JPH09288844A - Optical head device and manufacture thereof - Google Patents

Optical head device and manufacture thereof

Info

Publication number
JPH09288844A
JPH09288844A JP8100329A JP10032996A JPH09288844A JP H09288844 A JPH09288844 A JP H09288844A JP 8100329 A JP8100329 A JP 8100329A JP 10032996 A JP10032996 A JP 10032996A JP H09288844 A JPH09288844 A JP H09288844A
Authority
JP
Japan
Prior art keywords
light
liquid crystal
optical
electrodes
head device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8100329A
Other languages
Japanese (ja)
Other versions
JP3601182B2 (en
Inventor
Yuzuru Tanabe
譲 田辺
Hiromasa Sato
弘昌 佐藤
Hiroki Hodaka
弘樹 保高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP10032996A priority Critical patent/JP3601182B2/en
Publication of JPH09288844A publication Critical patent/JPH09288844A/en
Application granted granted Critical
Publication of JP3601182B2 publication Critical patent/JP3601182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)

Abstract

PROBLEM TO BE SOLVED: To provided an optical head device in which a high reliability is achieved and a diffraction element holds polymer liquid crystal having optical anisotropy between two transparent substrates and an optical anisotropy analysis element of which the orientation of the polymer liquid crystal changes periodically. SOLUTION: A light beam emitted from a light source 1 is made incident on a beam splitter 2 and a certain portion of the light passes through it just as it is, and is converged by a converging lens 3 to reach an optical recording medium 4. The light reflected from the medium 4 is changed in its optical path at a certain rate through the beam splitter 2 and is made incident to the optical anisotropic diffraction grating 5. This diffraction grating 5 is formed to diffract the light in the direction of the polarization of the incident light, and the light is divided and detected by detectors 6A, 6B, and 6C. The grating 5 is the one that holds polymer liquid crystal having optical anisotropy between two transparent substrates and is an optical anisotropic diffraction element of which the polymer liquid crystal changes periodically. Thus, the diffraction element is allowed to be mass-produced with a good productivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光磁気メディアの
情報を読み取るための光ヘッド装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical head device for reading information on a magneto-optical medium.

【0002】[0002]

【従来の技術】従来、ミニディスク等の光磁気ディスク
の光学的情報を光学的情報を読み取る光ヘッド装置には
光偏光素子を用いている。その光ヘッドとしては、光磁
気ディスクの記録面から反射された信号光を検出部へ導
光(ビームスプリット)する光学部品としてプリズム式
ビームスプリッタを用い、その出射光を光偏光素子を通
して複数の回折光に分けて検出部で光を検出している。
2. Description of the Related Art Conventionally, an optical polarization element is used in an optical head device for reading optical information from a magneto-optical disk such as a mini disk. As the optical head, a prism type beam splitter is used as an optical component that guides (beam splits) the signal light reflected from the recording surface of the magneto-optical disk, and the emitted light is diffracted through multiple optical polarization elements. The light is divided into light and detected by the detector.

【0003】この光偏光素子としては、LiNbO3
の複屈折単結晶を加工した2つの異なる結晶方向をもっ
た結晶片を接合せしめたものが使用されていた。しか
し、これらの単結晶の光偏光素子は、単結晶を用いてい
るため、また、その加工が複雑なため高価なものであ
り、大量生産が困難であった。
As this light polarizing element, a birefringent single crystal such as LiNbO 3 which is formed by joining crystal pieces having two different crystal directions is used. However, these single-crystal light polarizing elements are expensive because they use a single crystal and their processing is complicated, and it is difficult to mass-produce them.

【0004】[0004]

【発明が解決しようとする課題】本発明は前述の問題を
解決すべくなされたものであり、大量生産に適し、高い
信頼性を有する光ヘッド装置の提供を目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object thereof is to provide an optical head device suitable for mass production and having high reliability.

【0005】[0005]

【課題を解決するための手段】本発明は、光源からの光
を光記録媒体に照射することにより、情報を読み取り及
び/又は情報を書き込む光ヘッド装置であって、光源と
光記録媒体との間に光源からの光を透過し光記録媒体か
らの反射光が光源に戻らないように光の光路を変えるビ
ームスプリッタを配置し、この光路を変えられた反射光
を回折格子を通過させて、複数の回折光に分けて検出部
で光を検出する光ヘッド装置において、回折素子が2枚
の透明基板間に光学異方性を有する高分子液晶を挟持し
たものであり、その高分子液晶の配向方向が周期的に変
化している光学異方性回折素子であることを特徴とする
光ヘッド装置を提供する。
The present invention is an optical head device for reading information and / or writing information by irradiating an optical recording medium with light from a light source, which comprises a light source and an optical recording medium. A beam splitter that changes the optical path of the light so that the light from the light source is transmitted and the reflected light from the optical recording medium does not return to the light source is arranged, and the reflected light whose optical path is changed is passed through the diffraction grating. In an optical head device that divides a plurality of diffracted lights and detects the light by a detection unit, a diffractive element has a polymer liquid crystal having optical anisotropy sandwiched between two transparent substrates. Provided is an optical head device, which is an optical anisotropic diffractive element whose orientation direction is periodically changed.

【0006】また、光学異方性回折素子の2枚の透明基
板には各々電極が設けられ、2つの電極の少なくとも一
方は周期的に形成されていて、それらの電極に電界を印
加しつつ液晶を硬化させて、高分子液晶の配向方向が周
期的に変化している光学異方性回折素子を形成したこと
を特徴とする上記光ヘッド装置を提供する。
Further, electrodes are provided on each of the two transparent substrates of the optically anisotropic diffractive element, and at least one of the two electrodes is formed periodically, and a liquid crystal is applied while applying an electric field to these electrodes. And an optical anisotropic diffractive element in which the alignment direction of the polymer liquid crystal is cyclically changed to form an optical anisotropic device.

【0007】また、光学異方性回折素子の2枚の透明基
板の少なくとも一方の基板の電極はパターニングしてあ
り、電極に電界を印加した際に、電極が対向していない
部分では液晶は自然な配列をし、電極が対向している部
分では強制的な配向をし、この状態で液晶を硬化させ
て、高分子液晶の配向方向が周期的に変化している光学
異方性回折素子を形成したことを特徴とする上記光ヘッ
ド装置を提供する。
Further, the electrodes of at least one of the two transparent substrates of the optically anisotropic diffractive element are patterned, and when an electric field is applied to the electrodes, the liquid crystal is natural in the portions where the electrodes do not face each other. In such an arrangement, the liquid crystal is cured in this state by forcibly aligning the parts where the electrodes face each other, and an optical anisotropic diffractive element in which the alignment direction of the polymer liquid crystal changes periodically is set. The above optical head device is provided.

【0008】また、光学異方性回折素子の上に周期的に
遮光パターンを形成したマスクを配置して、2枚の透明
基板の電極全面に電界を印加しつつ又は電界を印加せず
に、光露光により光が当たった部分のみ液晶を硬化さ
せ、次いで電界の印加状態を変えて残りの部分を硬化さ
せて、高分子液晶の配向方向が周期的に変化している光
学異方性回折素子を形成したことを特徴とする上記光ヘ
ッド装置を提供する。
Further, a mask on which a light-shielding pattern is periodically formed is arranged on the optically anisotropic diffraction element, and an electric field is applied to the entire surfaces of the electrodes of the two transparent substrates, or without applying an electric field. An optical anisotropic diffractive element in which the alignment direction of the polymer liquid crystal is periodically changed by curing the liquid crystal only in the portion exposed to the light by light exposure and then changing the applied state of the electric field to cure the remaining portion. The above optical head device is provided.

【0009】すなわち、高分子液晶の配向に周期的な構
造を持たせることにより、光学異方性回折格子を形成
し、光偏光素子を実現する。
That is, by providing the alignment of the polymer liquid crystal with a periodic structure, an optical anisotropic diffraction grating is formed and a light polarizing element is realized.

【0010】[0010]

【発明の実施の形態】図1は、本発明の光ヘッド装置の
模式図である。図1において、1は光源、2はビームス
プリッタ、3は集光レンズ、4は光記録媒体、5は光学
異方性回折格子、6A、6B、6Cは検出部である。な
お、この図では分かりやすくするために、有効に利用さ
れる光のみを示している。
FIG. 1 is a schematic view of an optical head device according to the present invention. In FIG. 1, 1 is a light source, 2 is a beam splitter, 3 is a condenser lens, 4 is an optical recording medium, 5 is an optical anisotropic diffraction grating, and 6A, 6B and 6C are detectors. It should be noted that only light that is effectively used is shown in this drawing for the sake of clarity.

【0011】光源1からでた光は、ビームスプリッタ2
に入射するが、ある割合がそのまま透過し、集光レンズ
3で集光されて光記録媒体4に到達する。この光記録媒
体4で反射された光は、ビームスプリッタ2である割合
で光路を変えられ光学異方性回折格子5に入射する。こ
の光学異方性回折格子5では、その入射光の偏光方向で
光が回折するように回折格子が形成されていて、光が分
けられて検出部6A、6B、6Cで検出される。
The light emitted from the light source 1 is emitted from the beam splitter 2
However, a certain proportion of the light is transmitted as it is, is condensed by the condenser lens 3 and reaches the optical recording medium 4. The light reflected by the optical recording medium 4 has its optical path changed at a certain ratio by the beam splitter 2 and enters the optical anisotropic diffraction grating 5. In this optical anisotropic diffraction grating 5, a diffraction grating is formed so that the light is diffracted in the polarization direction of the incident light, and the light is divided and detected by the detection units 6A, 6B, 6C.

【0012】ビームスプリッタ2は、図示のものはプリ
ズムを組み合わせたものとされ、光源から光のある割合
が直進し、光記録媒体からの反射光のある割合がその光
路を90°曲げられ、再度90°曲げられて、光源とほ
ぼ同じ位置にある検出部で光を検出するようにされてい
る。
The beam splitter 2 is a combination of prisms as shown in the figure. A certain proportion of the light from the light source goes straight, and a certain proportion of the reflected light from the optical recording medium has its optical path bent 90 ° and again. The light is bent by 90 °, and the light is detected by the detection unit located at substantially the same position as the light source.

【0013】なお、本発明におけるビームスプリッタ
は、光源からの光のある割合が透過し光記録媒体からの
反射光のある割合が検出部に到達するようにされていれ
ばよい。たとえば、光源からの光が90°曲げられて光
記録媒体に向かうようにされ、光記録媒体からの反射光
が直進するようにされてもよい。また、この曲げられる
角度も90°には限られない。なお、光ヘッド装置の小
型化という面からは図1のような構成が有利である。
The beam splitter according to the present invention may be arranged so that a certain proportion of the light from the light source is transmitted and a certain proportion of the reflected light from the optical recording medium reaches the detecting portion. For example, the light from the light source may be bent 90 ° toward the optical recording medium, and the reflected light from the optical recording medium may go straight. Also, the bendable angle is not limited to 90 °. The configuration shown in FIG. 1 is advantageous in terms of downsizing the optical head device.

【0014】本発明では、光源1から出た光は光記録媒
体4に到達する前には光学異方性回折格子5を通過しな
い。このため、反射光はビームスプリッタを出て光学異
方性回折格子を通過後に、再度鏡やプリズムで光路を変
更されてもよい。
In the present invention, the light emitted from the light source 1 does not pass through the optical anisotropic diffraction grating 5 before reaching the optical recording medium 4. For this reason, the reflected light may exit the beam splitter, pass through the optically anisotropic diffraction grating, and then be redirected by a mirror or prism.

【0015】また、検出部は図1では3個設けられてい
るが、これの数や位置はその光ヘッドで要求される数の
検出部を必要な位置に配置すればよい。
Although three detectors are provided in FIG. 1, the number and positions of the detectors may be such that the number of detectors required by the optical head is arranged at a required position.

【0016】本発明では、この光学異方性回折格子5が
2枚の透明基板間に光学異方性を有する高分子液晶を挟
持したものであり、その高分子液晶の配向方向が周期的
に変化している光学異方性回折素子とされる。
In the present invention, the optically anisotropic diffraction grating 5 sandwiches a polymer liquid crystal having optical anisotropy between two transparent substrates, and the orientation direction of the polymer liquid crystal is cyclic. The optical anisotropic diffraction element is changing.

【0017】図2は、本発明で用いられる光学異方性回
折素子の断面図である。図2において、11A、11B
はガラス、プラスチック等の透明基板、12A、12B
はIn23 −SnO2 (ITO)、SnO2 等の電
極、13A、13Bはポリイミド、ポリアミド、SiO
等の配向膜、14は高分子液晶、15はその水平配向部
分、16はその垂直配向部分を示す。
FIG. 2 is a sectional view of the optically anisotropic diffraction element used in the present invention. In FIG. 2, 11A and 11B
Is a transparent substrate such as glass or plastic, 12A, 12B
Is an electrode of In 2 O 3 —SnO 2 (ITO), SnO 2, etc., 13A and 13B are polyimide, polyamide, SiO.
And the like, 14 is a polymer liquid crystal, 15 is its horizontal alignment portion, and 16 is its vertical alignment portion.

【0018】本発明の光学異方性回折素子では、その製
造を容易にするために2枚の透明基板に電極を設けるこ
とが好ましい。特に、その少なくとも一方の透明基板の
高分子液晶に接する側の面に、周期的な電極を設けるこ
とが好ましい。具体的には、一方が周期的な電極で他方
がべた電極、又は両方を周期的な電極とすることが好ま
しい。
In the optically anisotropic diffraction element of the present invention, it is preferable to provide electrodes on two transparent substrates in order to facilitate the manufacture thereof. In particular, it is preferable to provide a periodic electrode on the surface of at least one of the transparent substrates which is in contact with the polymer liquid crystal. Specifically, it is preferable that one electrode is a periodic electrode and the other electrode is a solid electrode, or both are periodic electrodes.

【0019】図3は、この周期的な電極の例の平面図で
ある。電極のある部分22と電極のない部分21とが交
互に周期的に並んで配置されている。図2及び図3のW
1 は電極の幅、W2 は電極のない部分の幅、W3 は電極
のピッチである。この図2及び図3の例では、電極は2
枚の基板とも同じ幅で両方ともストライプ状の周期的な
パターンとされている。
FIG. 3 is a plan view of an example of this periodic electrode. Portions 22 with electrodes and portions 21 without electrodes are alternately arranged periodically. 2 and 3 W
1 is the width of the electrodes, W 2 is the width of the portion without electrodes, and W 3 is the pitch of the electrodes. In the example of FIGS. 2 and 3, the number of electrodes is 2.
The substrates have the same width and both have a stripe-shaped periodic pattern.

【0020】このような2枚の透明基板で未重合の液晶
材料(液晶性モノマー)を挟持し、前記電極に電界を印
加した状態で重合させることによって、周期的な配向構
造を持った高分子液晶による光学異方性回折格子を形成
する製造方法が好ましい。これにより、容易に配向状態
が周期的に変化している高分子液晶が形成でき、光学異
方性回折格子を生産性良く大量生産可能になる。
A polymer having a periodic alignment structure is obtained by sandwiching an unpolymerized liquid crystal material (liquid crystalline monomer) between two transparent substrates as described above and polymerizing them with an electric field applied to the electrodes. A manufacturing method of forming an optically anisotropic diffraction grating of liquid crystal is preferable. This makes it possible to easily form a polymer liquid crystal in which the alignment state is periodically changed and mass-produce an optically anisotropic diffraction grating with good productivity.

【0021】このとき、未重合の液晶材料は、使用する
液晶が正の誘電異方性を有する場合には、配向膜は水平
配向するものを用いる。通常はラビング等により特定の
方向に配向処理をしておく。このようにすると、電界を
印加された部分は液晶分子が電界に平行で透明基板に垂
直に配向する。電界を印加しない部分は、透明基板に平
行で配向膜の配向処理方向に沿って配向する。
At this time, as the unpolymerized liquid crystal material, when the liquid crystal to be used has a positive dielectric anisotropy, an alignment film that is horizontally aligned is used. Usually, orientation treatment is performed in a specific direction by rubbing or the like. By doing so, the liquid crystal molecules in the portion to which the electric field is applied are aligned parallel to the electric field and perpendicular to the transparent substrate. The part to which no electric field is applied is parallel to the transparent substrate and is aligned along the alignment treatment direction of the alignment film.

【0022】図4は、この電界を印加している状態での
液晶の配向状態を示す模式図である。この例は、正の誘
電異方性のネマチック液晶を用いた例を示し、上側の基
板の電極31A、31B、31Cには全て同じ極性の電
界が印加され、同様に下側の基板の電極32A、32
B、32Cには全て同じ極性の電界が印加されている。
このため、電極が対向している部分35では、液晶は垂
直配向する。一方、電極が対向していない部分36で
は、液晶はほぼ配向膜の配向処理方向に従って配向す
る。
FIG. 4 is a schematic diagram showing the alignment state of the liquid crystal under the condition where this electric field is applied. In this example, a nematic liquid crystal having a positive dielectric anisotropy is used, and an electric field of the same polarity is applied to the electrodes 31A, 31B, and 31C on the upper substrate, and similarly, the electrode 32A on the lower substrate. , 32
The electric fields of the same polarity are applied to B and 32C.
Therefore, in the portion 35 where the electrodes face each other, the liquid crystal is vertically aligned. On the other hand, in the portion 36 where the electrodes do not face each other, the liquid crystal is aligned substantially according to the alignment treatment direction of the alignment film.

【0023】かなり高い電界を印加した場合には、この
電極が対向していない部分36でも液晶分子が立ち上が
り始めるが、本発明のような回折格子では特性が悪くな
るので、通常は電極が対向している部分35でほぼ充分
に液晶が垂直配向して、電極が対向していない部分36
では、ほぼ水平配向して両部分での屈折率の差が大きく
なるように電圧やその周波数(直流か交流かも含め)を
定めればよい。
When a considerably high electric field is applied, the liquid crystal molecules start to rise in the portion 36 where the electrodes do not face each other, but the characteristics are deteriorated in the diffraction grating of the present invention, so that the electrodes normally face each other. In the portion 35 where the liquid crystal is almost vertically aligned, the portion 36 where the electrodes do not face each other
Then, the voltage and its frequency (including direct current or alternating current) may be determined such that the orientation is substantially horizontal and the difference in refractive index between the two portions is large.

【0024】使用する液晶材料が負の誘電異方性を有す
る場合には、配向膜は垂直配向するものを用いる。この
場合にも、通常はラビング等により特定の方向に配向処
理をしておく。このようにすると、電界を印加しない部
分は透明基板に垂直に、電界を印加した部分は配向処理
方向に沿って透明基板に平行に配向する。
When the liquid crystal material to be used has a negative dielectric anisotropy, an alignment film that is vertically aligned is used. Also in this case, the alignment treatment is usually performed in a specific direction by rubbing or the like. By doing so, the portion to which the electric field is not applied is oriented perpendicularly to the transparent substrate, and the portion to which the electric field is applied is oriented parallel to the transparent substrate along the orientation treatment direction.

【0025】配向膜の配向能力の違いを利用して、フォ
トリソグラフィ法とラビング法の組合せによって、垂直
配向領域と水平配向領域の周期的パターンを形成するこ
ともできる。また、電界を交互にかけることによって、
電界分布を改善できる。この場合、配向膜は省略でき
る。
It is also possible to form a periodic pattern of vertical alignment regions and horizontal alignment regions by a combination of the photolithography method and the rubbing method by utilizing the difference in alignment ability of the alignment film. Also, by alternately applying an electric field,
The electric field distribution can be improved. In this case, the alignment film can be omitted.

【0026】図5は、この電界を印加している状態での
液晶の配向状態を示す模式図である。この例も正の誘電
異方性のネマチック液晶を用いた例を示し、上側の基板
の電極41A、41B、41Cには1個おきに逆の極性
の電界が印加され、同様に下側の基板の電極42A、4
2B、42Cには同様に1個おきに逆の極性の電界が印
加されている。
FIG. 5 is a schematic view showing the alignment state of the liquid crystal in the state where this electric field is applied. This example also shows an example in which a nematic liquid crystal having a positive dielectric anisotropy is used, and an electric field of opposite polarity is applied to every other electrode 41A, 41B, 41C of the upper substrate, and similarly, the lower substrate. Electrodes 42A, 4
Similarly, an electric field of opposite polarity is applied to every other one of 2B and 42C.

【0027】このため、電極が対向している部分45で
は、図4の例と同様に液晶は垂直配向する。一方、電極
が対向していない部分46では、液晶は隣接電極間の電
界の影響も受け、その方向に配向する。このため、配向
膜を設けていなくても特定の方向に配向できる。
Therefore, in the portion 45 where the electrodes face each other, the liquid crystal is vertically aligned as in the example of FIG. On the other hand, in the portion 46 where the electrodes do not face each other, the liquid crystal is also influenced by the electric field between the adjacent electrodes and is aligned in that direction. Therefore, it is possible to align in a specific direction without providing an alignment film.

【0028】上記の方法により、液晶材料の配向に分布
を付与した状態のまま、熱、紫外線等により全体を高分
子化することにより、配向の分布を固定したまま固化さ
せうる。
According to the above-mentioned method, the liquid crystal material can be solidified while the distribution of the orientation is fixed by fixing the distribution of the orientation and fixing the distribution of the liquid crystal material by polymerizing the whole with heat, ultraviolet rays or the like.

【0029】本発明の高分子液晶とは、未重合の液晶材
料が液晶性を示せばよく、そのような未重合の液晶材料
(液晶性モノマー)から生成したポリマーであって、こ
こでは0.02以上の屈折率異方性を示すものであれば
よい。この屈折率異方性は、大きいものが好ましく、
0.1以上となるポリマーが好ましい。したがって高分
子液晶自身が液晶性を示す必要はない。
The polymer liquid crystal of the present invention is a polymer produced from such an unpolymerized liquid crystal material (liquid crystalline monomer), as long as the unpolymerized liquid crystal material exhibits liquid crystallinity, and here, it is 0. Any material having a refractive index anisotropy of 02 or more may be used. This refractive index anisotropy is preferably large,
Polymers of 0.1 or higher are preferred. Therefore, the polymer liquid crystal itself does not need to exhibit liquid crystallinity.

【0030】高分子液晶は液晶性モノマーを光又は熱に
よって重合して製造することが好ましい。特に紫外光又
は可視光で重合しうる液晶モノマーは、フォトリソプロ
セスによってオンサイトで(基板上で直接)高分子液晶
を製造でき、好ましい。
The polymer liquid crystal is preferably produced by polymerizing a liquid crystalline monomer by light or heat. In particular, a liquid crystal monomer that can be polymerized by ultraviolet light or visible light is preferable because a polymer liquid crystal can be produced on-site (directly on a substrate) by a photolithography process.

【0031】液晶性モノマーとは室温又は光重合時の温
度において液晶性を示すモノマーをいう。液晶性とはネ
マチック、スメクチック、コレステリックなど公知の液
晶相を示すことをいうが、螺旋のピッチが短いコレステ
リックの場合は本発明にそぐわず不適である。
The liquid crystal monomer is a monomer which exhibits liquid crystallinity at room temperature or the temperature during photopolymerization. Liquid crystallinity means that a known liquid crystal phase such as nematic, smectic or cholesteric is shown, but a cholesteric having a short spiral pitch is not suitable for the present invention.

【0032】液晶性モノマーとしては、アクリル酸又は
メタクリル酸等のエステル類中から選ぶのが好ましい。
エステルを形成するアルコール残基にフェニル基が1個
以上、特には2個又は3個含まれていることが好まし
い。さらにエステルを形成するアルコール残基にシクロ
ヘキシル基が1個含まれていてもよい。液晶性モノマー
はその液晶として存在できる温度範囲を広げるために、
2成分以上混合して用いうる。
The liquid crystalline monomer is preferably selected from esters such as acrylic acid or methacrylic acid.
It is preferable that one or more phenyl groups, particularly two or three phenyl groups are contained in the alcohol residue forming an ester. Further, the alcohol residue forming an ester may contain one cyclohexyl group. In order to extend the temperature range in which liquid crystal monomers can exist as liquid crystals,
Two or more components can be mixed and used.

【0033】本発明の好ましい態様では、前記2枚の透
明基板には各々電極が設けられ、2つの電極の少なくと
も一方は周期的に形成されている。このような構成によ
り、周期的に形成された分割電極に相当する部分と、分
割電極が形成されていない部分とで、電界印加時の液晶
材料の配向状態を異なるようにでき、光学異方性回折格
子を電界により容易に形成できる。
In a preferred aspect of the present invention, electrodes are provided on each of the two transparent substrates, and at least one of the two electrodes is formed periodically. With such a configuration, the alignment state of the liquid crystal material when an electric field is applied can be made different between a portion corresponding to the periodically formed divided electrode and a portion where the divided electrode is not formed. The diffraction grating can be easily formed by an electric field.

【0034】前記の図の例のように、2つの電極の両方
が周期的に形成されてなり、前記2枚の透明基板間にお
いて前記2つの電極を対称とすると、この光学異方性回
折格子を出射した±1次回折光を両方ともほぼ同じ回折
効率となしうる。
As in the example of the above figure, both electrodes are periodically formed, and if the two electrodes are symmetrical between the two transparent substrates, this optical anisotropic diffraction grating Both of the ± first-order diffracted lights emitted from can have almost the same diffraction efficiency.

【0035】また、2つの電極の両方が周期的に形成さ
れてなり、前記2枚の透明基板間において前記2つの電
極が非対称とすることもできる。具体的には、たとえ
ば、図4の例で見た場合、電極31Aに対して電極32
Aがその右側だけ電極32B側に出ており、電極32A
の幅が電極31Aの幅よりも広くされる。
Further, both of the two electrodes may be periodically formed, and the two electrodes may be asymmetrical between the two transparent substrates. Specifically, for example, when viewed in the example of FIG.
A is projected to the electrode 32B side only on the right side of the electrode 32A.
Is made wider than the width of the electrode 31A.

【0036】こうすることにより、高分子液晶セルが形
成された状態において、2枚の透明基板間の中心に位置
し2枚の透明基板に平行な中心面に関して、非対称にな
る。このような構成により、2つの電極の各々の分割電
極は、その位置及び/又は大きさが異なる状態で対面す
ることになり、上下一対の分割電極でみた場合、高分子
液晶の分割電極による配向部を左右非対称となしうる。
したがって、±1次回折光のうちいずれかの回折効率が
高い光学異方性回折格子を電界により容易に形成でき
る。
By doing so, in the state where the polymer liquid crystal cell is formed, the center plane located between the two transparent substrates and parallel to the two transparent substrates becomes asymmetric. With such a configuration, each divided electrode of the two electrodes faces each other in a state where their positions and / or sizes are different, and when viewed with a pair of upper and lower divided electrodes, the alignment of the polymer liquid crystal by the divided electrodes The part may be left-right asymmetric.
Accordingly, an optically anisotropic diffraction grating having high diffraction efficiency of any of the ± first-order diffracted lights can be easily formed by an electric field.

【0037】本発明では、前記したように少なくとも一
方の透明基板の液晶と接する側の面に配向膜が設けら
れ、少なくとも一方の配向膜が周期的に配向力の異なる
配向膜を含んでいるようにもなしうる。このような配向
力の周期的に変化している分割配向膜を用いても、高分
子液晶の配向状態に分布を付与できる。さらには、周期
の方向における高分子液晶の配向状態を左右非対称とも
なしうる。したがって、±1次回折光のうちいずれかの
回折効率が部分的に高い光学異方性回折格子を容易に形
成できる。
In the present invention, as described above, the alignment film is provided on the surface of at least one of the transparent substrates which is in contact with the liquid crystal, and at least one of the alignment films includes alignment films having different alignment forces periodically. It can be done. Even with such a divided alignment film in which the alignment force changes periodically, a distribution can be imparted to the alignment state of the polymer liquid crystal. Furthermore, the alignment state of the polymer liquid crystal in the direction of the period can be left-right asymmetric. Therefore, it is possible to easily form an optically anisotropic diffraction grating having a partially high diffraction efficiency of the ± 1st-order diffracted light.

【0038】さらに、2枚の透明基板の両方の配向膜を
分割配向膜ともなしうる。このため、高分子液晶セルが
形成された状態において、2枚の透明基板間の中心に位
置し2枚の透明基板に平行な中心面に関して、配向状態
を非対称となしうる。このような構成により、2つの配
向膜の各々の分割配向膜は、上下1対の分割配向膜でみ
た場合、高分子液晶の分割配向膜による配向部を左右非
対称となしうる。したがって、±1次回折光のうちいず
れかの回折効率が高い光学異方性回折格子を配向膜によ
り容易に形成できる。
Further, both alignment films of the two transparent substrates can be divided alignment films. Therefore, in the state where the polymer liquid crystal cell is formed, the alignment state can be asymmetrical with respect to the center plane located at the center between the two transparent substrates and parallel to the two transparent substrates. With such a configuration, when the divided alignment films of the two alignment films are viewed as a pair of upper and lower split alignment films, the alignment portion of the polymer liquid crystal divided alignment films can be left-right asymmetric. Therefore, an optically anisotropic diffraction grating having high diffraction efficiency of any of the ± 1st-order diffracted lights can be easily formed by the alignment film.

【0039】また、本発明では光学異方性回折素子の上
に周期的に遮光パターンを形成したマスクを配置して、
2枚の透明基板の電極全面に電界を印加しつつ、又は電
界を印加せずに光露光により光が当たった部分のみ液晶
を硬化させ、次いで電界の印加状態を変えて残りの部分
を硬化させて、高分子液晶の配向方向が周期的に変化し
ている光学異方性回折素子を形成することもできる。
Further, in the present invention, a mask having a light-shielding pattern is periodically arranged on the optically anisotropic diffraction element,
While the electric field is applied to the entire surface of the electrodes of the two transparent substrates, the liquid crystal is cured only in the part exposed to the light by light exposure without applying the electric field, and then the remaining part is cured by changing the applied state of the electric field. Thus, it is also possible to form an optically anisotropic diffraction element in which the alignment direction of the polymer liquid crystal is periodically changed.

【0040】さらには、このようなマスクを用いて、基
板の外側に電極を配置して電界を印加したり、基板の外
側から磁界を印加したりして周期的な配向を形成するよ
うにしてもよい。
Further, using such a mask, electrodes are arranged on the outside of the substrate to apply an electric field, or a magnetic field is applied from the outside of the substrate to form a periodic alignment. Good.

【0041】本発明の光ヘッド装置は、光学的には以下
のように機能する。なお、光学異方性回折格子は、紫外
線硬化性の未重合の正の誘電異方性のネマチック液晶を
用いて、紫外線硬化を行い図2のように構成したものを
用いたとして説明する。
The optical head device of the present invention optically functions as follows. Note that the optical anisotropic diffraction grating will be described assuming that an ultraviolet curable unpolymerized nematic liquid crystal having a positive dielectric anisotropy is used to perform ultraviolet curing and configured as shown in FIG.

【0042】光源から出射して光記録媒体で反射して、
ビームスプリッタで光路を変更され、光学異方性回折格
子に入射する。このとき、S偏光(図2の紙面に垂直な
偏光成分)に対しては、光学異方性回折格子は水平配向
部分と垂直配向部分とが光学的に一様、すなわち両方の
部分とも常光屈折率になる。このため、光が何の変化も
受けず透過する。
The light is emitted from the light source and reflected by the optical recording medium,
The optical path is changed by the beam splitter, and the light enters the optically anisotropic diffraction grating. At this time, with respect to S-polarized light (polarized light component perpendicular to the paper surface of FIG. 2), the optically anisotropic diffraction grating has an optically uniform horizontal alignment portion and a vertical alignment portion, that is, both portions are ordinary light refracted. Become a rate. Therefore, the light passes through without any change.

【0043】一方、P偏光(図2の紙面に平行な偏光成
分)は、垂直配向部分と水平配向部分との屈折率が異な
ることになる。すなわち、垂直配向部分は常光屈折率、
水平配向部分は異常光屈折率となる。このため、回折格
子として認識され、理論上は+1次光として〜40%、
−1次光として40%の回折光が得られ、透過光は理論
的にはゼロにすることができる。残りは高次光となる。
On the other hand, the P-polarized light (polarized light component parallel to the paper surface of FIG. 2) has a different refractive index between the vertically aligned portion and the horizontally aligned portion. That is, the vertical alignment portion has an ordinary refractive index,
The horizontally oriented portion has an extraordinary light refractive index. Therefore, it is recognized as a diffraction grating, and theoretically as + 1st order light is -40%,
40% of diffracted light is obtained as the −1st-order light, and the transmitted light can theoretically be zero. The rest is high-order light.

【0044】そのため、たとえば透過光量、±1次回折
光量の相対強度比を測定することによって、光記録媒体
からの反射光の偏光状態及びその変化を読み取りうる。
Therefore, the polarization state of the reflected light from the optical recording medium and its change can be read by, for example, measuring the relative intensity ratio of the transmitted light amount and the ± first-order diffracted light amounts.

【0045】この例の光学異方性回折格子は、電極の幅
を2枚の基板で同じにしたが、2枚の透明基板に各々設
けられた2つの周期的な電極を、その位置及び/又は大
きさを非対称にすることにより、電極部に相当し電界に
よって特定方向に配向された高分子液晶を左右非対称に
形成できる。したがって、±1次回折光のいずれかの回
折効率が高い光学異方性回折格子となしうる。
In the optically anisotropic diffraction grating of this example, the electrodes have the same width on the two substrates, but the two periodic electrodes provided on the two transparent substrates are arranged at the positions and / or Alternatively, by making the sizes asymmetric, a polymer liquid crystal corresponding to the electrode portion and oriented in a specific direction by the electric field can be formed asymmetrically. Accordingly, an optically anisotropic diffraction grating having high diffraction efficiency for any of the ± 1st-order diffracted lights can be obtained.

【0046】また、この電極の幅W1 は電極ピッチのほ
ぼ半分程度にすればよいが、必要に応じて20〜80%
程度にされてもよい。また、電極のピッチW3 は5〜5
0μm程度の範囲で適宜最適化して用いればよい。
The width W 1 of the electrodes may be set to about half the electrode pitch, but if necessary, 20 to 80%.
May be done to the extent. The electrode pitch W 3 is 5 to 5
It may be used by appropriately optimizing in the range of about 0 μm.

【0047】[0047]

【実施例】【Example】

[例1]厚さ1mm、120mm×120mm角のガラ
ス基板の1表面に、ITOのべたの透明電極を形成し、
フォトリソグラフィ法とドライエッチング法により、I
TOの透明電極を幅W1 =10μm、ピッチW2 =20
μmのストライプ状にパターニングした。なお、反対の
面には反射防止膜を蒸着法により形成した。
Example 1 An ITO solid transparent electrode was formed on one surface of a 120 mm × 120 mm square glass substrate having a thickness of 1 mm,
By photolithography and dry etching, I
The transparent electrode of TO has a width W 1 = 10 μm and a pitch W 2 = 20.
Patterning was performed in a stripe shape of μm. An antireflection film was formed on the opposite surface by vapor deposition.

【0048】その後、スピンコート法により約60nm
程度のポリイミド膜を形成し、ラビングにより水平配向
処理を行った。このようにして形成した2枚のガラス基
板の透明電極を形成した面が相対向するように配置し、
周辺をシール材で封止して、セルギャップが5μmの注
入口を設けた空セルを形成した。
Then, about 60 nm is formed by spin coating.
A polyimide film of a certain degree was formed, and horizontal alignment treatment was performed by rubbing. The two glass substrates thus formed are arranged so that the surfaces on which the transparent electrodes are formed face each other,
The periphery was sealed with a sealing material to form an empty cell having an injection port with a cell gap of 5 μm.

【0049】その空セルに、p−[4−ω−アクリロイ
ルオキシアルキルオキシ)フェニルカルボニルオキシ]
ベンゾニトリルとp−(4−ω−アクリロイルオキシア
ルキルオキシ)安息香酸−p’−n−アルキルオキシフ
ェニルエステルを主成分とする液状の液晶モノマーに光
重合開始材としてベンゾインイソプロピルエーテルを1
%添加した組成物(正の誘電異方性のネマチック液晶と
して動作)を注入した。
In the empty cell, p- [4-ω-acryloyloxyalkyloxy) phenylcarbonyloxy]
A liquid crystal monomer containing benzonitrile and p- (4-ω-acryloyloxyalkyloxy) benzoic acid-p′-n-alkyloxyphenyl ester as a main component was added with 1 part of benzoin isopropyl ether as a photopolymerization initiator.
% Added composition (acting as a nematic liquid crystal of positive dielectric anisotropy) was injected.

【0050】その後、2枚の基板の電極間に5Vの電界
を印加し、電極が対向している部分の液晶組成物を垂直
に配向せしめた。その後波長360nmの紫外線を全体
に照射し、上記配向を保持したまま、全体を重合せし
め、硬化することによって、配向を固定する。
After that, an electric field of 5 V was applied between the electrodes of the two substrates to vertically orient the liquid crystal composition in the portions where the electrodes face each other. After that, the whole is irradiated with ultraviolet rays having a wavelength of 360 nm, and the whole is polymerized and cured while keeping the above alignment, thereby fixing the alignment.

【0051】これにより形成された光学異方性回折格子
はS偏光(図2の紙面に垂直に偏光した光)に対して
は、電界印加部で屈折率1.52(常光屈折率)、非印
加部で屈折率1.53(常光屈折率)、P偏光(図2の
紙面に平行方向に偏光した光)に対しては、電界印加部
で屈折率1.54(常光屈折率)、非印加部で屈折率
1.66(異常光屈折率)が得られ、屈折率差としては
0.12程度が得られた。
The optical anisotropic diffraction grating thus formed has a refractive index of 1.52 (ordinary refractive index) in the electric field applying section for S-polarized light (light polarized perpendicular to the paper surface of FIG. 2). For the P-polarized light (light polarized in the direction parallel to the paper surface of FIG. 2) with a refractive index of 1.53 (ordinary refractive index) in the applying section, the refractive index of 1.54 (ordinary refractive index) in the electric field applying section A refractive index of 1.66 (extraordinary light refractive index) was obtained at the applying portion, and a refractive index difference of about 0.12 was obtained.

【0052】この光学異方性回折格子を用いた図1の構
成の光ヘッド装置で、光源として波長678nmのレー
ザ光源を用いた場合、S偏光波入射光に対する光透過率
は85%、光回折効率は±1次とも0.5%であった。
P偏光波入射光に対する光透過率は3.4%で、光回折
率は+1次が34%、−1次が32%であった。
In the optical head device having the configuration of FIG. 1 using this optical anisotropic diffraction grating, when a laser light source having a wavelength of 678 nm is used as a light source, the light transmittance for S-polarized wave incident light is 85%, and the light diffraction The efficiency was 0.5% for both ± 1st order.
The light transmittance with respect to the P-polarized wave incident light was 3.4%, and the light diffraction rates were + 1st order 34% and -1st order 32%.

【0053】[例2]例1の透明電極の構成を以下のよ
うに変えた以外は例1と同様にして回折素子を作製し
た。
Example 2 A diffractive element was manufactured in the same manner as in Example 1 except that the structure of the transparent electrode of Example 1 was changed as follows.

【0054】一方のガラス基板の透明電極は幅W1 =1
0μm、ピッチW2 =20μmのストライプ状にパター
ニングした。他方のガラス基板の透明電極は幅W1 =5
μm、ピッチW2 =20μmのストライプ状にパターニ
ングした。このような基板を用いて空セルを形成した他
は、例1と同様にして光学異方性回折格子を形成し、光
ヘッド装置を形成した。この光ヘッド装置は、+1次回
折光と−1次回折光で回折光の効率に差が生じた。
The transparent electrode on one glass substrate has a width W 1 = 1.
The patterning was performed in a stripe shape having a pitch of 0 μm and a pitch W 2 = 20 μm. The transparent electrode on the other glass substrate has a width W 1 = 5
The patterning was performed in a stripe shape with a pitch of W 2 = 20 μm. An optical anisotropic diffraction grating was formed in the same manner as in Example 1 except that an empty cell was formed using such a substrate to form an optical head device. In this optical head device, there was a difference in the efficiency of diffracted light between the + 1st-order diffracted light and the -1st-order diffracted light.

【0055】[0055]

【発明の効果】本発明により、大量生産可能で、高い光
の利用効率と高い信頼性を有する光ヘッド装置を容易に
得ることができる。また、液晶材料を適宜選択すること
により、所望の屈折率を種々自由に設定でき、配向の異
なる部分の形状やピッチを自由に選択できるので、所望
の特性、配置の光ヘッド装置を製造しやすい。
According to the present invention, it is possible to easily obtain an optical head device which can be mass-produced and has high light utilization efficiency and high reliability. Further, by appropriately selecting the liquid crystal material, the desired refractive index can be freely set in various ways, and the shape and pitch of the parts having different orientations can be freely selected, so that it is easy to manufacture the optical head device with desired characteristics and arrangement. .

【0056】さらに、液晶の配向状態を2枚の透明基板
間で非対称にすることにより、非対称な光学異方性回折
格子も容易に形成でき、±1次回折光のうちいずれかの
回折効率が高い回折素子を容易に作製できる。
Furthermore, by making the alignment state of the liquid crystal asymmetric between the two transparent substrates, an asymmetric optical anisotropic diffraction grating can be easily formed, and the diffraction efficiency of either ± 1st order diffracted light is high. The diffractive element can be easily manufactured.

【0057】本発明は、本発明の効果を損しない範囲内
で種々の応用ができる。
The present invention can be applied in various ways within a range that does not impair the effects of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光ヘッド装置の模式図。FIG. 1 is a schematic view of an optical head device according to the present invention.

【図2】本発明の光ヘッド装置に用いる光学異方性回折
素子の断面図。
FIG. 2 is a sectional view of an optically anisotropic diffraction element used in the optical head device of the present invention.

【図3】本発明に用いる光学異方性回折素子の周期的な
電極の例の平面図。
FIG. 3 is a plan view of an example of periodic electrodes of the optically anisotropic diffraction element used in the present invention.

【図4】本発明に用いる光学異方性回折素子の電界を印
加している状態での液晶の配向状態を示す模式図。
FIG. 4 is a schematic diagram showing an alignment state of liquid crystal in a state in which an electric field is applied to the optically anisotropic diffraction element used in the present invention.

【図5】本発明に用いる光学異方性回折素子の電界を印
加している状態での液晶の配向状態を示す模式図。
FIG. 5 is a schematic diagram showing an alignment state of liquid crystal in a state in which an electric field is applied to the optically anisotropic diffraction element used in the present invention.

【符号の説明】[Explanation of symbols]

1 :光源 2 :ビームスプリッタ 3 :集光レンズ 4 :光記録媒体 5 :光学異方性回折格子 6A、6B、6C:検出部 1: Light source 2: Beam splitter 3: Condensing lens 4: Optical recording medium 5: Optical anisotropic diffraction grating 6A, 6B, 6C: Detection unit

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G02F 1/1337 G02F 1/1337 Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location G02F 1/1337 G02F 1/1337

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】光源からの光を光記録媒体に照射すること
により、情報を読み取り及び/又は情報を書き込む光ヘ
ッド装置であって、光源と光記録媒体との間に光源から
の光を透過し光記録媒体からの反射光が光源に戻らない
ように光の光路を変えるビームスプリッタを配置し、こ
の光路を変えられた反射光を回折格子を通過させて、複
数の回折光に分けて検出部で光を検出する光ヘッド装置
において、回折素子が2枚の透明基板間に光学異方性を
有する高分子液晶を挟持したものであり、その高分子液
晶の配向方向が周期的に変化している光学異方性回折素
子であることを特徴とする光ヘッド装置。
1. An optical head device for reading information and / or writing information by irradiating an optical recording medium with light from a light source, wherein the light from the light source is transmitted between the light source and the optical recording medium. A beam splitter that changes the optical path of the light so that the reflected light from the optical recording medium does not return to the light source is placed, and the reflected light whose optical path is changed is passed through a diffraction grating and detected by dividing it into multiple diffracted lights. In an optical head device for detecting light at a section, a diffractive element sandwiches a polymer liquid crystal having optical anisotropy between two transparent substrates, and the orientation direction of the polymer liquid crystal changes periodically. The optical head device is an optical anisotropic diffractive element.
【請求項2】光学異方性回折素子の2枚の透明基板には
各々電極が設けられ、2つの電極の少なくとも一方は周
期的に形成されていて、それらの電極に電界を印加しつ
つ液晶を硬化させて、高分子液晶の配向方向が周期的に
変化している光学異方性回折素子を形成したことを特徴
とする請求項1記載の光ヘッド装置。
2. An optical anisotropic diffraction element is provided with electrodes on each of two transparent substrates, and at least one of the two electrodes is formed periodically, and a liquid crystal is applied while applying an electric field to these electrodes. 2. The optical head device according to claim 1, wherein the optically anisotropic diffraction element is formed by hardening the polymer to form a polymer liquid crystal whose orientation direction is periodically changed.
【請求項3】光学異方性回折素子の2枚の透明基板の少
なくとも一方の基板の電極はパターニングしてあり、電
極に電界を印加した際に、電極が対向していない部分で
は液晶は自然な配列をし、電極が対向している部分では
強制的な配向をし、この状態で液晶を硬化させて、高分
子液晶の配向方向が周期的に変化している光学異方性回
折素子を形成したことを特徴とする請求項2記載の光ヘ
ッド装置。
3. The electrodes of at least one of the two transparent substrates of the optically anisotropic diffraction element are patterned, and when an electric field is applied to the electrodes, the liquid crystal is natural in the portions where the electrodes do not face each other. In such an arrangement, the liquid crystal is cured in this state by forcibly aligning the parts where the electrodes face each other, and an optical anisotropic diffractive element in which the alignment direction of the polymer liquid crystal changes periodically is set. The optical head device according to claim 2, wherein the optical head device is formed.
【請求項4】光学異方性回折素子の上に周期的に遮光パ
ターンを形成したマスクを配置して、2枚の透明基板の
電極全面に電界を印加しつつ又は電界を印加せずに、光
露光により光が当たった部分のみ液晶を硬化させ、次い
で電界の印加状態を変えて残りの部分を硬化させて、高
分子液晶の配向方向が周期的に変化している光学異方性
回折素子を形成したことを特徴とする請求項2記載の光
ヘッド装置。
4. A mask on which a light-shielding pattern is periodically formed is arranged on an optically anisotropic diffraction element, and an electric field is applied to the entire surfaces of electrodes of two transparent substrates, or without applying an electric field. An optical anisotropic diffractive element in which the alignment direction of the polymer liquid crystal is periodically changed by curing the liquid crystal only in the portion exposed to the light by light exposure and then changing the applied state of the electric field to cure the remaining portion. The optical head device according to claim 2, wherein the optical head device is formed.
JP10032996A 1996-04-22 1996-04-22 Optical head device and manufacturing method thereof Expired - Fee Related JP3601182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10032996A JP3601182B2 (en) 1996-04-22 1996-04-22 Optical head device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10032996A JP3601182B2 (en) 1996-04-22 1996-04-22 Optical head device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH09288844A true JPH09288844A (en) 1997-11-04
JP3601182B2 JP3601182B2 (en) 2004-12-15

Family

ID=14271127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10032996A Expired - Fee Related JP3601182B2 (en) 1996-04-22 1996-04-22 Optical head device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3601182B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999024852A1 (en) * 1997-10-16 1999-05-20 Matsushita Electric Industrial Co., Ltd. Hologram element polarization separating device, polarization illuminating device, and image display
WO2018016549A1 (en) * 2016-07-21 2018-01-25 富士フイルム株式会社 Patterned optical anisotropic layer and optical laminated body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999024852A1 (en) * 1997-10-16 1999-05-20 Matsushita Electric Industrial Co., Ltd. Hologram element polarization separating device, polarization illuminating device, and image display
WO2018016549A1 (en) * 2016-07-21 2018-01-25 富士フイルム株式会社 Patterned optical anisotropic layer and optical laminated body
JPWO2018016549A1 (en) * 2016-07-21 2019-05-09 富士フイルム株式会社 Patterned optically anisotropic layer and optical laminate

Also Published As

Publication number Publication date
JP3601182B2 (en) 2004-12-15

Similar Documents

Publication Publication Date Title
KR100447017B1 (en) Optical head, Method of Manufacturing the Same, and Diffraction Element Suitable Therefor
JP2008139684A (en) Polarization converting element and polarization conversion device
JP4043058B2 (en) Manufacturing method of diffraction element used in optical head device
JP4792679B2 (en) Isolator and variable voltage attenuator
JP4013892B2 (en) Diffraction element and optical attenuator
JP3700239B2 (en) Liquid crystal diffraction grating, manufacturing method thereof, and optical head device using the same
JP2008070624A (en) Polarization converting element and its manufacturing method
JP2005331757A (en) Polarization selective hologram element and optical pickup device
JP3598703B2 (en) Optical head device and manufacturing method thereof
JP4387141B2 (en) Polarization diffraction grating
US7835252B2 (en) Optical head apparatus
JP3601182B2 (en) Optical head device and manufacturing method thereof
JP3994450B2 (en) Manufacturing method of optical diffraction grating and optical head device using the same
JP3156303B2 (en) Manufacturing method of liquid crystal phase diffraction grating
JP4168680B2 (en) Optical head device
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
JPWO2004079436A1 (en) Optical attenuator and optical head device
JP4999485B2 (en) Beam splitting element and beam splitting method
JP3509399B2 (en) Optical head device
JP3528381B2 (en) Optical head device
JP3829356B2 (en) Optical head device
JPH10188321A (en) Polarizing diffraction grating and optical head device using the same
JP3596152B2 (en) Method of manufacturing optical modulation element and method of manufacturing optical head device
JP4364083B2 (en) Optical head device
JPH09180234A (en) Optical head device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040608

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees