを含む複合
酸化物を含有し、この複合酸化物の組成が、次の一般式 NiaGabAl(2.0-b)c (式中のa、b及びcは、各元素の原子比率を表し、a
=0.2〜1.0、b=0.2〜1.1であり、cは上
記各成分の原子価を満足するのに必要な酸素原子数であ
る)で表されることを特徴とする。
The inventors of the present invention have conducted extensive studies to solve the above-mentioned problems, and as a result, a composite oxide containing nickel, gallium and aluminum in a fixed composition ratio (complex oxide of spinel structure type). ) Has a high NOx purification performance in a low temperature range even in a lean atmosphere and is excellent in high temperature durability, and has arrived at the present invention. That is, the exhaust gas purifying catalyst according to claim 1 is a monolithic structure type catalyst having a catalyst component layer, which contains a composite oxide containing at least nickel, gallium and aluminum as a catalyst component, and the composition of the composite oxide is , The following general formula Ni a Ga b Al (2.0-b) O c (where a, b and c represent the atomic ratio of each element, and
= 0.2 to 1.0, b = 0.2 to 1.1, and c is the number of oxygen atoms required to satisfy the valences of the above components). To do.

【0009】また、請求項2記載の排気ガス浄化用触媒
は、請求項1記載の排気ガス浄化用触媒の低温域での触
媒活性を更に高めたものであり、上記ニッケル、ガリウ
ム及びアルミニウムを含む複合酸化物が、クロム、マン
ガン、鉄、コバルト、銅及び亜鉛から成る群より選ばれ
た少なくとも1種を含み、その組成が次の一般式 NiaGabAl(2.0-b)dc (式中のXは、クロム、マンガン、鉄、コバルト、銅及
び亜鉛から成る群より選ばれた少なくとも1種の元素、
a、b及びdは、各元素の原子比率を表し、a=0.2
〜1.0、b=0.2〜1.1、d=0.01〜0.5
であり、cは上記各成分の原子価を満足するのに必要な
酸素原子数である)で表されることを特徴とする。
Further, the exhaust gas purifying catalyst according to claim 2 further enhances the catalytic activity of the exhaust gas purifying catalyst according to claim 1 in a low temperature range, and contains the above nickel, gallium and aluminum. The composite oxide contains at least one selected from the group consisting of chromium, manganese, iron, cobalt, copper and zinc, and has a composition represented by the following general formula: Ni a Ga b Al (2.0-b) X d O c (X in the formula is at least one element selected from the group consisting of chromium, manganese, iron, cobalt, copper and zinc,
a, b, and d represent the atomic ratio of each element, and a = 0.2
˜1.0, b = 0.2 to 1.1, d = 0.01 to 0.5
And c is the number of oxygen atoms required to satisfy the valences of the above components).

【0010】更に、請求項3記載の排気ガス浄化用触媒
は、請求項1又は2記載の排気ガス浄化用触媒の酸素不
足(還元)雰囲気下における触媒活性を更に高めたもの
であって、触媒成分として更にセリウム酸化物を含有
し、このセリウム酸化物が、ランタン、ネオジウム、ジ
ルコニウムから成る群より選ばれた少なくとも1種を金
属換算で1〜40モル%、セリウムを60〜98モル%
含むことを特徴とする。
Further, the exhaust gas purifying catalyst according to claim 3 is a catalyst in which the catalytic activity of the exhaust gas purifying catalyst according to claim 1 or 2 is further enhanced in an oxygen-deficient (reducing) atmosphere. It further contains cerium oxide as a component, and the cerium oxide contains at least one selected from the group consisting of lanthanum, neodymium, and zirconium in an amount of 1 to 40 mol% in terms of metal, and 60 to 98 mol% of cerium.
It is characterized by including.

【0011】また、請求項4記載の排気ガス浄化用触媒
の製造方法は、請求項1〜3のいずれか1つの項に記載
の排気ガス浄化用触媒を製造するに当たり、ニッケル、
ガリウム及びアルミニウムの水溶性塩を水に溶解又は分
散させ、得られた溶液に、アンモニア水、炭酸アンモニ
ウム、炭酸水素アンモニウム、硫酸アンモニウム及び硫
酸水素アンモニウムから成る群より選ばれた少なくとも
1種の化合物の水溶液を添加して、この溶液のpHを
7.0〜9.0に調整し、次いで、水を除去し、残留物
を熱処理することにより、上記複合酸化物を得ることを
特徴とする。
The method for producing an exhaust gas purifying catalyst according to a fourth aspect is the method for producing the exhaust gas purifying catalyst according to any one of the first to third aspects.
A water-soluble salt of gallium and aluminum is dissolved or dispersed in water, and the resulting solution is an aqueous solution of at least one compound selected from the group consisting of ammonia water, ammonium carbonate, ammonium hydrogen carbonate, ammonium sulfate and ammonium hydrogen sulfate. Is added to adjust the pH of the solution to 7.0 to 9.0, water is removed, and the residue is heat-treated to obtain the above composite oxide.

【0012】更にまた、請求項5記載の排気ガス浄化用
触媒の製造方法は、請求項1〜3のいずれか1つの項に
記載の排気ガス浄化用触媒を製造するに当たり、微粒子
アルミナ水和物(微粒子アルミナゾル)、ニッケル及び
ガリウムの水溶性塩を水に溶解又は分散させ、得られた
溶液に、アンモニア水、炭酸アンモニウム、炭酸水素ア
ンモニウム、硫酸アンモニウム及び硫酸水素アンモニウ
ムから成る群より選ばれた少なくとも1種の化合物の水
溶液を添加して、この溶液のpHを7.0〜9.0に調
整し、次いで、水を除去し、残留物を熱処理することに
より、上記複合酸化物を得ることを特徴とする。
Furthermore, the method for producing the exhaust gas purifying catalyst according to claim 5 is the method for producing the exhaust gas purifying catalyst according to any one of claims 1 to 3, in which fine particle alumina hydrate is used. (Fine particle alumina sol), a water-soluble salt of nickel and gallium is dissolved or dispersed in water, and the resulting solution has at least one selected from the group consisting of aqueous ammonia, ammonium carbonate, ammonium hydrogen carbonate, ammonium sulfate and ammonium hydrogen sulfate. An aqueous solution of a seed compound is added to adjust the pH of the solution to 7.0 to 9.0, water is then removed, and the residue is heat-treated to obtain the above composite oxide. And

【0013】[0013]

【作用】請求項1記載の排気ガス浄化用触媒では、触媒
成分として、少なくともニッケル、ガリウム及びアルミ
ニウムを含む複合酸化物を含有させた。従って、リーン
雰囲気でも低温域から優れたNOx浄化性能が得られ
る。また、リーン雰囲気下において、ニッケルはNOx
の選択吸着・活性化点として作用し、ガリウムはHCの
活性点として作用し、排気ガス中の水分の被毒作用を緩
和するので、NOx浄化性能を向上させることができ
る。更に、請求項1記載の排気ガス浄化用触媒では、上
記複合酸化物を、スピネル型構造を有する特定の組成比
の金属アルミネート(アルミナ系複合酸化物)とした。
従って、化学量論比を満足するNi1Al24やNi1
24に比べて、高温下での構造安定性が向上し、耐久
後も十分な触媒性能を得ることができる。
In the exhaust gas purifying catalyst according to the first aspect, the complex oxide containing at least nickel, gallium and aluminum is contained as the catalyst component. Therefore, even in a lean atmosphere, excellent NOx purification performance can be obtained from a low temperature range. In a lean atmosphere, nickel is NOx.
The gallium acts as an active point of selective adsorption and activation, and gallium acts as an active point of HC to mitigate the poisoning effect of water in the exhaust gas, so that the NOx purification performance can be improved. Further, in the exhaust gas purifying catalyst according to claim 1, the composite oxide is a metal aluminate (alumina-based composite oxide) having a specific composition ratio and having a spinel structure.
Therefore, Ni 1 Al 2 O 4 and Ni 1 G satisfying the stoichiometric ratio are
Compared with a 2 O 4 , the structural stability at high temperatures is improved, and sufficient catalyst performance can be obtained even after durability.

【0014】また、請求項2記載の排気ガス浄化用触媒
では、上記複合酸化物に、クロム、マンガン、鉄、コバ
ルト、銅及び亜鉛から成る群より選ばれた少なくとも1
種を含ませた。よって、更に低温域における触媒活性と
NOx浄化効率を向上させることができる。
Further, in the exhaust gas purifying catalyst according to claim 2, the composite oxide contains at least one selected from the group consisting of chromium, manganese, iron, cobalt, copper and zinc.
Included seeds. Therefore, the catalyst activity and the NOx purification efficiency in the low temperature range can be further improved.

【0015】更に、請求項3記載の排気ガス浄化用触媒
では、触媒成分層に、ランタン、ネオジウム及びジルコ
ニウムから成る群から選ばれた少なくとも1種を含有す
るセリウム酸化物粉末を含有させた。従って、酸素不足
(還元)雰囲気下における触媒活性を更に高めることが
でき、上記複合酸化物の還元劣化を抑制することができ
る。
Furthermore, in the exhaust gas purifying catalyst according to claim 3, the catalyst component layer contains cerium oxide powder containing at least one selected from the group consisting of lanthanum, neodymium and zirconium. Therefore, the catalytic activity in an oxygen-deficient (reducing) atmosphere can be further enhanced, and reduction deterioration of the composite oxide can be suppressed.

【0016】また、請求項4記載の排気ガス浄化用触媒
の製造方法では、金属元素の単独酸化物や含浸法で調製
した複合酸化物に比べて、NOx浄化性能改良効果が十
分に得られる
Further, in the method for producing the exhaust gas purifying catalyst according to the fourth aspect, the effect of improving the NOx purifying performance is sufficiently obtained as compared with the single oxide of the metal element or the complex oxide prepared by the impregnation method.

【0017】また特に、請求項5記載の排気ガス浄化用
触媒の製造方法では、上記水溶性原料化合物を用い沈澱
法で調製した複合酸化物に比べて、更に十分な耐久性が
得られる。
Particularly, in the method for producing the exhaust gas purifying catalyst according to the fifth aspect, more sufficient durability can be obtained as compared with the complex oxide prepared by the precipitation method using the water-soluble raw material compound.

【0018】[0018]

【発明の実施の形態】以下、本発明の排気ガス浄化用触
媒について詳細に説明する。本発明の排気ガス浄化用触
媒は、触媒成分層を有する一体構造型の触媒であって、
この触媒成分層に担持される触媒成分として、ニッケ
ル、ガリウム及びアルミニウムを含む特定組成の複合酸
化物を含有するものである。ここで、上記複合酸化物
は、次の一般式(I) NiaGabAl(2.0-b)c・・・(I) (式中のa、b及びcは、各元素の原子比率を表し、a
=0.2〜1.0、b=0.2〜1.1であり、cは上
記各成分の原子価を満足するのに必要な酸素原子数であ
る)で表される。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the exhaust gas purifying catalyst of the present invention will be described in detail. The exhaust gas purifying catalyst of the present invention is an integral structure type catalyst having a catalyst component layer,
The catalyst component supported on the catalyst component layer contains a complex oxide having a specific composition containing nickel, gallium and aluminum. Here, the composite oxide has the following general formula (I) Ni a Ga b Al (2.0-b) O c ··· (I) (a in the formula, b and c are atomic ratios of respective elements Represents a
= 0.2 to 1.0, b = 0.2 to 1.1, and c is the number of oxygen atoms required to satisfy the valences of the above components).

【0019】上記(I)式において、a=0.2未満で
は、NOx選択吸着・活性化といったニッケルのNOx
浄化性能改良効果が十分には得られず、アルミナ(Al
23)の浄化性能と同等になってしまうので好ましくな
い。一方、a=1.0を超えると、BET比表面積が低
下し、初期において十分な性能が得られない。また、b
=0.2未満では、水分のNOx浄化性能悪化作用に対
する、ガリウムのNOx浄化性能改良効果が十分には得
られず、ニッケルアルミネート(Ni1Al24)の場
合と大差がないので好ましくない。b=1.1を超える
と、スピネル型結晶構造の熱安定性が低下し、耐久後に
十分な性能が得られない。
In the above formula (I), when a is less than 0.2, nickel NOx is selectively adsorbed and activated.
Since the effect of improving the purification performance was not sufficiently obtained, alumina (Al
It is not preferable because it becomes equivalent to the purification performance of 2 O 3 ). On the other hand, when a exceeds 1.0, the BET specific surface area decreases, and sufficient performance cannot be obtained in the initial stage. Also, b
= Less than 0.2, the effect of improving the NOx purification performance of gallium with respect to the effect of water on the NOx purification performance is not sufficiently obtained, and there is no great difference from the case of nickel aluminate (Ni 1 Al 2 O 4 ), which is preferable. Absent. When b = 1.1 is exceeded, the thermal stability of the spinel type crystal structure is deteriorated and sufficient performance cannot be obtained after endurance.

【0020】なお、上述の複合酸化物の使用量(担持
量)は、使用する内燃機関の種類や意図する触媒性能な
どに応じて適宜変更できるが、通常、触媒1l当たり3
0〜300gである。30g未満だと十分な触媒活性が
得られず、300gより多く使用しても、触媒成分層中
における排気ガス成分の拡散が悪くなり、触媒性能が向
上しないことがあるので好ましくない。
The use amount (support amount) of the above-mentioned composite oxide can be appropriately changed according to the type of internal combustion engine used, the intended catalyst performance, etc., but is usually 3 per 1 liter of catalyst.
It is 0 to 300 g. If it is less than 30 g, sufficient catalytic activity cannot be obtained, and even if it is used in excess of 300 g, diffusion of the exhaust gas component in the catalyst component layer is deteriorated and the catalyst performance may not be improved, which is not preferable.

【0021】また、上述の複合酸化物には、クロム、マ
ンガン、鉄、コバルト、銅又は亜鉛及びこれらの任意の
混合物を添加することができ、これにより、更に低温域
における触媒活性とNOx浄化効率を向上させることが
できる。この場合、上記(I)式は、次の一般式(I
I) NiaGabAl(2.0-b)dc・・・(II) (式中のXは、クロム、マンガン、鉄、コバルト、銅及
び亜鉛から成る群より選ばれた少なくとも1種の元素、
a、b及びdは、各元素の原子比率を表し、a=0.2
〜1.0、b=0.2〜1.1、d=0.01〜0.5
であり、cは上記各成分の原子価を満足するのに必要な
酸素原子数である)のように表せる。ここで、d=0.
01未満では、添加元素の浄化性能改良効果が十分には
得られず、また、d=0.5を超えると、添加効果が飽
和したり、逆に十分な耐久後性能が得られないことがあ
るので好ましくない。
Further, chromium, manganese, iron, cobalt, copper or zinc and any mixture thereof can be added to the above-mentioned composite oxide, whereby the catalyst activity and the NOx purification efficiency in a lower temperature range can be added. Can be improved. In this case, the above formula (I) is expressed by the following general formula (I
I) Ni a Ga b Al (2.0-b) X d O c ... (II) (X in the formula is at least one selected from the group consisting of chromium, manganese, iron, cobalt, copper and zinc. Elements of
a, b, and d represent the atomic ratio of each element, and a = 0.2
˜1.0, b = 0.2 to 1.1, d = 0.01 to 0.5
And c is the number of oxygen atoms required to satisfy the valences of the above components). Here, d = 0.
If it is less than 01, the effect of improving the purification performance of the additive element cannot be sufficiently obtained, and if it exceeds d = 0.5, the effect of addition is saturated, or conversely, sufficient post-durability performance cannot be obtained. It is not preferable because it exists.

【0022】更に、本発明の排気ガス浄化用触媒におい
ては、上記複合酸化物以外の触媒成分として、セリウム
酸化物を担持させることができ、これにより、酸素不足
(還元)雰囲気下における触媒活性を更に高めることが
でき、上記複合酸化物の還元劣化を抑制することができ
る。当該セリウム酸化物としては、ランタン、ネオジウ
ム又はジルコニウム及びこれらの任意の混合物を金属換
算で1〜40モル%、セリウムを60〜98モル%含有
するものを好ましく使用できる。1〜40モル%とした
のは、セリウム酸化物(CeO2)に、ランタン、ネオ
ジウム及びジルコニウムから成る群より選ばれた少なく
とも1種を添加し、CeO2の酸素吸蔵能やBET比表
面積、熱安定性を改良するためである。1モル%未満で
は、CeO2のみの場合と大差がなく、上述した添加元
素の改良効果が現れず、40モル%を超えるとこの効果
が飽和又は逆に低下するので好ましくない。
Further, in the exhaust gas purifying catalyst of the present invention, cerium oxide can be supported as a catalyst component other than the above-mentioned composite oxide, whereby the catalytic activity in an oxygen-deficient (reducing) atmosphere is improved. It can be further increased, and reduction deterioration of the composite oxide can be suppressed. As the cerium oxide, those containing 1 to 40 mol% of lanthanum, neodymium or zirconium and any mixture thereof in terms of metal and 60 to 98 mol% of cerium can be preferably used. 1-40 was a mole percent, cerium oxide (CeO 2), lanthanum, adding at least one selected from the group consisting of neodymium and zirconium, the oxygen storage capacity and BET specific surface area of CeO 2, heat This is to improve stability. If it is less than 1 mol%, there is no great difference from the case of CeO 2 alone, and the above-mentioned effect of improving the additional element does not appear. If it exceeds 40 mol%, this effect is saturated or, conversely, it is not preferable.

【0023】また、上記セリウム酸化物の使用量は、上
記複合酸化物の場合と同様に適宜変更することが可能で
あるが、通常、触媒1l当たり10〜150gとするの
がよい。10g未満だと酸素不足雰囲気下で十分な触媒
活性改良効果が得られず、150gより多く使用して
も、触媒成分層中の活性成分である複合酸化物に対する
排気ガス成分拡散が悪くなり、触媒性能が向上しないこ
とがあるので好ましくない。
The amount of the cerium oxide used can be appropriately changed in the same manner as in the case of the composite oxide, but it is usually 10 to 150 g per liter of the catalyst. If it is less than 10 g, a sufficient catalytic activity improving effect cannot be obtained in an oxygen-deficient atmosphere, and even if it is used in an amount of more than 150 g, diffusion of exhaust gas components to the composite oxide that is an active component in the catalyst component layer becomes poor, and the catalyst becomes poor. It is not preferable because the performance may not be improved.

【0024】次に、本発明の排気ガス浄化用触媒の製造
方法について説明する。まず、触媒調製用の原料化合物
としては、ニッケルやガリウムなどの各元素の硝酸塩、
炭酸塩、アンモニウム塩、酢酸塩及び酸化物等を組み合
わせて使用することができるが、水溶性の塩を用いた場
合に好成績が得られる。
Next, a method of manufacturing the exhaust gas purifying catalyst of the present invention will be described. First, as a raw material compound for catalyst preparation, nitrates of various elements such as nickel and gallium,
Carbonates, ammonium salts, acetates, oxides and the like can be used in combination, but good results are obtained when a water-soluble salt is used.

【0025】また、上述の複合酸化物触媒の調製法は、
成分の著しい遍在を伴わない限り特殊な方法に限定され
るものではなく、従来公知の蒸発乾固法、沈澱法及び含
浸法等の種々の方法の中から適宜選択して使用すること
ができる。但し、これらの方法のうちでは、上記各元素
の水溶性塩を水に溶解又は分散させた後、アンモニア
水、炭酸アンモニウム、炭酸水素アンモニウム、硫酸ア
ンモニウム及び硫酸アンモニウムから成る群より選ばれ
た少なくとも1種の化合物の水溶液を加える沈澱法を用
いることが好ましい。かかる沈澱法で調製した複合酸化
物触媒では、反応に有効な比表面積を十分に確保できる
ため、低温域での触媒活性に優れ、また、活性相である
金属元素を表面に均一に分散できるため、触媒活性や耐
久後の触媒性能にも優れる。
The method for preparing the above-mentioned composite oxide catalyst is
The method is not limited to a special method as long as the components are not significantly unevenly distributed, and can be appropriately selected and used from various methods such as a conventionally known evaporation-drying method, precipitation method and impregnation method. . However, among these methods, after dissolving or dispersing a water-soluble salt of each of the above elements in water, at least one selected from the group consisting of aqueous ammonia, ammonium carbonate, ammonium hydrogen carbonate, ammonium sulfate, and ammonium sulfate. Preference is given to using the precipitation method in which an aqueous solution of the compound is added. In the complex oxide catalyst prepared by such a precipitation method, the specific surface area effective for the reaction can be sufficiently secured, so that the catalytic activity is excellent in the low temperature region, and the metal element that is the active phase can be uniformly dispersed on the surface. It also excels in catalytic activity and catalytic performance after endurance.

【0026】以上のことから、上記複合酸化物の調製法
について具体的に説明すると、まず、ニッケル、ガリウ
ム及びアルミニウム成分を含む触媒原料に純水を加え十
分に攪拌する。この際、各触媒原料を同時に又は別個に
溶解した液を加えてもよい。次いで、この触媒原料を加
えた混合溶液に、アンモニア水、炭酸アンモニウム、炭
酸水素アンモニウム、硫酸アンモニウム及び硫酸アンモ
ニウムから成る群より選ばれた少なくとも1種の化合物
の水溶液を徐々に加え、溶液のpHを7.0から9.0
の間になるように調整する。その後、水を除去し、残留
物を熱処理することにより、複合酸化物の調製を完了
し、目的とする複合酸化物触媒が得られることになる。
From the above, the method for preparing the above complex oxide will be specifically described. First, pure water is added to a catalyst raw material containing nickel, gallium and aluminum components and sufficiently stirred. At this time, a liquid in which each catalyst raw material is dissolved simultaneously or separately may be added. Then, an aqueous solution of at least one compound selected from the group consisting of aqueous ammonia, ammonium carbonate, ammonium hydrogen carbonate, ammonium sulfate and ammonium sulfate is gradually added to the mixed solution containing the catalyst raw material to adjust the pH of the solution to 7. 0 to 9.0
Adjust so that it is in between. After that, water is removed and the residue is heat-treated to complete the preparation of the composite oxide and obtain the target composite oxide catalyst.

【0027】上述の複合酸化物の調製法において、沈澱
剤として、上記アンモニア水やアンモニウム化合物を使
用するのは、洗浄が不十分でも金属元素は残留せず、ま
た、アンモニウム化合物が残留しても(主として、硝酸
アンモニウム)、後の焼成で容易に分解除去できるから
である。これに対し、水酸化ナトリウムや炭酸ナトリウ
ム等の金属塩を使用すると、得られた沈澱物中にナトリ
ウム等の金属元素が残留し、これらの残留元素が触媒性
能に悪影響を及ぼすので、これらを除去する洗浄工程が
必要になり好ましくないからである。
In the above-mentioned method for preparing a complex oxide, the use of the above-mentioned aqueous ammonia or ammonium compound as the precipitating agent does not cause the metal element to remain even if the washing is insufficient, or the ammonium compound remains. This is because (mainly ammonium nitrate) can be easily decomposed and removed by subsequent firing. On the other hand, when a metal salt such as sodium hydroxide or sodium carbonate is used, metal elements such as sodium remain in the obtained precipitate, and these residual elements adversely affect the catalytic performance. This is because it is not preferable because a washing step is required.

【0028】また、上記調製法においては、溶液のpH
を7.0〜9.0の範囲に調整することにより、各種金
属塩の沈澱物を形成している。pHが7.0より低いと
各種元素が十分に沈澱物を形成せず、逆にpHが9.0
より高いと沈澱した成分の一部が再溶解することがあ
り、好ましくない。更に、水の除去は、例えば、濾過
法、蒸発乾固法等の種々の方法を用いることができる。
熱処理は、例えば、500〜1000℃の温度で空気中
又は空気流通下で行うことが好ましい。
In the above preparation method, the pH of the solution
Is adjusted in the range of 7.0 to 9.0 to form precipitates of various metal salts. When the pH is lower than 7.0, various elements do not sufficiently form a precipitate, and conversely, the pH is 9.0.
If it is higher, some of the precipitated components may be redissolved, which is not preferable. Furthermore, various methods such as filtration and evaporation to dryness can be used to remove water.
The heat treatment is preferably performed in air or under air circulation at a temperature of 500 to 1000 ° C., for example.

【0029】以上のようにして得られる本発明の排気ガ
ス浄化用触媒は、無担体でも有効に使用できるが、粉砕
・スラリー化し、モノリス構造を有するハニカム担体に
コートし、例えば、400〜900℃の温度で焼成して
用いることが好ましい。この場合、触媒担体としては、
従来公知の担体の中から適宜選択して使用することがで
き、例えば、耐火性材料から成るモノリス担体やメタル
担体等を使用することができる。
The exhaust gas purifying catalyst of the present invention obtained as described above can be effectively used even without a carrier, but it is pulverized and slurried and coated on a honeycomb carrier having a monolith structure, for example, 400 to 900 ° C. It is preferable to use it after firing at the temperature. In this case, as the catalyst carrier,
The carrier can be appropriately selected and used from conventionally known carriers, and for example, a monolith carrier or a metal carrier made of a refractory material can be used.

【0030】なお、上記触媒担体の形状は、特に限定さ
れるものではないが、通常はハニカム形状のものを使用
することが好ましく、ハニカム状の各種基材に触媒粉末
を塗布することにより、一体構造型の触媒を得ることが
できる。このハニカム状基材としては、一般にセラミッ
ク等のコージェライト質のものが多く用いられるが、フ
ェライト系ステンレス等の金属材料を用いることも可能
であり、更には触媒粉末そのものをハニカム形状に成形
してもよい。触媒をハニカム形状とすることにより、触
媒と排気ガスとの接触面積が大きくなり、圧力損失も抑
制できるため、自動車用排気ガス浄化用触媒として用い
る場合には極めて有効である。
The shape of the catalyst carrier is not particularly limited, but it is usually preferable to use a honeycomb shape, and by applying a catalyst powder to various honeycomb-shaped base materials, it is possible to form an integrated structure. Structural type catalysts can be obtained. As the honeycomb-shaped base material, generally, a cordierite-based material such as ceramic is often used, but it is also possible to use a metal material such as ferritic stainless steel, and further, the catalyst powder itself is formed into a honeycomb shape. Good. By making the catalyst into a honeycomb shape, the contact area between the catalyst and the exhaust gas becomes large and the pressure loss can be suppressed, so that it is extremely effective when used as a catalyst for purifying exhaust gas for automobiles.

【0031】なお、ハニカム状基材に付着させる触媒成
分コート層の量は、触媒成分全体のトータルで、触媒1
l当たり50〜400gとするのが好ましい。触媒成分
が多ければ多い程、触媒活性や触媒寿命の面から好まし
いと言えるが、コート層が厚くなり過ぎると、HC、C
O、NOx等の反応ガスが拡散不良となり、これらのガ
スと触媒とが十分に接触できなくなる。従って、活性に
対する増量効果が飽和し、更には、ガスの通過抵抗も大
きくなってしまうため、コート層の量は、上述のように
触媒1l当たり50〜400gとするのが好ましい。
The amount of the catalyst component coating layer adhered to the honeycomb-shaped substrate is the total amount of the catalyst components and the catalyst 1
It is preferably 50 to 400 g per liter. It can be said that the more the catalyst component is, the more preferable it is in terms of the catalyst activity and the catalyst life. However, if the coat layer becomes too thick, HC, C
Reaction gases such as O and NOx become poorly diffused, and these gases and the catalyst cannot be sufficiently brought into contact with each other. Therefore, the effect of increasing the amount of activity is saturated, and further, the gas passage resistance increases, so that the amount of the coat layer is preferably 50 to 400 g per liter of the catalyst as described above.

【0032】[0032]

【実施例】以下、本発明を実施例及び比較例により更に
詳細に説明するが、本発明はこれら実施例に限定される
ものではない。なお、以下、「部」及び「%」は、特記
しない限りそれぞれ「重量部」及び「重量%」を表すも
のとする。 (実施例1)硝酸ニッケル290.8部、硝酸ガリウム
400部及び硝酸アルミニウム375.3部を純水10
00部に添加し、攪拌・溶解した。次いで、攪拌を続行
しながら5%のアンモニア水を徐々に滴下し、溶液のp
Hを7.0〜9.0の範囲に調整した。生成した沈澱物
を濾過して取り出し、150℃で12時間乾燥した後、
空気中800℃で4時間焼成した。得られた触媒の酸素
以外の成分の組成(以下同じ)は、Ni1.0Ga1.0Al
1.0であった。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. In the following, "parts" and "%" represent "parts by weight" and "% by weight", respectively, unless otherwise specified. (Example 1) 290.8 parts of nickel nitrate, 400 parts of gallium nitrate and 375.3 parts of aluminum nitrate were added to pure water 10
It was added to 00 parts and stirred and dissolved. Then, while continuing stirring, 5% ammonia water was gradually added dropwise to the solution to p
H was adjusted to a range of 7.0 to 9.0. The precipitate formed was filtered off and dried at 150 ° C. for 12 hours,
It was calcined in air at 800 ° C. for 4 hours. The composition of the components other than oxygen of the obtained catalyst (hereinafter the same) was Ni 1.0 Ga 1.0 Al.
1.0 .

【0033】このようにして得られた粉末700部とラ
ンタン(1モル%:La23として1%)、ジルコニウ
ム(32モル%:ZrO2として25%)を含むセリウ
ム酸化物(セリウム67モル%:CeO2として74
%)300部及び純水2000部をボールミルで混合・
粉砕し、得られたスラリーをモノリス担体基材に付着さ
せ、400℃で1時間焼成して本実施例の触媒を調製し
た。なお、この際の付着量は300g/lに設定した。
Cerium oxide containing 700 parts of the powder thus obtained, lanthanum (1 mol%: 1% as La 2 O 3 ) and zirconium (32 mol%: 25% as ZrO 2 ) (67 mol of cerium) %: 74 as CeO 2
%) 300 parts and 2000 parts of pure water are mixed with a ball mill.
The resulting slurry was pulverized, adhered to a monolith carrier substrate, and calcined at 400 ° C. for 1 hour to prepare a catalyst of this example. In addition, the adhesion amount at this time was set to 300 g / l.

【0034】(実施例2)5%アンモニア水の代わりに
5%の炭酸アンモニウム水溶液を用いてNi1.0Ga1.0
Al1.0を調製した以外は、実施例1と同様の操作を繰
り返し、本実施例の触媒を得た。
(Example 2) Ni 1.0 Ga 1.0 was prepared by using a 5% ammonium carbonate aqueous solution instead of 5% ammonia water.
The same operation as in Example 1 was repeated except that Al 1.0 was prepared to obtain the catalyst of this example.

【0035】(実施例3)5%アンモニア水の代わりに
5%の炭酸水素アンモニウム水溶液を用いてNi1.0
1.0Al1.0を調製した以外は、実施例1と同様の操作
を繰り返し、本実施例の触媒を得た。
Example 3 A Ni 1.0 G solution was prepared by using a 5% aqueous solution of ammonium hydrogencarbonate instead of 5% aqueous ammonia.
a 1.0 A procedure similar to that of Example 1 was repeated except that Al 1.0 was prepared to obtain a catalyst of this example.

【0036】(実施例4)5%アンモニア水の代わりに
5%の硫酸アンモニウム水溶液を用いてNi1.0Ga1.0
Al1.0を調製した以外は、実施例1と同様の操作を繰
り返し、本実施例の触媒を得た。
(Example 4) A 5% aqueous solution of ammonium sulfate was used in place of 5% ammonia water to obtain Ni 1.0 Ga 1.0.
The same operation as in Example 1 was repeated except that Al 1.0 was prepared to obtain the catalyst of this example.

【0037】(実施例5)5%アンモニア水の代わりに
5%の硫酸水素アンモニウム水溶液を用いてNi1.0
1.0Al1.0を調製した以外は、実施例1と同様の操作
を繰り返し、本実施例の触媒を得た。
(Example 5) Ni 1.0 G was prepared by using a 5% ammonium hydrogensulfate aqueous solution instead of 5% ammonia water.
a 1.0 A procedure similar to that of Example 1 was repeated except that Al 1.0 was prepared to obtain a catalyst of this example.

【0038】(実施例6)硝酸ニッケルの配合量を14
5.4部に変えてNi0.5Ga1.0Al1.0を調製した以
外は、実施例1と同様の操作を繰り返し、本実施例の触
媒を得た。
(Example 6) The compounding amount of nickel nitrate was adjusted to 14
The same operation as in Example 1 was repeated except that Ni 0.5 Ga 1.0 Al 1.0 was prepared in place of 5.4 parts to obtain a catalyst of this example.

【0039】(実施例7)硝酸ニッケル、硝酸ガリウム
及び硝酸アルミニウムの配合量を、それぞれ290.8
部、200部及び563部としてNi1.0Ga0.5Al
1.5を調製した以外は、実施例1と同様の操作を繰り返
し、本実施例の触媒を得た。
Example 7 Nickel nitrate, gallium nitrate and aluminum nitrate were mixed in amounts of 290.8 and 290.8, respectively.
1.0 Ga 0.5 Al as parts, 200 parts and 563 parts
The same operation as in Example 1 was repeated except that 1.5 was prepared to obtain the catalyst of this Example.

【0040】(実施例8)硝酸銅24.2部、硝酸ニッ
ケル261.7部、硝酸ガリウム400部、硝酸アルミ
ニウム375.3部を用いて実施例1と同様の操作を繰
り返し、Cu0.1Ni0.9Ga1.0Al1.0を調製し、更に
同様の操作を繰り返して本実施例の触媒を得た。
Example 8 The same operation as in Example 1 was repeated using 24.2 parts of copper nitrate, 261.7 parts of nickel nitrate, 400 parts of gallium nitrate and 375.3 parts of aluminum nitrate, and Cu 0.1 Ni 0.9 Ga 1.0 Al 1.0 was prepared, and the same operation was repeated to obtain the catalyst of this example.

【0041】(実施例9)硝酸コバルト29.1部、硝
酸ニッケル261.7部、硝酸ガリウム400部、硝酸
アルミニウム375.3部を用いて実施例1と同様の操
作を繰り返し、Co0.1Ni0.9Ga1.0Al1.0を調製
し、更に同様の操作を繰り返して本実施例の触媒を得
た。
Example 9 The same operation as in Example 1 was repeated using 29.1 parts of cobalt nitrate, 261.7 parts of nickel nitrate, 400 parts of gallium nitrate and 375.3 parts of aluminum nitrate, and Co 0.1 Ni 0.9 Ga 1.0 Al 1.0 was prepared, and the same operation was repeated to obtain the catalyst of this example.

【0042】(実施例10)硝酸クロム20部、硝酸マ
ンガン12.8部、硝酸ニッケル261.7部、硝酸ガ
リウム400部、硝酸アルミニウム375.3部を用い
て実施例1と同様の操作を繰り返し、Cr0.05Mn0.05
Ni0.9Ga1.0Al1.0を調製し、更に同様の操作を繰
り返して本実施例の触媒を得た。
Example 10 The same operation as in Example 1 was repeated using 20 parts of chromium nitrate, 12.8 parts of manganese nitrate, 261.7 parts of nickel nitrate, 400 parts of gallium nitrate and 375.3 parts of aluminum nitrate. , Cr 0.05 Mn 0.05
Ni 0.9 Ga 1.0 Al 1.0 was prepared, and the same operation was repeated to obtain the catalyst of this example.

【0043】(実施例11)硝酸鉄20.2部、硝酸亜
鉛59.4部、硝酸ニッケル203.6部、硝酸ガリウ
ム400部、硝酸アルミニウム375.3部を用いて実
施例1と同様の操作を繰り返し、Fe0.05Zn0.2Ni
0.7Ga1.0Al1.0を調製し、更に同様の操作を繰り返
して本実施例の触媒を得た。
(Example 11) The same operation as in Example 1 was carried out using 20.2 parts of iron nitrate, 59.4 parts of zinc nitrate, 203.6 parts of nickel nitrate, 400 parts of gallium nitrate and 375.3 parts of aluminum nitrate. Repeatedly, Fe 0.05 Zn 0.2 Ni
0.7 Ga 1.0 Al 1.0 was prepared, and the same operation was repeated to obtain the catalyst of this example.

【0044】(実施例12)硝酸銅24.2部、硝酸コ
バルト29.1部、硝酸亜鉛29.7部、硝酸ニッケル
203.6部、硝酸ガリウム400部、硝酸アルミニウ
ム375.3部を用いて実施例1と同様の操作を繰り返
し、Cu0.1Co0.1Zn0.1Ni0.7Ga1.0Al1.0を調
製し、更に同様の操作を繰り返して本実施例の触媒を得
た。
(Example 12) Using 24.2 parts of copper nitrate, 29.1 parts of cobalt nitrate, 29.7 parts of zinc nitrate, 203.6 parts of nickel nitrate, 400 parts of gallium nitrate, and 375.3 parts of aluminum nitrate. The same operation as in Example 1 was repeated to prepare Cu 0.1 Co 0.1 Zn 0.1 Ni 0.7 Ga 1.0 Al 1.0, and the same operation was repeated to obtain the catalyst of this example.

【0045】(実施例13)硝酸銅24.2部、硝酸コ
バルト29.1部、硝酸亜鉛29.7部、硝酸ニッケル
203.6部、硝酸ガリウム200部、硝酸アルミニウ
ム563部を用いて実施例1と同様の操作を繰り返し、
Cu0.1Co0.1Zn0.1Ni0.7Ga0.5Al1.5を調製
し、更に同様の操作を繰り返して本実施例の触媒を得
た。
(Example 13) An example using 24.2 parts of copper nitrate, 29.1 parts of cobalt nitrate, 29.7 parts of zinc nitrate, 203.6 parts of nickel nitrate, 200 parts of gallium nitrate, and 563 parts of aluminum nitrate. Repeat the same operation as 1.
Cu 0.1 Co 0.1 Zn 0.1 Ni 0.7 Ga 0.5 Al 1.5 was prepared, and the same operation was repeated to obtain the catalyst of this example.

【0046】(実施例14)900部のNi1.0Ga1.0
Al1.0と100部のセリウム酸化物を用いた以外は、
実施例1と同様の操作を繰り返し、本実施例の触媒を得
た。
(Example 14) 900 parts of Ni 1.0 Ga 1.0
Except that Al 1.0 and 100 parts of cerium oxide were used.
The same operation as in Example 1 was repeated to obtain the catalyst of this example.

【0047】(比較例1)硝酸アルミニウム375.3
部を純水1000部に加え、攪拌・溶解した。次いで、
攪拌を続行しながら5%のアンモニア水を徐々に滴下
し、溶液のpHが7.0〜9.0の範囲になるように調
整した。生成した沈澱物を濾過して取り出し、150℃
で12時間乾燥した後、空気中800℃で4時間焼成し
た。得られた触媒の酸素以外の成分の組成(以下同じ)
は、Al2.0であった。このようにして得られた粉末5
00部と純水1000部をボールミルで混合・粉砕し、
得られたスラリーをモノリス担体基材に付着させ、40
0℃で1時間焼成し、本例の触媒を得た。なお、この際
の付着量は、300g/lに設定した。
(Comparative Example 1) Aluminum nitrate 375.3
Parts were added to 1000 parts of pure water, and stirred and dissolved. Then
While continuing stirring, 5% ammonia water was gradually added dropwise to adjust the pH of the solution to be in the range of 7.0 to 9.0. The precipitate formed is filtered off and dried at 150 ° C.
After being dried for 12 hours, it was baked in air at 800 ° C. for 4 hours. Composition of components other than oxygen of the obtained catalyst (hereinafter the same)
Was Al 2.0 . Powder 5 thus obtained
00 parts and 1000 parts of pure water are mixed and crushed by a ball mill,
The obtained slurry is attached to a monolith carrier substrate,
The catalyst of this example was obtained by firing at 0 ° C. for 1 hour. In addition, the adhesion amount at this time was set to 300 g / l.

【0048】(比較例2)5%のアンモニア水を用いな
いで調製したNi1.0Ga1.0Al1.0を用いた以外は、
実施例1と同様の操作を繰り返し、本例の触媒を調製し
た。
(Comparative Example 2) Except that Ni 1.0 Ga 1.0 Al 1.0 prepared without using 5% aqueous ammonia was used.
The same operation as in Example 1 was repeated to prepare the catalyst of this example.

【0049】(比較例3)硝酸銅241.6部、硝酸ニ
ッケル290.8部、硝酸ガリウム400部、硝酸アル
ミニウム375.3部を用いて実施例1と同様の操作を
繰り返し、Cu1.0Ni1.0Ga1.0Al1.0を調製し、更
に同様の操作を繰り返して本例の触媒を得た。
Comparative Example 3 The same operation as in Example 1 was repeated using 241.6 parts of copper nitrate, 290.8 parts of nickel nitrate, 400 parts of gallium nitrate and 375.3 parts of aluminum nitrate, and Cu 1.0 Ni 1.0 Ga 1.0 Al 1.0 was prepared, and the same operation was repeated to obtain the catalyst of this example.

【0050】(比較例4)硝酸ニッケル290.8部、
硝酸ガリウム800部を用いて実施例1と同様の操作を
繰り返し、Ni1.0Ga2.0を調製し、更に同様の操作を
繰り返して本例の触媒を得た。
Comparative Example 4 290.8 parts of nickel nitrate,
The same operation as in Example 1 was repeated using 800 parts of gallium nitrate to prepare Ni 1.0 Ga 2.0, and the same operation was repeated to obtain the catalyst of this example.

【0051】(比較例5)硝酸ニッケル290.8部、
硝酸アルミニウム750.6部を用いて実施例1と同様
の操作を繰り返し、Ni1.0Al2.0を調製し、更に同様
の操作を繰り返して本例の触媒を得た。
Comparative Example 5 290.8 parts of nickel nitrate,
The same operation as in Example 1 was repeated using 750.6 parts of aluminum nitrate to prepare Ni 1.0 Al 2.0, and the same operation was repeated to obtain the catalyst of this example.

【0052】(性能評価)上述のようにして得られた実
施例1〜15及び比較例1〜5の触媒について、下記の
評価条件の下、自動車の排気ガスを模したモデルガスを
用いて触媒活性を評価した。また、NOx添加率は、下
記数式1に基づいて算出した。 [評価条件] 触媒 モノリス型多成分系触媒 総ガス流量 40l/分 触媒入口ガス温度 100〜600℃ 昇温速度 30℃/分 空間速度 約20000H−l 入口ガス組成 平均空燃比18.0相当のモデルガス組成 CO 0.2% C36 5000ppmC NO 500ppm O2 4.50% CO2 10.0% H2O 10.0% N2 バランス A/F振幅 なし
(Performance Evaluation) Regarding the catalysts of Examples 1 to 15 and Comparative Examples 1 to 5 obtained as described above, the catalysts were modeled under the following evaluation conditions using a model gas simulating automobile exhaust gas. The activity was evaluated. Further, the NOx addition rate was calculated based on the following mathematical formula 1. [Evaluation conditions] Catalyst Monolith-type multi-component catalyst Total gas flow rate 40 l / min Catalyst inlet gas temperature 100 to 600 ° C. Temperature rising rate 30 ° C./min Space velocity About 20000 Hl Inlet gas composition Model corresponding to average air-fuel ratio 18.0 Gas composition CO 0.2% C 3 H 6 5000ppm C NO 500ppm O 2 4.50% CO 2 10.0% H 2 O 10.0% N 2 balance A / F No amplitude

【0053】各実施例及び比較例における複合酸化物触
媒の組成及び使用の概略を表1にまとめて示す。また、
上記性能評価の結果を表2に示した。表2より明らかな
ように、本発明の範囲に属する実施例の触媒の方が、比
較例の触媒より触媒活性が高いことが分かり、これによ
り、本発明の効果が確認できた。
Table 1 summarizes the composition and outline of the use of the composite oxide catalysts in each of the examples and comparative examples. Also,
The results of the above performance evaluation are shown in Table 2. As is clear from Table 2, it was found that the catalysts of Examples belonging to the scope of the present invention had higher catalytic activity than the catalysts of Comparative Examples, which confirmed the effect of the present invention.

【0054】[0054]

【数1】 [Equation 1]

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【表2】 [Table 2]

【0057】[0057]

【発明の効果】以上説明してきたように、本発明によれ
ば、ニッケル、ガリウム及びアルミニウムを一定の組成
比率で含む複合酸化物を用いることとしたため、低温域
からのNOx浄化性能に優れ、しかも高温耐久性も向上
した排気ガス浄化用触媒及びその製造方法を提供するこ
とができる。即ち、本発明の排気ガス浄化用触媒は、従
来の触媒には活性のなかった酸素過剰雰囲気におけるN
Ox浄化性能に優れ、且つ排気ガス中のNOxに対して
低温域から高性能を発揮・維持する。
As described above, according to the present invention, since the composite oxide containing nickel, gallium and aluminum in a constant composition ratio is used, the NOx purification performance from the low temperature range is excellent and It is possible to provide an exhaust gas purifying catalyst having improved high temperature durability and a method for producing the same. That is, the exhaust gas purifying catalyst of the present invention has a nitrogen content in an oxygen excess atmosphere which is not active in the conventional catalyst.
It excels in Ox purification performance and exerts and maintains high performance in the low temperature range with respect to NOx in exhaust gas.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 触媒成分層を有する一体構造型触媒にお
いて、触媒成分として少なくともニッケル、ガリウム及
びアルミニウムを含む複合酸化物を含有し、この複合酸
化物の組成が、次の一般式 NiaGabAl(2.0-b)c (式中のa、b及びcは、各元素の原子比率を表し、a
=0.2〜1.0、b=0.2〜1.1であり、cは上
記各成分の原子価を満足するのに必要な酸素原子数であ
る)で表されることを特徴とする排気ガス浄化用触媒。
1. A monolithic structure type catalyst having a catalyst component layer, which contains a composite oxide containing at least nickel, gallium and aluminum as a catalyst component, and the composition of the composite oxide is represented by the following general formula: Ni a Ga b Al (2.0-b) O c (where a, b and c represent the atomic ratio of each element, and
= 0.2 to 1.0, b = 0.2 to 1.1, and c is the number of oxygen atoms required to satisfy the valences of the above components). Exhaust gas purification catalyst.
【請求項2】 上記複合酸化物が、次の一般式 NiaGabAl(2.0-b)dc (式中のXは、クロム、マンガン、鉄、コバルト、銅及
び亜鉛から成る群より選ばれた少なくとも1種の元素、
a、b及びdは、各元素の原子比率を表し、a=0.2
〜1.0、b=0.2〜1.1、d=0.01〜0.5
であり、cは上記各成分の原子価を満足するのに必要な
酸素原子数である)で表されることを特徴とする請求項
1記載の排気ガス浄化用触媒。
2. The above complex oxide has the following general formula: Ni a Ga b Al (2.0-b) X d O c (wherein X is a group consisting of chromium, manganese, iron, cobalt, copper and zinc). At least one element selected from
a, b, and d represent the atomic ratio of each element, and a = 0.2
˜1.0, b = 0.2 to 1.1, d = 0.01 to 0.5
And c is the number of oxygen atoms required to satisfy the valences of the above components.) The exhaust gas purifying catalyst according to claim 1.
【請求項3】 触媒成分として、ランタン、ネオジウム
及びジルコニウムから成る群より選ばれた少なくとも1
種を金属換算で1〜40モル%、セリウムを60〜98
モル%含む、セリウム酸化物を更に含有すること特徴と
する請求項1又は2記載の排気ガス浄化用触媒。
3. At least one selected from the group consisting of lanthanum, neodymium and zirconium as a catalyst component.
Seed metal 1 to 40 mol%, cerium 60 to 98
The exhaust gas purifying catalyst according to claim 1 or 2, further comprising cerium oxide, which is contained in an amount of mol%.
【請求項4】 請求項1〜3のいずれか1つの項に記載
の排気ガス浄化用触媒を製造するに当たり、 ニッケル、ガリウム及びアルミニウムの水溶性塩を水に
溶解又は分散させ、 得られた溶液に、アンモニア水、炭酸アンモニウム、炭
酸水素アンモニウム、硫酸アンモニウム及び硫酸水素ア
ンモニウムから成る群より選ばれた少なくとも1種の化
合物の水溶液を添加して、この溶液のpHを7.0〜
9.0に調整し、 次いで、水を除去し、残留物を熱処理することにより、
上記複合酸化物を得ることを特徴とする排気ガス浄化用
触媒の製造方法。
4. In producing the exhaust gas purifying catalyst according to claim 1, a water-soluble salt of nickel, gallium and aluminum is dissolved or dispersed in water to obtain a solution. To this, an aqueous solution of at least one compound selected from the group consisting of aqueous ammonia, ammonium carbonate, ammonium hydrogen carbonate, ammonium sulfate and ammonium hydrogen sulfate is added to adjust the pH of the solution to 7.0.
Adjusting to 9.0, then removing water and heat treating the residue,
A method for producing an exhaust gas purifying catalyst, characterized in that the above composite oxide is obtained.
【請求項5】 請求項1〜3のいずれか1つの項に記載
の排気ガス浄化用触媒を製造するに当たり、 微粒子アルミナ水和物、ニッケル及びガリウムの水溶性
塩を水に溶解又は分散させ、 得られた溶液に、アンモニア水、炭酸アンモニウム、炭
酸水素アンモニウム、硫酸アンモニウム及び硫酸水素ア
ンモニウムから成る群より選ばれた少なくとも1種の化
合物の水溶液を添加して、この溶液のpHを7.0〜
9.0に調整し、 次いで、水を除去し、残留物を熱処理することにより、
上記複合酸化物を得ることを特徴とする排気ガス浄化用
触媒の製造方法。
5. In producing the exhaust gas purifying catalyst according to any one of claims 1 to 3, fine particle alumina hydrate, a water-soluble salt of nickel and gallium are dissolved or dispersed in water, An aqueous solution of at least one compound selected from the group consisting of aqueous ammonia, ammonium carbonate, ammonium hydrogen carbonate, ammonium sulfate and ammonium hydrogen sulfate is added to the resulting solution to adjust the pH of the solution to 7.0.
Adjusting to 9.0, then removing water and heat treating the residue,
A method for producing an exhaust gas purifying catalyst, characterized in that the above composite oxide is obtained.
JP8126265A 1996-04-24 1996-04-24 Exhaust gas purification catalyst and production thereof Pending JPH09290159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8126265A JPH09290159A (en) 1996-04-24 1996-04-24 Exhaust gas purification catalyst and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8126265A JPH09290159A (en) 1996-04-24 1996-04-24 Exhaust gas purification catalyst and production thereof

Publications (1)

Publication Number Publication Date
JPH09290159A true JPH09290159A (en) 1997-11-11

Family

ID=14930912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8126265A Pending JPH09290159A (en) 1996-04-24 1996-04-24 Exhaust gas purification catalyst and production thereof

Country Status (1)

Country Link
JP (1) JPH09290159A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000176283A (en) * 1998-12-11 2000-06-27 Mitsui Mining & Smelting Co Ltd Promoter for purification of exhaust gas of internal combustion engine and its production
JP5698908B2 (en) * 2007-10-23 2015-04-08 株式会社キャタラー Exhaust gas purification catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000176283A (en) * 1998-12-11 2000-06-27 Mitsui Mining & Smelting Co Ltd Promoter for purification of exhaust gas of internal combustion engine and its production
JP5698908B2 (en) * 2007-10-23 2015-04-08 株式会社キャタラー Exhaust gas purification catalyst

Similar Documents

Publication Publication Date Title
JP7206045B2 (en) Nitrous oxide removal catalyst for exhaust system
US6069111A (en) Catalysts for the purification of exhaust gas and method of manufacturing thereof
JPH01242149A (en) Catalyst for purification of exhaust gas
CN101351267B (en) Catalyst carrier particle, exhaust gas purifying catalyst, and methods for producing those
EP1883472A2 (en) Catalyst for purifying exhaust gases
JPH05220395A (en) Production of ternary catalyst excellent in low-temperature activity
JP3296141B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH1157477A (en) Exhaust gas cleaning catalyst and method of using the same
JPH10165819A (en) Catalyst for cleaning of exhaust gas and its use method
JPH0824648A (en) Exhaust gas purifying catalyst and preparation of the sam
JPH09290159A (en) Exhaust gas purification catalyst and production thereof
JP3246295B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH11123331A (en) Catalyst for cleaning exhaust gas
JP3309711B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3488999B2 (en) Exhaust gas purification catalyst composition, method for producing the same, and exhaust gas purification catalyst
JPH07251074A (en) Exhaust gas cleaning catalyst and producing method thereof
JPH10128123A (en) Catalyst for purification of exhaust gas and its preparation
JP3885376B2 (en) Exhaust gas purification catalyst and method of using the same
JPH0819739A (en) Exhaust gas purifying catalyst and producing method therefor
JPH08229398A (en) Exhaust gas purifying catalyst and its production
JPH08229397A (en) Exhaust gas purifying catalyst and its production
JP2000042370A (en) Catalyst device for purifying exhaust gas and its using method
JP2000176283A (en) Promoter for purification of exhaust gas of internal combustion engine and its production
JPH0824649A (en) Exhaust gas purifying catalyst and preparation of the same
JPH1190229A (en) Catalyst for purifying exhaust gas