JPH09278537A - Production of ceramic sintered compact - Google Patents

Production of ceramic sintered compact

Info

Publication number
JPH09278537A
JPH09278537A JP8093973A JP9397396A JPH09278537A JP H09278537 A JPH09278537 A JP H09278537A JP 8093973 A JP8093973 A JP 8093973A JP 9397396 A JP9397396 A JP 9397396A JP H09278537 A JPH09278537 A JP H09278537A
Authority
JP
Japan
Prior art keywords
ceramic
powder
molded body
inert
aluminum oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8093973A
Other languages
Japanese (ja)
Other versions
JP3739853B2 (en
Inventor
Hideaki Tokunaga
英晃 徳永
Mikinori Amisawa
幹典 網沢
Yasuo Wakahata
康男 若畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP09397396A priority Critical patent/JP3739853B2/en
Publication of JPH09278537A publication Critical patent/JPH09278537A/en
Application granted granted Critical
Publication of JP3739853B2 publication Critical patent/JP3739853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a dense ceramic sintered compact with few pores by covering the surface of a ceramic molding containing substances scatterable during baking the molding with inert powder followed by conducting a heat treatment. SOLUTION: When a ceramic molding containing substances scatterable during its baking (e.g. bismuth) is to be heat-treated, its surface is covered with powder inert to the molding; for example, a ceramic molding 1 is embedded in aluminum oxide powder 2 and baked. Thereby, the low-melting substances in the molding 1 can be prevented from being scattered; therefore, the objective ceramic sintered compact with few pores can be obtained. Alternatively, a sagger may be packed with the ceramic molding and inert powder also inert to the sagger followed by heat treatment. This ceramic sintered compact thus obtained has few pores; therefore, a ceramic element produced using this sintered compact seldom causes deterioration of its properties under high humidity and voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば電気回路の
過電圧の保護を目的とするバリスタ素子などに用いられ
るセラミック焼結体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ceramic sintered body used in, for example, a varistor element for the purpose of protecting an electric circuit from overvoltage.

【0002】[0002]

【従来の技術】従来からバリスタ素子に用いられるセラ
ミック焼結体は、ZnOを主成分とし、Bi23などの
副成分からなるセラミック原料と有機バインダとを混合
した混合物を成形し、その成形体を単独あるいは数個積
み重ねた状態で電気炉の中に設置し、焼成することによ
って製造していた。
2. Description of the Related Art Conventionally, a ceramic sintered body used for a varistor element is formed by forming a mixture of a ceramic raw material containing ZnO as a main component and a sub-component such as Bi 2 O 3 and an organic binder, and forming the mixture. The body was manufactured by placing it in an electric furnace in a state where it was used alone or in a state where several bodies were stacked and fired.

【0003】[0003]

【発明が解決しようとする課題】この方法によると、ビ
スマス等の低融点である成分が焼成中に飛散するなどの
原因で、焼結体内部に多数の空孔が形成されることがわ
かった。このように空孔の多いセラミック焼結体は、機
械的強度が低下し、周囲の雰囲気等の影響を受けやす
い、あるいはめっき等の工程を行った際、メッキ液が焼
結体内部に浸入し、電気特性が劣化するなどの状態を引
き起こす。とりわけバリスタ素子においては、素子内部
に多くの空孔を有することは、高湿度、高電圧下におけ
る電気特性が著しく低下するという問題点を有してい
る。
According to this method, it was found that a large number of holes are formed inside the sintered body due to the fact that the low melting point component such as bismuth scatters during firing. . Such a ceramic sintered body with a large number of pores has a reduced mechanical strength and is easily affected by the surrounding atmosphere, etc., or the plating solution penetrates inside the sintered body when a process such as plating is performed. , Causing a condition such as deterioration of electrical characteristics. In particular, in a varistor element, having many holes inside the element has a problem that the electrical characteristics under high humidity and high voltage are significantly deteriorated.

【0004】そこで本発明は、空孔の数が少ないセラミ
ック焼結体を提供することを目的とするものである。
Therefore, an object of the present invention is to provide a ceramic sintered body having a small number of holes.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に、本発明は、焼成中に飛散する可能性を有する物質を
含有したセラミック成形体の表面を、このセラミック成
形体と不活性な粉末で覆って熱処理するものであり、こ
の方法によれば、その理由は現時点では明確になっては
いないが、セラミック成形体中の飛散する可能性を有す
る低融点物質が蒸発しづらくなるためか、結論として空
孔の数が少ないセラミック焼結体を提供することができ
る。
In order to achieve this object, the present invention provides a surface of a ceramic compact containing a substance having a possibility of being scattered during firing, and a powder inert to the ceramic compact. According to this method, although the reason is not clear at this time, it may be difficult to evaporate the low melting point substance having a possibility of scattering in the ceramic molded body, In conclusion, it is possible to provide a ceramic sintered body having a small number of holes.

【0006】[0006]

【発明の実施の形態】本発明の請求項1に記載の発明
は、焼成中に飛散する可能性を有する物質を含有したセ
ラミック成形体表面をこのセラミック成形体と不活性な
粉末で覆って熱処理するものであり、セラミック成形体
中の低融点物質が蒸発しづらくなると考えられるため空
孔の数が少ないセラミック焼結体を提供することができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION According to the first aspect of the present invention, the surface of a ceramic molded body containing a substance having a possibility of being scattered during firing is covered with this ceramic molded body and an inert powder, and then heat treated. Since it is considered that the low melting point substance in the ceramic molded body is hard to evaporate, it is possible to provide a ceramic sintered body having a small number of pores.

【0007】請求項2に記載の発明は、不活性な粉末と
して、酸化アルミニウム、酸化マグネシウムの内少なく
とも一種類を含有する粉末を用いるものであり、セラミ
ック成形体中の低融点物質が蒸発しづらくなると考えら
れるため空孔の数が少ないセラミック焼結体を提供する
ことができる。
According to the second aspect of the present invention, a powder containing at least one of aluminum oxide and magnesium oxide is used as the inert powder, and the low melting point substance in the ceramic molded body is hard to evaporate. Therefore, it is possible to provide a ceramic sintered body having a small number of holes.

【0008】請求項3に記載の発明は、不活性な粉末と
反応しないさやに、セラミック成形体と不活性な粉末と
を充填して熱処理するものであり、さやに充填すること
により、セラミック成形体の表面を不活性な粉末で均一
に被覆することができる。
According to the third aspect of the present invention, the ceramic molded body and the inert powder are heat-treated by filling the ceramic molded body and the inert powder in a sheath that does not react with the inert powder. The surface of the body can be uniformly coated with an inert powder.

【0009】請求項4に記載の発明は、酸化亜鉛を主成
分とし、副成分としてBi23を含有したセラミック成
形体を用いるものであり、低融点で飛散しやすいBi2
3が蒸発しづらくなると考えられるため空孔の数が少
ないセラミック焼結体を提供することができる。
According to a fourth aspect of the present invention, a ceramic molded body containing zinc oxide as a main component and Bi 2 O 3 as a secondary component is used, and Bi 2 has a low melting point and easily scatters.
Since it is considered that O 3 is less likely to evaporate, it is possible to provide a ceramic sintered body having a small number of holes.

【0010】請求項5に記載の発明は、セラミック成形
体と不活性な粉末とをさやに充填した後、セラミック成
形体と不活性な粉末とに圧力をかけて熱処理するもので
あり、熱処理中にセラミック成形体が収縮したとしても
常に不活性な物質で表面を被覆した状態にすることがで
きる。
According to a fifth aspect of the present invention, after the ceramic compact and the inert powder are charged into the sheath, pressure is applied to the ceramic compact and the inert powder to perform heat treatment. Even if the ceramic molded body shrinks, the surface can always be covered with an inert material.

【0011】請求項6に記載の発明は、酸化アルミニウ
ム、酸化ジルコニウムの内少なくとも一種類を含有する
材料で形成したさやを用いるものであり、さやも不活性
な物質で形成することにより、さやに充填した不活性な
粉末と反応することがない。
The invention according to claim 6 uses a pod formed of a material containing at least one of aluminum oxide and zirconium oxide. The pod is formed of an inactive substance to form a pod. Does not react with the filled inert powder.

【0012】以下本発明の一実施の形態について図面を
参照しながら説明する。 (実施の形態1)図1は不活性な粉末中に成形体を埋め
込んだ状態を示す断面図であり、酸化アルミニウム板3
上において、成形体1表面を不活性な粉末である酸化ア
ルミニウム粉末2で覆っている。図2は図1における酸
化アルミニウム板3の代わりにさや4を用いたものであ
り、さや4を用いることにより成形体1表面を酸化アル
ミニウム粉末2で均一に覆うことができる。図4は一般
的なディスクタイプの酸化亜鉛バリスタの断面図を示す
もので、焼結体5とこの焼結体5の上、下両面に設けた
銀電極6で構成されている。
An embodiment of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 is a sectional view showing a state in which a molded body is embedded in an inert powder.
Above, the surface of the molded body 1 is covered with the aluminum oxide powder 2 which is an inert powder. 2 uses a sheath 4 instead of the aluminum oxide plate 3 in FIG. 1, and by using the sheath 4, the surface of the molded body 1 can be uniformly covered with the aluminum oxide powder 2. FIG. 4 shows a cross-sectional view of a general disc type zinc oxide varistor, which is composed of a sintered body 5 and silver electrodes 6 provided on both upper and lower surfaces of the sintered body 5.

【0013】まず、少なくとも酸化亜鉛と酸化ビスマス
とを含むセラミックス材料に有機バインダを加えて混合
し、次に直径10mm、厚さ1.2mmとなるように1
t/cm2の圧力をかけて円板状の成形体1を得た。こ
のようにして得た成形体1を500℃で脱バインダした
後、図1に示すように縦150mm×横150mm×厚
さ2mmの酸化アルミニウム板3の上に、酸化アルミニ
ウム粉末2を50ccのせた後、成形体1を設置し、そ
の上からさらに酸化アルミニウム粉末2を50ccのせ
ることで成形体1を酸化アルミニウム粉末2中に完全に
埋め込み、930℃で焼成し、焼結体5を得た。焼成す
る際、直接成形体1同士が接することのないようにし
た。
First, an organic binder is added to and mixed with a ceramic material containing at least zinc oxide and bismuth oxide, and then a ceramic material having a diameter of 10 mm and a thickness of 1.2 mm is prepared.
A disc-shaped compact 1 was obtained by applying a pressure of t / cm 2 . After debinding the molded body 1 thus obtained at 500 ° C., 50 cc of the aluminum oxide powder 2 was placed on the aluminum oxide plate 3 having a length of 150 mm × width of 150 mm × thickness of 2 mm as shown in FIG. Then, the molded body 1 was placed, and the aluminum oxide powder 2 was further placed on the molded body 1 by 50 cc to completely embed the molded body 1 in the aluminum oxide powder 2 and fired at 930 ° C. to obtain a sintered body 5. . During firing, the molded bodies 1 were prevented from directly contacting each other.

【0014】不活性な物質である酸化アルミニウム粉末
2で成形体1の表面を覆う目的は、成形体1に含まれる
Bi23がその融点(825℃)以上の温度において、
急激に蒸気圧が上昇し、蒸発するのを遮蔽することであ
る。またその遮蔽効果をあげるために図2に示すよう
に、所定の焼成温度で安定である酸化アルミニウム、酸
化マグネシウムで形成されたさや4を用いて、成形体1
を埋め込む際の酸化アルミニウム粉末2で成形体1の表
面を均一に被覆する。
The purpose of covering the surface of the molded body 1 with the aluminum oxide powder 2 which is an inactive substance is that Bi 2 O 3 contained in the molded body 1 has a temperature above its melting point (825 ° C.).
It is to prevent the vapor pressure from rapidly rising and evaporating. In order to improve the shielding effect, as shown in FIG. 2, a molded body 1 is formed by using a sheath 4 formed of aluminum oxide or magnesium oxide, which is stable at a predetermined firing temperature.
The surface of the molded body 1 is uniformly covered with the aluminum oxide powder 2 for embedding.

【0015】比較のために上記と同様の方法で作製した
成形体1を脱バインダした後、従来のようにNiの網の
上に設置し、930℃で焼成して焼結体を作成した。
For comparison, the molded body 1 produced by the same method as above was debindered, placed on a Ni net as in the conventional case, and fired at 930 ° C. to prepare a sintered body.

【0016】次に得られた焼結体5に図4に示すように
直径7mmの銀ペーストを塗布した後、800℃で焼付
けて銀電極6を形成しバリスタ素子を得た。
Next, as shown in FIG. 4, a silver paste having a diameter of 7 mm was applied to the obtained sintered body 5 and then baked at 800 ° C. to form a silver electrode 6 to obtain a varistor element.

【0017】(表1)に本実施形態のバリスタ素子と従
来のバリスタ素子の空孔率と湿度90%、60℃、印加
電圧DCV1mA×90%の条件下での試験結果を示
す。
Table 1 shows the test results of the varistor element of this embodiment and the conventional varistor element under the conditions of porosity and humidity of 90%, 60 ° C., and applied voltage DCV 1 mA × 90%.

【0018】[0018]

【表1】 [Table 1]

【0019】ここでバリスタ電圧とは、電流が1mA流
れたときの電圧のことであり、以後V1mAと示す。
(表1)に示したように、本実施形態のバリスタ素子は
従来例のバリスタ素子に対し、それぞれ空孔率が減少
し、良好な特性を有していることがわかる。これは空孔
率と耐湿試験とが相関性をもっていることを示してお
り、空孔率が大きい場合、バリスタ素子表面から気化し
た水分が浸入し、それを起因として高電圧下では電流の
導電状態が変わり、その結果特性の劣化に結びついたも
のと考えられる。
Here, the varistor voltage is a voltage when a current flows by 1 mA, and will be hereinafter referred to as V1 mA.
As shown in (Table 1), it can be seen that the varistor element of the present embodiment has good characteristics with respect to the conventional varistor element, in which the porosity is reduced. This indicates that there is a correlation between the porosity and the humidity resistance test.When the porosity is large, the vaporized water penetrates from the surface of the varistor element, which causes the conductive state of the current to flow under high voltage. It is thought that this has resulted in deterioration of the characteristics.

【0020】なお、本実施形態では不活性な粉末として
酸化アルミニウム粉末を用いたが、焼結体5の主成分で
ある酸化亜鉛や副成分の酸化ビスマスなどと焼成温度に
おいて安定な酸化ジルコニウムや酸化アルミニウムと酸
化ジルコニウムを混合した粉末など不活性な粉末であれ
ば構わない。
Although aluminum oxide powder is used as the inactive powder in this embodiment, the main component of the sintered body 5 such as zinc oxide and bismuth oxide as a secondary component, and zirconium oxide and oxide that are stable at the firing temperature are used. Any inert powder such as a powder obtained by mixing aluminum and zirconium oxide may be used.

【0021】さや4に関しても同様で、成形体1を覆う
不活性な粉末に対して、その焼成温度において安定な物
質であればどのような材質でも構わない。また焼結体5
の形状は、ディスクタイプに限らず、内部電極とセラミ
ック層とを交互に積層した積層体など、どのような形状
の成形体でも同様の効果がみられる。さらに、酸化亜鉛
バリスタにおいては酸化ビスマスの飛散を防ぐ方法とし
て、本実施形態に示したように遮蔽をすることによって
行ったが、成形体1の周囲を酸化ビスマス雰囲気にする
ために酸化アルミニウム粉末2中に酸化ビスマスを加え
るといったような蒸発成分を不活性物質中に添加するこ
とでさらに効果が大きくなる。
The same applies to the sheath 4, and any material may be used as long as it is a substance that is stable at the firing temperature for the inert powder that covers the compact 1. Also sintered body 5
The shape is not limited to the disk type, and the same effect can be obtained with a molded body of any shape such as a laminated body in which internal electrodes and ceramic layers are alternately laminated. Further, in the zinc oxide varistor, as a method for preventing the scattering of bismuth oxide, the shielding was performed as shown in the present embodiment, but the aluminum oxide powder 2 was used to make the surroundings of the compact 1 a bismuth oxide atmosphere. The effect is further enhanced by adding an evaporation component such as bismuth oxide into the inert substance.

【0022】(実施の形態2)図3は、図2における酸
化アルミニウム粉末2の上に酸化アルミニウムの燃結体
5を設置したもので、酸化アルミニウムの燃結体5は焼
成中に一定の圧力が酸化アルミニウム粉末2に荷重され
るように作用するものである。
(Embodiment 2) FIG. 3 shows an aluminum oxide powder 5 installed on the aluminum oxide powder 2 shown in FIG. 2, and the aluminum oxide powder 5 has a constant pressure during firing. Acts so as to be loaded on the aluminum oxide powder 2.

【0023】まず、実施の形態1と同様にして得た成形
体1を500℃で脱バインダした後、図3に示したよう
に100ccの酸化アルミニウムのさや4の中に40c
cの酸化アルミニウム粉末2を入れ、その上に成形体1
を設置し、さらに酸化アルミニウム粉末2を40ccを
充填することで成形体1を完全に埋め込み、930℃で
焼成した。
First, the molded body 1 obtained in the same manner as in the first embodiment is debindered at 500 ° C., and then 40 c in 100 cc of aluminum oxide pod 4 as shown in FIG.
The aluminum oxide powder 2 of c is put, and the molded body 1 is placed thereon.
Was installed, and 40 cc of aluminum oxide powder 2 was further filled therein to completely embed the molded body 1 and fired at 930 ° C.

【0024】ここで焼成中に成形体1は焼結反応が進む
ため、焼成後の体積は大幅に減少する。そのため、焼成
中も常に成形体1表面が酸化アルミニウム粉末2で被覆
されているようにし、蒸発しやすい成分の飛散を制御す
るべきであるので、図3に示したように酸化アルミニウ
ム粉末2に一定の圧力(0.3g/mm2)がかかるよ
うに酸化アルミニウムの燃結体5を酸化アルミニウム粉
末2上に設置して焼成した。
Since the sintering reaction of the molded body 1 proceeds during firing, the volume after firing is greatly reduced. Therefore, the surface of the molded body 1 should always be covered with the aluminum oxide powder 2 even during firing to control the scattering of components that easily evaporate. Therefore, as shown in FIG. The aluminum oxide burned material 5 was placed on the aluminum oxide powder 2 so as to be applied with the pressure (0.3 g / mm 2 ) of FIG.

【0025】次に得られた焼結体5に図4に示すように
直径7mmの銀ペーストを塗布した後、800℃で焼き
つけて電極6を形成しバリスタ素子を得た。
Next, a silver paste having a diameter of 7 mm was applied to the obtained sintered body 5 as shown in FIG. 4 and then baked at 800 ° C. to form an electrode 6 to obtain a varistor element.

【0026】(表2)に高湿度・高電圧印加試験を行っ
た本実施の形態のバリスタ素子の空孔率と湿度90%、
60℃、印加電圧DCV1mA×90%の条件下での試
験結果を示す。
The porosity and humidity of 90% of the varistor element of the present embodiment, which was subjected to the high humidity and high voltage application test in Table 2,
The test results are shown under the conditions of 60 ° C. and applied voltage DCV 1 mA × 90%.

【0027】[0027]

【表2】 [Table 2]

【0028】(表2)からもわかるように、それぞれ従
来例と比較して、特性は良好な方向に向かっている。
As can be seen from (Table 2), the characteristics are in a favorable direction in comparison with the conventional examples.

【0029】酸化亜鉛バリスタの成形体1の場合、焼成
における降温時(とりわけ酸化ビスマスの融点である8
25℃付近)に急激な温度変化をうけることは、特性上
ばらつきが生じる原因となったりするが、本実施例では
酸化アルミニウム粉末2中で熱処理を行うため、酸化ア
ルミニウム粉末2の熱容量によって急激な温度変化を受
けづらくなり均一な焼結体5を得ることができる。した
がって酸化アルミニウム粉末2、さや4、圧力印加用の
酸化アルミニウムの燃結体5の全熱容量は焼成時の昇温
速度に成形体1自体の昇温速度が追従する限り大きくす
るべきである。
In the case of the zinc oxide varistor molded body 1, when the temperature is lowered during firing (particularly, the melting point of bismuth oxide is 8).
A rapid temperature change (around 25 ° C.) may cause variations in characteristics, but in the present example, since the heat treatment is performed in the aluminum oxide powder 2, the heat capacity of the aluminum oxide powder 2 causes a rapid change. It becomes difficult to receive a temperature change, and a uniform sintered body 5 can be obtained. Therefore, the total heat capacity of the aluminum oxide powder 2, the sheath 4, and the aluminum oxide fuel binder 5 for pressure application should be large as long as the temperature rising rate of the compact 1 follows the temperature rising rate during firing.

【0030】本実施の形態ではさや4中にて一定加圧下
で焼成する際に、酸化アルミニウム粉末2上に酸化アル
ミニウムの燃結体5を用いたが、成形体1への影響がな
い限りどのような物質を設置しても構わず、単位面積当
たりの圧力が大きいほど有効的である。
In this embodiment, the aluminum oxide powder 5 is used on the aluminum oxide powder 2 when firing in the sheath 4 under constant pressure. However, as long as the molded body 1 is not affected, Even if such a substance is installed, it is more effective if the pressure per unit area is larger.

【0031】なお実施形態1,2で酸化アルミニウムを
用いた場合、850℃以上で酸化アルミニウムと酸化ビ
スマスが反応することにより、余分な酸化ビスマスを除
去し、素子内において酸化ビスマスを均一に分布させる
という効果も見られる。
When aluminum oxide is used in Embodiments 1 and 2, excess bismuth oxide is removed by the reaction between aluminum oxide and bismuth oxide at 850 ° C. or higher, and bismuth oxide is uniformly distributed in the device. You can also see the effect.

【0032】また、実施の形態1,2においては、不活
性な粉末として酸化アルミニウムを用いたが、酸化マグ
ネシウムでもまた酸化アルミニウムと酸化マグネシウム
の混合物でも構わない。さや4についても同様のことが
言える。
Although aluminum oxide is used as the inert powder in the first and second embodiments, magnesium oxide or a mixture of aluminum oxide and magnesium oxide may be used. The same thing can be said about the sheath 4.

【0033】さらに本実施の形態においては、ディスク
型の酸化亜鉛バリスタ素子を例に示したが、内部電極層
とセラミック層とを交互に積層した積層体などどのよう
な形状でも構わず、成形体も熱処理により飛散する可能
性のある物質(熱処理温度よりも低い融点を有する物質
つまり蒸気圧の高い物質)ビスマス、鉛、硼素、アンチ
モンなどを含む材料で形成したものにおいても同様の効
果が得られる。
Further, in the present embodiment, the disk type zinc oxide varistor element is shown as an example, but any shape such as a laminated body in which the internal electrode layers and the ceramic layers are alternately laminated may be used. The same effect can be obtained with substances that may be scattered by heat treatment (substances having a melting point lower than the heat treatment temperature, that is, substances with high vapor pressure) made of materials containing bismuth, lead, boron, antimony, etc. .

【0034】このように、酸化亜鉛バリスタにおいて
は、主に粒界相を形成する酸化ビスマスが低融点を有し
ており(825℃)、焼成の過程で酸化ビスマスがその
高い蒸気圧によって蒸発することがバリスタ素子内の空
孔の数を増加させる原因になっていると考えられ、バリ
スタの成形体を焼成する際に成形体表面を不活性な物質
で覆うことで酸化ビスマスの蒸発は大幅に抑制され、空
孔の数は減少し、その結果、高湿度・高電圧下における
特性の劣化が大幅に改善される。また酸化亜鉛バリスタ
の場合、焼成における降温時(とりわけ酸化ビスマスの
融点である825℃付近)に急激な温度変化をうけるこ
とは、特性上ばらつきが生じる原因となったりするが、
本発明では粉末中で熱処理を行うため、粉体の熱容量に
よって急激な温度変化を受けづらくなり均一な素子を得
ることができる。
As described above, in the zinc oxide varistor, bismuth oxide mainly forming the grain boundary phase has a low melting point (825 ° C.), and bismuth oxide is vaporized due to the high vapor pressure during the firing process. This is considered to be the cause of increasing the number of holes in the varistor element, and when firing the molded body of the varistor, by covering the surface of the molded body with an inert material, the evaporation of bismuth oxide is significantly increased. It is suppressed, the number of holes is reduced, and as a result, the deterioration of the characteristics under high humidity and high voltage is significantly improved. Further, in the case of a zinc oxide varistor, subjecting it to a rapid temperature change during temperature reduction during firing (particularly near 825 ° C. which is the melting point of bismuth oxide) may cause variations in characteristics,
In the present invention, since the heat treatment is performed in the powder, it is difficult to receive a rapid temperature change due to the heat capacity of the powder, and a uniform element can be obtained.

【0035】[0035]

【発明の効果】以上のように、本発明によると、より緻
密で空孔の数の少ない焼結体を提供することができる。
その結果、高湿度、高電圧下での特性の劣化の減少等と
いった耐候性の向上したセラミック素子が得られるもの
である。
As described above, according to the present invention, it is possible to provide a denser sintered body having a smaller number of holes.
As a result, it is possible to obtain a ceramic element having improved weather resistance such as reduction in deterioration of characteristics under high humidity and high voltage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態による焼成方法を示す断
面図
FIG. 1 is a sectional view showing a firing method according to an embodiment of the present invention.

【図2】本発明の他の実施の形態による焼成方法を示す
断面図
FIG. 2 is a sectional view showing a firing method according to another embodiment of the present invention.

【図3】本発明の他の実施の形態による焼成方法を示す
断面図
FIG. 3 is a sectional view showing a firing method according to another embodiment of the present invention.

【図4】一般的な酸化亜鉛バリスタの断面図FIG. 4 is a sectional view of a general zinc oxide varistor.

【符号の説明】[Explanation of symbols]

1 成形体 2 酸化アルミニウム粉末 4 さや 1 molded body 2 aluminum oxide powder 4 pod

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 焼成中に飛散する可能性を有する物質を
含有したセラミック成形体の表面を、このセラミック成
形体と不活性な粉末で覆って熱処理するセラミック焼結
体の製造方法。
1. A method for producing a ceramic sintered body, in which the surface of a ceramic molded body containing a substance that may scatter during firing is covered with the ceramic molded body and an inert powder for heat treatment.
【請求項2】 不活性な粉末として、酸化アルミニウ
ム、酸化マグネシウムの内少なくとも一種類を含有する
粉末を用いる請求項1に記載のセラミック焼結体の製造
方法。
2. The method for producing a ceramic sintered body according to claim 1, wherein a powder containing at least one of aluminum oxide and magnesium oxide is used as the inert powder.
【請求項3】 不活性な粉末と反応しないさやに、セラ
ミック成形体と前記不活性な粉末とを充填して熱処理す
る請求項1に記載のセラミック焼結体の製造方法。
3. The method for producing a ceramic sintered body according to claim 1, wherein the ceramic compact and the inert powder are filled in a sheath that does not react with the inert powder and heat-treated.
【請求項4】 酸化亜鉛を主成分とし、副成分としてB
23を含有したセラミック成形体を用いる請求項1に
記載のセラミック焼結体の製造方法。
4. Zinc oxide as a main component and B as a secondary component
The method for producing a ceramic sintered body according to claim 1, wherein a ceramic molded body containing i 2 O 3 is used.
【請求項5】 セラミック成形体と不活性な粉末とをさ
やに充填した後、前記セラミック成形体と前記不活性な
粉末とに圧力をかけて熱処理する請求項4に記載のセラ
ミック焼結体の製造方法。
5. The ceramic sintered body according to claim 4, wherein after the ceramic molded body and the inert powder are filled in the sheath, pressure is applied to the ceramic molded body and the inert powder to perform heat treatment. Production method.
【請求項6】 さやは、酸化アルミニウム、酸化ジルコ
ニウムの内少なくとも一種類を含有するもので形成され
ている請求項4に記載のセラミック焼結体の製造方法。
6. The method for producing a ceramic sintered body according to claim 4, wherein the pod is formed of at least one of aluminum oxide and zirconium oxide.
JP09397396A 1996-04-16 1996-04-16 Manufacturing method of ceramic sintered body Expired - Fee Related JP3739853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09397396A JP3739853B2 (en) 1996-04-16 1996-04-16 Manufacturing method of ceramic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09397396A JP3739853B2 (en) 1996-04-16 1996-04-16 Manufacturing method of ceramic sintered body

Publications (2)

Publication Number Publication Date
JPH09278537A true JPH09278537A (en) 1997-10-28
JP3739853B2 JP3739853B2 (en) 2006-01-25

Family

ID=14097354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09397396A Expired - Fee Related JP3739853B2 (en) 1996-04-16 1996-04-16 Manufacturing method of ceramic sintered body

Country Status (1)

Country Link
JP (1) JP3739853B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013203610A (en) * 2012-03-29 2013-10-07 Ube Industries Ltd Method for producing inorganic fibrous ceramic porous body
US20150137411A1 (en) * 2012-03-29 2015-05-21 Ube Industries, Ltd. Method for Producing Inorganic Fiber-Bonded Ceramic Material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013203610A (en) * 2012-03-29 2013-10-07 Ube Industries Ltd Method for producing inorganic fibrous ceramic porous body
US20150137411A1 (en) * 2012-03-29 2015-05-21 Ube Industries, Ltd. Method for Producing Inorganic Fiber-Bonded Ceramic Material
JPWO2013146514A1 (en) * 2012-03-29 2015-12-14 宇部興産株式会社 Manufacturing method of inorganic fiber bonded ceramics
US9701587B2 (en) 2012-03-29 2017-07-11 Ube Industries, Ltd. Method for producing inorganic fiber-bonded ceramic material

Also Published As

Publication number Publication date
JP3739853B2 (en) 2006-01-25

Similar Documents

Publication Publication Date Title
CN104078235B (en) Ceramic electronic components and glass paste
KR102038758B1 (en) Ceramic multilayer parts and manufacturing method of ceramic multilayer parts
US6260258B1 (en) Method for manufacturing varistor
KR101828991B1 (en) Complex protection device and electronic device having the same
JP2005348596A (en) Operating part for gas-sealing type surge arrestor
CN105719834A (en) Multilayer ceramic electronic component and method of manufacturing the same
JP3453857B2 (en) Manufacturing method of multilayer varistor
US3909327A (en) Method for making a monolithic ceramic capacitor with silver bearing electrodes
US3325699A (en) Porous capacitor with anode connection over substantial and insulated area
JPH09278537A (en) Production of ceramic sintered compact
JP6850608B2 (en) Electronic structural element and its manufacturing method
JP2531019B2 (en) Semiconductor porcelain with positive resistance temperature characteristic
KR100228295B1 (en) Ptc device
KR20180065008A (en) Complex protection device and electronic device having the same
JP2007096205A (en) Chip-type negative temperature coefficient (ntc) element
JP3396973B2 (en) Manufacturing method of multilayer varistor
JP2983096B2 (en) Manufacturing method of laminated voltage non-linear resistor
JP3419285B2 (en) Manufacturing method of ceramic electronic components
JPH05258910A (en) Power resistor
CN104813418A (en) Positive characteristic thermistor and method for manufacturing same
JP2002252104A (en) Voltage nonlinear resistor and arrester using the same
JP2956131B2 (en) Strontium titanate-based semiconductor porcelain and method of manufacturing the same
JP2504226B2 (en) Stacked Varistor
JPH0770373B2 (en) Method of manufacturing laminated chip varistor
JPH07114174B2 (en) Method for manufacturing laminated semiconductor porcelain electronic component

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees