JPWO2013146514A1 - Manufacturing method of inorganic fiber bonded ceramics - Google Patents

Manufacturing method of inorganic fiber bonded ceramics Download PDF

Info

Publication number
JPWO2013146514A1
JPWO2013146514A1 JP2014507775A JP2014507775A JPWO2013146514A1 JP WO2013146514 A1 JPWO2013146514 A1 JP WO2013146514A1 JP 2014507775 A JP2014507775 A JP 2014507775A JP 2014507775 A JP2014507775 A JP 2014507775A JP WO2013146514 A1 JPWO2013146514 A1 JP WO2013146514A1
Authority
JP
Japan
Prior art keywords
inorganic fiber
inorganic
temperature
fiber
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014507775A
Other languages
Japanese (ja)
Other versions
JP5910728B2 (en
Inventor
松永 賢二
賢二 松永
梶井 紳二
紳二 梶井
翔平 水津
翔平 水津
努 児玉
努 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Publication of JPWO2013146514A1 publication Critical patent/JPWO2013146514A1/en
Application granted granted Critical
Publication of JP5910728B2 publication Critical patent/JP5910728B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/10Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/14Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62847Coating fibres with oxide ceramics
    • C04B35/62849Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/10Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
    • B29C2043/106Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies using powder material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C2043/3205Particular pressure exerting means for making definite articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • C04B2235/5256Two-dimensional, e.g. woven structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6587Influencing the atmosphere by vaporising a solid material, e.g. by using a burying of sacrificial powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/38Fiber or whisker reinforced
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

欠陥が少なく、端部と中央部で同等の組織構造及び力学的特性を有する無機繊維結合型セラミックスを歩留まりよく製造することができ、大型化することも可能な無機繊維結合型セラミックスの製造方法を提供する。熱分解開始温度が1900℃以下の無機繊維からなる無機繊維部と、該無機繊維どうしを結合するための無機物質からなる表面層とにより構成される被覆無機繊維の成形体を積層した積層物を、セラミックス粉末で囲むようにカーボンダイスにセットし、不活性ガス雰囲気中、1000〜1800℃の温度及び5〜50MPaの圧力でプレスする第一プレス工程、及び該第一プレス工程で得られたセラミックス被覆積層物を、不活性ガス雰囲気中、1600〜1900℃の温度でかつ前記第一プレス工程よりも高い温度及び5〜100MPaの圧力でプレスする第二プレス工程、を備えることを特徴とする無機繊維結合型セラミックスの製造方法に関する。A method for producing an inorganic fiber-bonded ceramic that can produce an inorganic fiber-bonded ceramic with few defects and an equivalent structure and mechanical properties at the end and the center with high yield and can be increased in size provide. A laminate in which a molded body of coated inorganic fibers composed of an inorganic fiber portion made of inorganic fibers having a thermal decomposition start temperature of 1900 ° C. or less and a surface layer made of an inorganic substance for bonding the inorganic fibers together is laminated. A first press step of setting the carbon die so as to be surrounded by ceramic powder, and pressing in an inert gas atmosphere at a temperature of 1000 to 1800 ° C. and a pressure of 5 to 50 MPa, and the ceramic obtained in the first press step A second pressing step of pressing the coated laminate in an inert gas atmosphere at a temperature of 1600 to 1900 ° C. and at a temperature higher than that of the first pressing step and a pressure of 5 to 100 MPa. The present invention relates to a method for producing fiber-bonded ceramics.

Description

本発明は、欠陥が少なく、端部と中央部で同等の組織構造及び力学的特性を有する無機繊維結合型セラミックスを歩留まりよく製造することができ、大型化することも可能な無機繊維結合型セラミックスの製造方法に関する。   INDUSTRIAL APPLICABILITY The present invention can produce an inorganic fiber-bonded ceramic having few defects and having the same structure and mechanical properties at the end and the center with a high yield, and can be increased in size. It relates to the manufacturing method.

近年、航空宇宙分野や環境・エネルギー分野においては、高効率化、高エネルギー化のために、優れた耐熱性を有し、且つ高い断熱性と力学的特性を兼ね備えた信頼性の高い材料が望まれている。この候補材料のひとつに無機繊維結合型セラミックスが挙げられる。無機繊維結合型セラミックスは、単体のセラミックスと比べて、欠陥に鈍感であり、高い破壊抵抗を有している。また、この無機繊維結合型セラミックスは、化学浸透気相法(CVI法)、又はポリマー含浸法(PIP法)等で製造されたセラミックス繊維強化セラミックス基複合材料(CMC)と比べて、非常に緻密であり、機械加工により高い表面平滑性が得られる。   In recent years, in the aerospace field and the environment / energy field, in order to increase efficiency and energy, a highly reliable material having excellent heat resistance and high thermal insulation and mechanical properties is desired. It is rare. One of the candidate materials is inorganic fiber bonded ceramics. Inorganic fiber-bonded ceramics are insensitive to defects and have high fracture resistance compared to single ceramics. Further, this inorganic fiber-bonded ceramic is very dense compared to ceramic fiber reinforced ceramic matrix composite material (CMC) manufactured by chemical osmosis gas phase method (CVI method) or polymer impregnation method (PIP method). And high surface smoothness can be obtained by machining.

このような無機繊維結合型セラミックスは、例えば、特許文献1に示されている。概略すると、特許文献1に記載の無機繊維結合型セラミックスは、SiOを主成分とする表面層に覆われたSi−M−C−O(MはTi又はZrを示す。)を主成分とするセラミックス繊維の積層物を高温加圧下でホットプレスすることによって得られ、そのホットプレス過程において、Si−M−C−O繊維中の一部のCが繊維表面に生成し、さらに、Si−M−C−O繊維中のMがCと反応し、MCからなる微粒子が無機物質内に分散した構造を有している。したがって、原料繊維の熱分解反応を利用して、高温高圧下でのホットプレス過程において無機繊維結合型セラミックスの構造を造り上げている。言い換えれば、良好な無機繊維結合型セラミックスの構造を得るためには、ホットプレス過程における熱分解反応を厳密に制御する必要がある。Such inorganic fiber-bonded ceramics are disclosed in Patent Document 1, for example. In summary, the inorganic fiber bonded ceramic described in Patent Document 1 is mainly composed of Si—M—C—O (M represents Ti or Zr) covered with a surface layer mainly composed of SiO 2 . Obtained by hot-pressing a laminate of ceramic fibers under high-temperature pressurization, and in the hot-pressing process, part of C in the Si-M-C-O fiber is formed on the fiber surface, M in the M—C—O fiber reacts with C and has a structure in which fine particles made of MC are dispersed in an inorganic substance. Therefore, the structure of the inorganic fiber-bonded ceramics is built up in the hot pressing process under high temperature and pressure by utilizing the thermal decomposition reaction of the raw fiber. In other words, in order to obtain a good inorganic fiber-bonded ceramic structure, it is necessary to strictly control the thermal decomposition reaction in the hot pressing process.

特開平9−52776号公報JP-A-9-52776

上記の通り、無機繊維結合型セラミックスは、優れた耐熱性を有し、且つ高い断熱性と力学的特性とを兼ね備えた材料であるが、熱分解反応を厳密に制御する必要があるという観点においては、下記のような問題がある。   As described above, inorganic fiber-bonded ceramics are materials that have excellent heat resistance and have both high heat insulation and mechanical properties, but in terms of the need to strictly control the thermal decomposition reaction. Has the following problems.

(1)ホットプレス過程において用いられるカーボンダイスは、数回使用するとダイス同士の合せ面に隙間ができてしまい、ダイス同士の隙間の寸法精度が悪くなり、ダイスの隙間からの熱分解ガスの放出量が多くなる。そのため、カーボンダイスに近い素材の端部は、無機繊維結合型セラミックスの本来の構造にならず、高い力学的特性が得られない。   (1) When the carbon die used in the hot press process is used several times, a gap is formed on the mating surface between the dies, the dimensional accuracy of the gap between the dies is deteriorated, and the pyrolysis gas is released from the gap between the dies. The amount increases. For this reason, the end of the material close to the carbon die does not have the original structure of the inorganic fiber-bonded ceramic, and high mechanical properties cannot be obtained.

(2)被覆無機繊維の積層物の外形寸法を精度よく成形しないと、上記(1)と同様に、カーボンダイスに近い素材の端部は、無機繊維結合型セラミックスの本来の構造にならずに高い力学的特性が得られず、さらに、素材全体の力学的特性が低下する。そのため、寸法精度の高い積層物を作製する必要があり、時間を要している。   (2) If the outer dimensions of the laminate of the coated inorganic fiber are not accurately formed, the end of the material close to the carbon die does not have the original structure of the inorganic fiber-bonded ceramic, as in (1) above. High mechanical properties cannot be obtained, and further, the mechanical properties of the entire material are deteriorated. Therefore, it is necessary to produce a laminate with high dimensional accuracy, which takes time.

(3)無機繊維結合型セラミックスを大型化しようとすると、積層物のサイズを大きくしなければならず、パンチ棒、並びにカーボンダイスに掛かる負荷が大きくなり、突発的なダイス、又は上下パンチ棒の破損の発生頻度が多くなる。   (3) In order to increase the size of the inorganic fiber-bonded ceramics, the size of the laminate must be increased, the load on the punch bar and the carbon die increases, and sudden die or upper and lower punch bars The frequency of damage increases.

(4)無機繊維結合型セラミックスを大型化しようとすると、積層物の端部と中央部での熱分解ガスの放出量の差による構造の不均一が生じてしまうという。   (4) If the inorganic fiber-bonded ceramic is increased in size, the structure will be uneven due to the difference in the amount of pyrolysis gas released between the end and the center of the laminate.

このように、端部と中央部で同等の組織構造及び力学的特性を有する安定した品質の無機繊維結合型セラミックスを、ホットプレス過程における熱分解反応を厳密に制御し、歩留まりよくコストを抑えて製造するためには、また、無機繊維結合型セラミックスの大型化を推進するには、これまでの無機繊維結合型セラミックスの製造方法は、必ずしも十分であるとはいえない。   In this way, stable quality inorganic fiber-bonded ceramics with the same structure and mechanical properties at the end and center can be controlled precisely by controlling the thermal decomposition reaction in the hot pressing process, reducing yield and cost. In order to manufacture and to promote the enlargement of inorganic fiber-bonded ceramics, the conventional methods for manufacturing inorganic fiber-bonded ceramics are not necessarily sufficient.

本発明は、上記問題点に鑑みてなされたものであり、欠陥が少なく、端部と中央部で同等の組織構造及び力学的特性を有する無機繊維結合型セラミックスを歩留まりよく製造することができ、大型化することも可能な無機繊維結合型セラミックスの製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and can produce inorganic fiber-bonded ceramics with a low yield and with a high yield in an inorganic fiber-bonded ceramic having the same structure and mechanical properties at the end and the center. An object of the present invention is to provide a method for producing an inorganic fiber-bonded ceramic that can be increased in size.

以上の目的を達成するために、本発明者らは、鋭意研究を重ねた結果、積層物の周囲にセラミックス粉末を配置して2段でホットプレスし、2段のホットプレスのうち第1段目のプレス時に、そのセラミックス粉末を予め無機繊維の熱分解ガスの放出を抑制できる程度に密閉状態にすることによって、第2段目のプレス過程での無機繊維の熱分解反応を成形体全域で均一にすることにより、欠陥が少なく、端部と中央部で同等の組織構造及び力学的特性を有する無機繊維結合型セラミックスを歩留まりよく製造することができ、大型化することも可能であることを見出した。   In order to achieve the above object, the present inventors have conducted extensive research. As a result, the ceramic powder is placed around the laminate and hot-pressed in two stages. During the pressing of the eye, the ceramic powder is hermetically sealed in advance so that the release of pyrolysis gas of the inorganic fiber can be suppressed. By making uniform, it is possible to produce inorganic fiber bonded ceramics with few defects and having the same structure and mechanical properties at the end and the center with good yield, and it is also possible to increase the size. I found it.

すなわち、本発明は、熱分解開始温度が1900℃以下の無機繊維からなる無機繊維部と、該無機繊維どうしを結合するための無機物質からなる表面層とにより構成される被覆無機繊維の成形体を積層した積層物を、セラミックス粉末で囲むようにカーボンダイスにセットし、不活性ガス雰囲気中、1000〜1800℃の温度及び5〜50MPaの圧力でプレスする第一プレス工程、及び該第一プレス工程で得られたセラミックス被覆積層物を、不活性ガス雰囲気中、1600〜1900℃の温度でかつ前記第一プレス工程よりも高い温度及び5〜100MPaの圧力でプレスする第二プレス工程、を備えることを特徴とする無機繊維結合型セラミックスの製造方法を提供する。   That is, the present invention relates to a molded body of coated inorganic fiber comprising an inorganic fiber portion made of inorganic fibers having a thermal decomposition start temperature of 1900 ° C. or less and a surface layer made of an inorganic substance for bonding the inorganic fibers together. A first pressing step in which a laminate obtained by laminating a laminate is set on a carbon die so as to be surrounded by ceramic powder, and pressed in an inert gas atmosphere at a temperature of 1000 to 1800 ° C. and a pressure of 5 to 50 MPa, and the first press A second pressing step of pressing the ceramic-coated laminate obtained in the step in an inert gas atmosphere at a temperature of 1600 to 1900 ° C. and at a temperature higher than the first pressing step and a pressure of 5 to 100 MPa. A method for producing an inorganic fiber-bonded ceramic is provided.

本発明の無機繊維結合型セラミックスの製造方法において、前記無機繊維部は、(a)Si、M、C及びOを含む非晶質物質(MはTi又はZrを示す。)、(b)β−SiC、MC及びCを含む結晶質超微粒子と、SiO及びMOを含む非晶質物質との集合体(Mは(a)と同様である。)、又は(c)上記(a)と上記(b)との混合物を含有する無機質物質で構成され、前記表面層は、(d)Si及びO、場合によりMを含む非晶質物質(MはTi又はZrを示す。)、(e)結晶質のSiO及び/又はMOを含む結晶質物質(Mは(d)と同様である。)、又は(f)上記(d)と上記(e)との混合物を含有する無機質物質で構成することができる。In the method for producing an inorganic fiber-bonded ceramic of the present invention, the inorganic fiber part is (a) an amorphous substance containing Si, M, C, and O (M represents Ti or Zr), (b) β. An aggregate of crystalline ultrafine particles containing SiC, MC and C and an amorphous material containing SiO 2 and MO 2 (M is the same as (a)), or (c) (a) above And (b) an amorphous substance (M represents Ti or Zr), (d) Si and O, and optionally M. e) a crystalline substance containing crystalline SiO 2 and / or MO 2 (M is the same as (d)), or (f) an inorganic substance containing a mixture of (d) and (e) above. It can consist of substances.

また、本発明の無機繊維結合型セラミックスの製造方法において、前記表面層の厚さT(単位μm)をT=aD(ここで、aは0.023〜0.090の範囲内の数値であり、Dは被覆無機繊維の直径(単位μm)である。)とすることができる。   In the method for producing an inorganic fiber-bonded ceramic of the present invention, the thickness T (unit: μm) of the surface layer is T = aD (where a is a numerical value in the range of 0.023 to 0.090. , D is the diameter (unit: μm) of the coated inorganic fiber.

また、本発明の無機繊維結合型セラミックスの製造方法において、前記セラミックス粉末をアルミナ粉末とすることができる。   In the method for producing an inorganic fiber-bonded ceramic of the present invention, the ceramic powder can be an alumina powder.

また、本発明の無機繊維結合型セラミックスの製造方法において、前記セラミックス粉末を、1800℃以下で溶融する無機物質と、前記第二プレス工程のプレス温度より溶融温度の高い無機物質との混合物とすることができ、前記1800℃以下で溶融する無機物質を、SiOを主成分とするガラスと、前記第二プレス工程のプレス温度より溶融温度の高い無機物質を、炭素又はBNとすることができる。また、前記第一プレス工程及び第二プレス工程の雰囲気圧力を、0.01〜1MPaとすることができる。In the method for producing an inorganic fiber-bonded ceramic of the present invention, the ceramic powder is a mixture of an inorganic substance that melts at 1800 ° C. or less and an inorganic substance that has a melting temperature higher than the pressing temperature in the second pressing step. The inorganic substance that melts at 1800 ° C. or less can be made of glass mainly composed of SiO 2 , and the inorganic substance that has a melting temperature higher than the pressing temperature of the second pressing step can be carbon or BN. . Moreover, the atmospheric pressure of said 1st press process and a 2nd press process can be 0.01-1 Mpa.

以上のように、本発明によれば、欠陥が少なく、端部と中央部で同等の組織構造及び力学的特性を有する無機繊維結合型セラミックスを歩留まりよく製造することができ、大型化することも可能な無機繊維結合型セラミックスの製造方法を提供することができる。   As described above, according to the present invention, inorganic fiber-bonded ceramics having few defects and having the same structure and mechanical properties at the end portion and the central portion can be manufactured with high yield, and the size can be increased. A method for producing a possible inorganic fiber-bonded ceramic can be provided.

(a)本実施例に用いた4つのパーツからなるダイスの上面図、(b)ダイスの分割後の1つのパーツの斜視図、及び(c)(b)の点線部を拡大した写真であり、熱分解により発生したガスの影響により、内側表面の損傷した代表的なダイスを示す写真と写真撮影したダイスの位置を示す模式図である。(A) Top view of a die composed of four parts used in this example, (b) A perspective view of one part after the die is divided, and (c) (b) is an enlarged photograph of a dotted line part. FIG. 4 is a schematic view showing a photograph showing a representative die in which the inner surface is damaged due to the influence of gas generated by thermal decomposition and the position of the photographed die. (a)ダイスにセラミックス粉末で囲んだ積層物を配置した概念図、及び(b)ダイスにセラミックス粉末を用いないで積層物を配置した概念図である。(A) The conceptual diagram which has arrange | positioned the laminated body enclosed with ceramic powder in the die | dye, (b) The conceptual diagram which has arrange | positioned the laminated body without using ceramic powder in the die | dye. 実施例1、2及び比較例1、2で得られた無機繊維結合型セラミックスの蛍光探傷試験後の目視観察結果を示す写真である。It is a photograph which shows the visual observation result after the fluorescence flaw test of the inorganic fiber bond-type ceramics obtained in Examples 1, 2 and Comparative Examples 1, 2. 実施例1、2及び比較例1、2で得られた無機繊維結合型セラミックスの端部から中央部までの4点曲げ強度の変化を示す図である。It is a figure which shows the change of the 4-point bending strength from the edge part of the inorganic fiber bond type | mold ceramics obtained in Example 1, 2 and Comparative Example 1, 2 to the center part. 実施例2及び比較例2で得られた無機繊維結合型セラミックスの曲げ試験後の試験片側面を電子顕微鏡で観察した結果を示す写真である。It is a photograph which shows the result of having observed the test piece side surface after the bending test of the inorganic fiber bond-type ceramics obtained in Example 2 and Comparative Example 2 with the electron microscope. 実施例3で得られた無機繊維結合型セラミックスの端部と中央部の4点曲げ強度の変化を示す図である。It is a figure which shows the change of the 4-point bending strength of the edge part and center part of the inorganic fiber bond type ceramics obtained in Example 3. FIG.

以下に、本発明の無機繊維結合型セラミックスの製造方法について、好適な実施形態を詳細に説明する。
本実施形態に係る無機繊維結合型セラミックスの製造方法は、原料となる積層物をセラミックス粉末で囲むようにカーボンダイスにセットしプレスする第一プレス工程、及び第一プレス工程よりも高い温度でプレスする第二プレス工程を備える。
Below, suitable embodiment is described in detail about the manufacturing method of the inorganic fiber bond-type ceramics of this invention.
The inorganic fiber-bonded ceramic manufacturing method according to the present embodiment includes a first press step of setting and pressing a laminate as a raw material on a carbon die so as to surround the ceramic powder, and pressing at a temperature higher than the first press step. A second pressing step.

本実施形態において、無機繊維結合型セラミックスの原料となる積層物は、熱分解開始温度が1900℃以下の無機繊維からなる無機繊維部と、該無機繊維どうしを結合するための無機物質からなる表面層とにより構成される被覆無機繊維の成形体を積層することによって得ることができる。被覆無機繊維の成形体の形態については特別の制限はなく、連続繊維、連続繊維を切断したチョップ状短繊維、あるいは連続繊維を一方向に引き揃えたシート状物又は織物であることができる。   In the present embodiment, the laminate as a raw material of the inorganic fiber-bonded ceramic is composed of an inorganic fiber portion made of inorganic fibers having a thermal decomposition start temperature of 1900 ° C. or less and a surface made of an inorganic substance for bonding the inorganic fibers together. It can obtain by laminating | stacking the molded object of the covering inorganic fiber comprised by a layer. There is no special restriction | limiting about the form of the molded object of a coating inorganic fiber, It can be a continuous fiber, the chopped short fiber which cut | disconnected the continuous fiber, or the sheet-like thing or textile fabric which arranged the continuous fiber in one direction.

本実施形態において、被覆無機繊維の成形体は、例えば特開昭62−289641号公報に記載の方法に従って、下記無機繊維を、酸化性雰囲気下で500〜1600℃の範囲の温度に加熱することによって、熱分解開始温度が1900℃以下の無機繊維からなる無機繊維部と、該無機繊維どうしを結合するための無機物質からなる表面層とにより構成されるように調製することができる。被覆無機繊維の成形体の原料として用いられる無機繊維としては、無機物質から構成されている繊維状物であり、Si系、SiC系などが挙げられるが、特に高温強度に優れているSiC系繊維が好ましい。SiC系繊維としては、一般的に市販されているSiC系セラミックス繊維を用いることができ、代表的なものとして、宇部興産(株)より販売されているチラノ繊維(登録商標)、又は、日本カーボン(株)より販売されているニカロン(登録商標)繊維などが挙げられる。特に、宇部興産(株)より販売されているチラノ繊維(登録商標)が好ましい。In the present embodiment, the molded body of the coated inorganic fiber is obtained by heating the following inorganic fiber to a temperature in the range of 500 to 1600 ° C. in an oxidizing atmosphere, for example, according to the method described in JP-A No. 62-289441. Thus, it can be prepared so as to be constituted by an inorganic fiber portion made of inorganic fibers having a thermal decomposition starting temperature of 1900 ° C. or less and a surface layer made of an inorganic substance for bonding the inorganic fibers. The inorganic fiber used as a raw material for the molded body of the coated inorganic fiber is a fibrous material composed of an inorganic substance, and examples thereof include Si 3 N 4 type and SiC type, but particularly excellent in high temperature strength. SiC fiber is preferred. As SiC fiber, commercially available SiC ceramic fiber can be used, and typical ones include Tyranno fiber (registered trademark) sold by Ube Industries, or Nippon Carbon. Examples include Nicalon (registered trademark) fiber sold by Co., Ltd. In particular, Tyranno Fiber (registered trademark) sold by Ube Industries, Ltd. is preferable.

被覆無機繊維の成形体は、内部の無機繊維部と、その無機繊維部の外側の表面層とから構成される。無機繊維部は、(a)Si、M、C及びOを含む非晶質物質(MはTi又はZrを示す。以下、同様である。)、(b)β−SiC、MC及びCを含む結晶質超微粒子と、SiO及びMOを含む非晶質物質との集合体、又は(c)上記(a)と上記(b)との混合物を含有する無機質物質で構成され、表面層は、(d)Si及びO、場合によりMを含む非晶質物質、(e)結晶質のSiO及び/又はMOを含む結晶質物質、又は(f)上記(d)と上記(e)との混合物を含有する無機質物質で構成されていることが好ましい。無機繊維部を構成する無機繊維の各元素の割合は、通常、Si:30〜60質量%、M:0.5〜35質量%、好ましくは1〜10質量%、C:25〜40質量%、O:0.01〜30質量%であることが好ましい。被覆無機繊維の相当直径は、特に限定されないが、5〜20μmが好ましい。また、被覆無機繊維の表面層は、主にSiOからなることが好ましい。The molded body of the coated inorganic fiber is composed of an internal inorganic fiber portion and a surface layer outside the inorganic fiber portion. The inorganic fiber part includes (a) an amorphous material containing Si, M, C, and O (M represents Ti or Zr. The same applies hereinafter), (b) contains β-SiC, MC, and C. An assembly of crystalline ultrafine particles and an amorphous material containing SiO 2 and MO 2 , or (c) an inorganic material containing a mixture of (a) and (b) above, the surface layer being (D) an amorphous material containing Si and O, optionally M, (e) a crystalline material containing crystalline SiO 2 and / or MO 2 , or (f) (d) and (e) above It is preferable that it is comprised with the inorganic substance containing a mixture with these. The ratio of each element of the inorganic fiber constituting the inorganic fiber portion is usually Si: 30-60% by mass, M: 0.5-35% by mass, preferably 1-10% by mass, C: 25-40% by mass. , O: 0.01 to 30% by mass is preferable. The equivalent diameter of the coated inorganic fiber is not particularly limited, but is preferably 5 to 20 μm. The surface layer of the coated inorganic fiber is preferably mainly composed of SiO 2 .

また、被覆無機繊維の表面層の厚さを無機繊維部の繊維径(無機繊維の直径)によって変えることで、無機繊維結合型セラミックスの特性をより安定にすることが可能となる。繊維径をDμmとすると、表面層の厚さTμmは、0.023D〜0.090Dの範囲内が好ましい。表面層の厚さが、0.023Dより薄くなると、表面層による無機繊維の熱分解を抑制する効果が小さくなる傾向にある。一方、表面層の厚さが、0.090Dより厚くなると、繊維結合型セラミックス中の被覆無機繊維の無機繊維部の占める割合が少なくなり、高温特性が低下する傾向にある。   Further, by changing the thickness of the surface layer of the coated inorganic fiber according to the fiber diameter of the inorganic fiber portion (diameter of the inorganic fiber), it becomes possible to further stabilize the characteristics of the inorganic fiber-bonded ceramic. When the fiber diameter is D μm, the thickness T μm of the surface layer is preferably in the range of 0.023D to 0.090D. When the thickness of the surface layer becomes thinner than 0.023D, the effect of suppressing thermal decomposition of inorganic fibers by the surface layer tends to be small. On the other hand, if the thickness of the surface layer is greater than 0.090D, the proportion of the inorganic fiber portion of the coated inorganic fiber in the fiber-bonded ceramic decreases, and the high-temperature characteristics tend to deteriorate.

本実施形態に係る無機繊維結合型セラミックスの製造方法は、上記のようにして得られた積層物をセラミックス粉末で囲むようにカーボンダイスにセットし、不活性ガス雰囲気中、1000〜1800℃の温度及び5〜50MPaの圧力でプレスする第一プレス工程、及び該第一プレス工程で得られたセラミックス被覆積層物を、不活性ガス雰囲気中、1600〜1900℃の温度でかつ前記第一プレス工程よりも高い温度及び5〜100MPaの圧力でプレスする第二プレス工程を備える。   In the method for producing an inorganic fiber-bonded ceramic according to the present embodiment, the laminate obtained as described above is set on a carbon die so as to be surrounded by ceramic powder, and the temperature is 1000 to 1800 ° C. in an inert gas atmosphere. And the first press step of pressing at a pressure of 5 to 50 MPa, and the ceramic-coated laminate obtained in the first press step at a temperature of 1600 to 1900 ° C. in an inert gas atmosphere and from the first press step A second pressing step of pressing at a higher temperature and a pressure of 5 to 100 MPa.

本実施形態においては、2段のホットプレス工程のうち第1段目の第一プレス工程で、積層物の周囲に配置したセラミックス粉末を予め無機繊維の熱分解ガスの放出を抑制できる程度に密閉状態にすることによって、第2段目の第二プレス工程での無機繊維の熱分解反応を成形体全域で均一にすることができる。   In the present embodiment, the ceramic powder disposed around the laminate is sealed in advance in the first press step of the first step out of the two steps of hot press so that the release of pyrolysis gas of inorganic fibers can be suppressed in advance. By making it into a state, the thermal decomposition reaction of the inorganic fibers in the second press step of the second stage can be made uniform over the entire molded body.

以下、本実施形態の特徴である積層物を囲むセラミックス粉末について説明する。本実施形態において、セラミックス粉末は、無機繊維結合型セラミックスの構造を達成するために、第一プレス工程において、無機繊維の熱分解ガスの放出を抑制できる程度に第二プレス工程のプレス温度より低い温度で加熱し前記積層物を覆った状態にするために用いる。したがって、単にセラミックス粉末で覆うのみでは、セラミックス粉末の空隙を通して、熱分解反応により発生したガスが放出されるため、成形体内のガスを厳密にコントロールすることは困難である。厳密にコントロールするためには、第二プレス工程のプレス温度より低い温度で加熱し熱分解ガスの放出を抑制できる程度に密閉状態にする必要がある。熱分解ガスの放出を抑制できる程度に密閉状態とは、熱分解ガスを完全に遮断するほどの密閉状態である必要はないが、無機繊維結合型セラミックスの構造となる組成を維持できる密閉状態が好ましい。この密閉状態によって無機繊維結合型セラミックスの歩留まり、強度等の特性が変わるため、密閉状態は、目的や要求の程度に応じて管理すればよい。   Hereinafter, the ceramic powder surrounding the laminate, which is a feature of the present embodiment, will be described. In this embodiment, the ceramic powder is lower than the press temperature of the second press step to the extent that the release of pyrolysis gas of the inorganic fibers can be suppressed in the first press step in order to achieve the structure of the inorganic fiber-bonded ceramic. It is used to cover the laminate by heating at a temperature. Therefore, it is difficult to strictly control the gas in the molded body because the gas generated by the thermal decomposition reaction is released through the voids of the ceramic powder simply by covering with the ceramic powder. In order to strictly control, it is necessary to heat at a temperature lower than the press temperature in the second pressing step so that the hermetically sealed state can be suppressed to prevent the release of pyrolysis gas. The sealed state that can suppress the release of pyrolysis gas does not need to be a sealed state that completely blocks pyrolysis gas, but the sealed state that can maintain the composition that forms the structure of the inorganic fiber-bonded ceramics. preferable. Since the properties such as yield and strength of the inorganic fiber-bonded ceramics change depending on the sealed state, the sealed state may be managed according to the purpose and the degree of requirement.

熱分解により発生したガスは、場合によっては、適度にダイスの外に放出する必要がある。セラミックス粉末が密閉状態となる温度をコントロールできれば、熱分解ガスの放出と抑制をコントロールすることができる。例えば、原料繊維の段階で厳密に無機繊維結合型セラミックスの組成にコントロールした場合は、ダイスの外に熱分解ガスを放出させないようにセラミックス粉末が密閉状態となる温度を低くする。また、逆に熱分解ガスの放出を多くしたい場合は、セラミックス粉末が密閉状態となる温度を高くする。無機繊維の熱分解反応の状況によって、セラミックス粉末の種類、組成を変更し、セラミックス粉末が密閉状態となる温度をコントロールして、熱分解ガスの放出と抑制をコントロールできる。   In some cases, the gas generated by the thermal decomposition needs to be released out of the die appropriately. If the temperature at which the ceramic powder is sealed can be controlled, release and suppression of the pyrolysis gas can be controlled. For example, when the composition of the inorganic fiber-bonded ceramic is strictly controlled at the raw fiber stage, the temperature at which the ceramic powder is sealed is lowered so as not to release the pyrolysis gas outside the die. Conversely, when it is desired to increase the release of pyrolysis gas, the temperature at which the ceramic powder is sealed is increased. Depending on the state of the thermal decomposition reaction of the inorganic fiber, the kind and composition of the ceramic powder can be changed, and the temperature at which the ceramic powder becomes sealed can be controlled to control the release and suppression of the pyrolysis gas.

積層物を囲むセラミックス粉末としては、1000〜1800℃の範囲で焼結するセラミックス粉末が好ましい。そのようなセラミックス粉末としては、例えば、1300〜1500℃の範囲で焼結し密閉状態となるアルミナ粉末が挙げられる。アルミナ粉末は、比較的安価であり入手しやすく高温での安定性も優れているため、好適に用いられる。   The ceramic powder surrounding the laminate is preferably a ceramic powder that is sintered in the range of 1000 to 1800 ° C. As such a ceramic powder, for example, an alumina powder that is sintered in a range of 1300 to 1500 ° C. to be in a sealed state can be mentioned. Alumina powder is suitably used because it is relatively inexpensive, easily available, and excellent in stability at high temperatures.

また、前記セラミックス粉末は、1800℃以下で溶融する無機物質と、第二プレス工程のプレス温度より溶融温度の高い無機物質との混合物であってもよい。1800℃以下で溶融する無機物質としては、石英ガラスやアルミノケイ酸ガラス等が挙げられる。また、第二プレス工程のプレス温度より溶融温度の高い無機物質としては、炭素、SiC、BN等が挙げられる。特に、前記1800℃以下で溶融する無機物質がSiOを主成分とするガラスであり、第二プレス工程のプレス温度より溶融温度の高い無機物質がBNであるものが好適な組み合わせとして挙げられる。SiOを主成分とするガラスとBN粉末との混合物を用いることで、軟化、あるいは溶融したSiOによりBN粉末の間隙が密封され、1300〜1500℃の範囲内で熱分解ガスの放出を抑制できる緻密化したセラミックスで積層物を覆われた状態にすれば、熱分解ガスのコントロールが可能である。The ceramic powder may be a mixture of an inorganic substance that melts at 1800 ° C. or less and an inorganic substance that has a melting temperature higher than the pressing temperature in the second pressing step. Examples of the inorganic substance that melts at 1800 ° C. or lower include quartz glass and aluminosilicate glass. Moreover, carbon, SiC, BN etc. are mentioned as an inorganic substance whose melting temperature is higher than the press temperature of a 2nd press process. In particular, the inorganic material that melts at 1800 ° C. or less is glass mainly composed of SiO 2 , and the inorganic material whose melting temperature is higher than the pressing temperature in the second pressing step is BN. By using a mixture of glass and BN powder mainly composed of SiO 2 , the gap of BN powder is sealed by softened or melted SiO 2 , and the release of pyrolysis gas is suppressed within the range of 1300-1500 ° C. If the laminate is covered with a densified ceramic, the pyrolysis gas can be controlled.

このように、本実施形態のポイントのひとつは、第一プレス工程において、セラミックス粉末を周囲に配置した積層物を第二プレス工程のプレス温度以下で加熱することにより、熱分解ガスの放出を抑制できる程度に積層物の周囲をセラミックスで密閉状態にすることである。これにより、下記3つの課題を解決することができる。   As described above, one of the points of this embodiment is that, in the first pressing step, the release of the pyrolysis gas is suppressed by heating the laminate in which the ceramic powder is arranged around the pressing temperature of the second pressing step. The periphery of the laminate is sealed with ceramics as much as possible. Thereby, the following three problems can be solved.

課題の1つ目は、カーボンダイスの寿命である。上記の通り、一般に無機繊維結合型セラミックスは、ホットプレスの過程で原料繊維の熱分解を制御することによって、微細で且つ複雑な構造を達成している。上記ホットプレス過程においては、熱分解反応によって発生する繊維を構成している元素に由来するガス(SiO、COなど)をダイスの隙間を通して外に放出させながら、原料繊維内の組成をコントロールしている。このとき、カーボンダイスと放出されるガスとの反応により、カーボンダイスの表面に主にSiを主成分とする炭化物や酸化物が生成する。そのため、カーボンダイスを数回使用すると、この生成した炭化物等が堆積して、ダイス同士の合せ面に隙間ができてしまう。また、この炭化物等を取り除こうとすると、炭化物等と一緒にカーボンダイスの一部が欠けてしまい、同じくダイス同士の合せ面に隙間ができてしまう。こうなると、ダイス同士の隙間の寸法精度が悪くなり、ダイスの隙間からの熱分解ガスの放出量が多くなり、カーボンダイスに近い素材の端部は、無機繊維結合型セラミックスの本来の構造にならず、高い力学的特性が得られない。さらに、寸法精度が悪くなれば、素材全体の力学的特性が低下する場合もある。よって、カーボンダイスはホットプレス条件により異なるが、頻繁に交換する必要がある。そのため、ダイスに掛かるコストが嵩むため、ダイスのコストを低減させる必要がある。   The first problem is the life of the carbon die. As described above, in general, inorganic fiber-bonded ceramics achieve a fine and complicated structure by controlling the thermal decomposition of raw fiber during the hot pressing. In the hot pressing process, the composition of the raw fiber is controlled while releasing the gas (SiO, CO, etc.) derived from the elements constituting the fiber generated by the thermal decomposition reaction through the gap between the dies. Yes. At this time, carbides and oxides mainly containing Si are generated on the surface of the carbon die by the reaction between the carbon die and the released gas. Therefore, when the carbon die is used several times, the generated carbides and the like are accumulated, and a gap is formed on the mating surface between the dies. Further, if this carbide or the like is removed, a part of the carbon die is chipped together with the carbide or the like, and a gap is similarly formed on the mating surface between the dies. If this happens, the dimensional accuracy of the gap between the dies will deteriorate, the amount of pyrolysis gas released from the gap between the dies will increase, and the edge of the material close to the carbon die will have the original structure of inorganic fiber bonded ceramics. Therefore, high mechanical properties cannot be obtained. Furthermore, if the dimensional accuracy is deteriorated, the mechanical properties of the entire material may be deteriorated. Therefore, the carbon die needs to be frequently replaced although it varies depending on the hot press conditions. For this reason, since the cost of the dice increases, it is necessary to reduce the cost of the dice.

2つ目は、ダイスの寸法精度を一定に保持しても、被覆無機繊維の積層物の外形寸法を精度よく成形しないと、1つ目と同じくダイスと積層物との隙間のバラツキにより、熱分解ガスの放出量が不均一となり、厳密に熱分解反応を制御することができないという課題である。しかしながら、被覆無機繊維は非常に加工性が悪いため、裁断寸法にバラツキがあり、このバラツキが大きくなると、カーボンダイスに近い素材の端部は、無機繊維結合型セラミックスの本来の構造にならず、高い力学的特性が得られない。さらに、寸法精度が悪くなれば、素材全体の力学的特性が低下する場合もある。そのため、寸法精度の高い積層物を作製する必要があり、時間を要している。   Secondly, even if the dimensional accuracy of the die is kept constant, if the outer dimensions of the laminate of the coated inorganic fiber are not accurately formed, the heat from the gap between the die and the laminate is caused by the variation of the gap between the die and the laminate. The problem is that the amount of cracked gas released becomes non-uniform and the thermal decomposition reaction cannot be strictly controlled. However, since the coated inorganic fiber is very poor in workability, there is a variation in the cutting size, and when this variation becomes large, the end of the material close to the carbon die does not have the original structure of the inorganic fiber-bonded ceramic, High mechanical properties cannot be obtained. Furthermore, if the dimensional accuracy is deteriorated, the mechanical properties of the entire material may be deteriorated. Therefore, it is necessary to produce a laminate with high dimensional accuracy, which takes time.

さらに、3つ目の課題としては、無機繊維結合型セラミックス素材の大型化に伴う、積層物の端部と中央部での熱分解ガスの放出量の差による構造の不均一が挙げられる。1つ目の課題でも述べたが、無機繊維結合型セラミックスは、ホットプレス過程の熱分解反応によって発生する繊維を構成している元素に由来するガス(SiO、COなど)をダイスの隙間から放出させながら、原料繊維内の組成をコントロールすることによって、その微細な組織構造を達成している。そのため、無機繊維結合型セラミックスの成形体サイズを大きくすると、成形体の端部と中央部では、目標温度での保持時間の差、並びに熱分解ガスの放出のしやすさ等により、構造が不均一になる。例えば、成形温度を1800℃に、保持時間を1時間に設定した場合、成形体の端部は、中央部に比べ、早く目標温度に到達する。場合によっては、端部と中央部で温度差を生じることもある。そうすると、端部と中央部での成形温度と保持時間の差により、熱分解ガスの発生するタイミングや量が異なる。無機繊維結合型セラミックスの成形体サイズを大きくするためには、成形体端部と中央部との熱分解ガスの発生、及び放出量を均一にする必要がある。   Furthermore, as a third problem, there is a non-uniform structure due to the difference in the amount of pyrolysis gas released at the end and the center of the laminate as the inorganic fiber bonded ceramic material becomes larger. As described in the first issue, inorganic fiber-bonded ceramics release gas (SiO, CO, etc.) derived from the elements constituting the fibers generated by the thermal decomposition reaction during the hot pressing process from the gap between the dies. The fine structure is achieved by controlling the composition in the raw material fiber. For this reason, when the size of the inorganic fiber-bonded ceramics is increased, the structure is unsatisfactory due to the difference in holding time at the target temperature and the ease of release of pyrolysis gas at the end and center of the green body. It becomes uniform. For example, when the molding temperature is set to 1800 ° C. and the holding time is set to 1 hour, the end portion of the molded body reaches the target temperature earlier than the center portion. In some cases, a temperature difference may occur between the end and the center. If it does so, the timing and quantity which generate | occur | produce pyrolysis gas differ with the difference of the shaping | molding temperature and holding time in an edge part and a center part. In order to increase the size of the molded body of the inorganic fiber-bonded ceramics, it is necessary to make the generation and release amount of pyrolysis gas at the end and the center of the molded body uniform.

本実施形態によれば、第一プレス工程において、セラミックス粉末を予め無機繊維の熱分解ガスの放出を抑制できる密閉状態にすることによって、第二プレス工程での無機繊維の熱分解反応を成形体全域で均一にすることにより、上記3つの課題を解決し、欠陥が少なく、端部と中央部で同等の組織構造及び力学的特性を有する無機繊維結合型セラミックスを歩留まりよく製造することができ、大型化することも可能となる。   According to the present embodiment, in the first pressing step, the ceramic powder is previously sealed in a state that can suppress the release of pyrolytic gas of the inorganic fiber, thereby forming the thermal decomposition reaction of the inorganic fiber in the second pressing step. By making it uniform over the entire area, the above three problems can be solved, and the inorganic fiber-bonded ceramics having the same structure and mechanical properties at the end portion and the central portion can be produced with a high yield. It is also possible to increase the size.

また、前記セラミックス粉末は、流動性のある粉末であることが好ましい。これにより、下記4つ目の課題をも同時に解決することができる。   The ceramic powder is preferably a fluid powder. Thereby, the following fourth problem can be solved at the same time.

4つ目は、突発的なダイス、又は上下パンチ棒の破損である。ホットプレス前の原料繊維積層物の単位体積あたりの繊維の体積割合である繊維体積率を均一に揃えることは非常に困難であり、積層物には部分的に粗密がある。このため、ホットプレスの加圧の際に、積層物には不均一な負荷がかかる。そうすると、積層物の繊維体積率の低い位置に比べ、繊維体積率の高い位置は、予定以上の負荷が掛かることになる。この不均一な負荷によりカーボンダイスが突発的に破損することがある。さらには、カーボン製の上下パンチ棒にもその衝撃が伝播し、パンチ棒も破損することもある。これらの突発的なダイス、及びパンチ棒の破損は、ホットプレス装置のヒーター、及び断熱材に損傷を与える場合もある。そして、この突発的な破損は、積層物のサイズが大きくなり、パンチ棒、並びにカーボンダイスに掛かる負荷が大きくなれば、さらにその発生頻度は多くなると予想される。この突発的なダイスの損傷や上下パンチへの衝撃の伝播を防止するために、積層物とダイスとの間に高靭性なセラミックス複合材料、又は炭素繊維強化炭素複合材料(CC複合材)を挟むことが有効ではあるが、これだけでは根本的な解決にはならない。今後、無機繊維結合型セラミックスの成形サイズを大型化するためには、この突発的な損傷を防止する必要がある。   The fourth is a sudden die or breakage of the upper and lower punch bars. It is very difficult to make uniform the fiber volume ratio, which is the volume ratio of fibers per unit volume of the raw fiber laminate before hot pressing, and the laminate is partially dense. For this reason, a non-uniform load is applied to the laminate during pressurization of the hot press. If it does so, compared with the position where the fiber volume ratio of a laminated body is low, the load beyond a plan will be applied to the position where a fiber volume ratio is high. This uneven load may cause the carbon die to break suddenly. Furthermore, the impact is propagated to the upper and lower punch bars made of carbon, and the punch bars may be damaged. These sudden dice and punch bar breakage may damage the heater and insulation of the hot press apparatus. This sudden breakage is expected to occur more frequently as the size of the laminate increases and the load on the punch bar and carbon die increases. In order to prevent this sudden die damage and propagation of impact to the upper and lower punches, a tough ceramic composite material or a carbon fiber reinforced carbon composite material (CC composite material) is sandwiched between the laminate and the die. It is effective, but this alone is not a fundamental solution. In the future, in order to increase the molding size of inorganic fiber-bonded ceramics, it is necessary to prevent this sudden damage.

本実施形態においては、セラミックス粉末として、流動性のある粉末を用いることによって、積層物の繊維体積率の粗密を緩和することができるため、ホットプレスでの加圧ムラが解消され、部分的に負荷が集中して、突発的にカーボンダイスが破損することを防止できる。セラミックス粉末の流動性を高めるために、例えば、粉末をスプレードライヤー等により球状にしてから使用することも有効である。   In this embodiment, by using a fluid powder as the ceramic powder, it is possible to reduce the density of the fiber volume ratio of the laminate. It is possible to prevent the carbon die from being suddenly damaged due to concentration of load. In order to increase the fluidity of the ceramic powder, for example, it is also effective to use the powder after making it spherical with a spray dryer or the like.

次に、第一プレス工程と第二プレス工程のプレスについて具体的に説明する。まず、プレスに用いるカーボンダイス中にセラミックス粉末に覆われた積層物を入れ、その上にプレス用パンチ棒をセットし、ホットプレス装置に入れる。この際、カーボンダイスとセラミックス粉末との離型性をよくするために、カーボンダイスにBNをスプレーしてもよい。また、カーボンシートをカーボンダイスとセラミックス粉末の間に挟むことも離型性をよくするために有効な手段である。セラミックス粉末と積層物との離型性についても同様にカーボンシートをセラミックス粉末と積層物の間に挟むことによって、ホットプレス成形後に無機繊維結合型セラミックスの成形体を容易に取り出すことができる。   Next, the press in the first press process and the second press process will be specifically described. First, a laminate covered with ceramic powder is placed in a carbon die used for pressing, a pressing punch bar is set thereon, and the resultant is put into a hot press apparatus. At this time, in order to improve the releasability between the carbon die and the ceramic powder, BN may be sprayed onto the carbon die. In addition, sandwiching the carbon sheet between the carbon die and the ceramic powder is also an effective means for improving the releasability. Similarly, regarding the releasability between the ceramic powder and the laminate, by sandwiching the carbon sheet between the ceramic powder and the laminate, it is possible to easily take out the inorganic fiber-bonded ceramic compact after hot press molding.

ホットプレス装置にダイスをセットした後、不活性雰囲気に置換する。そして、セラミックス粉末が緻密化したセラミックスで積層物が覆われ、積層物からの熱分解ガスの放出を抑制する程度に密閉状態となる1000〜1800℃の範囲の第一プレス工程の設定温度まで昇温する。このときの昇温速度は特に規定はないが、積層物の外周部と中央部との温度差が小さくなる昇温速度が望ましい。また、積層物の外周部と中央部の温度を均一にするために、第一プレス工程のプレス温度以下でプレス前に温度保持の時間を設定してもよい。そして、第一プレス工程のプレス温度において、5〜50MPaの圧力を負荷する。このプレスは、温度を保持した状態であっても、昇温しながらであってもかまわない。第一プレス工程のプレスが終了したら、そのまま引き続き第一プレス工程のプレス温度より高い1600〜1900℃の範囲の所定温度まで昇温し、5〜100MPaの圧力を負荷し、第二プレス工程のプレスを行うことができる。第一プレス工程から第二プレス工程までの昇温速度については、第一プレス工程までと同様に積層物の外周部と中央部との温度差が小さくなる昇温速度が望ましく、また、積層物の外周部と中央部の温度を均一にするために、温度保持の時間を設定してもよい。   After setting the dice in the hot press machine, replace with an inert atmosphere. Then, the laminate is covered with the ceramics in which the ceramic powder is densified, and the temperature is raised to the set temperature of the first press step in the range of 1000 to 1800 ° C. where the release state of the pyrolysis gas from the laminate is suppressed. Warm up. The temperature increase rate at this time is not particularly defined, but a temperature increase rate with a small temperature difference between the outer peripheral portion and the central portion of the laminate is desirable. Moreover, in order to make the temperature of the outer peripheral part and center part of a laminated body uniform, you may set the time of temperature holding before the press below the press temperature of a 1st press process. And the pressure of 5-50 Mpa is loaded in the press temperature of a 1st press process. This press may be in a state where the temperature is maintained or while the temperature is raised. When the press in the first press step is completed, the temperature is continuously raised to a predetermined temperature in the range of 1600 to 1900 ° C. higher than the press temperature in the first press step, a pressure of 5 to 100 MPa is applied, and the press in the second press step It can be performed. As for the rate of temperature increase from the first press step to the second press step, a temperature increase rate at which the temperature difference between the outer peripheral portion and the center portion of the laminate is small is desirable as in the first press step. In order to make the temperature of the outer peripheral part and the central part uniform, the temperature holding time may be set.

第一プレス工程と第二プレス工程のプレスは、間隔をあけて行ってもよく、連続して行ってもよい。しかし、第一プレス工程のプレスを終了した後、いったん温度を下げると、密閉状態にあるセラミックスに亀裂が発生し、第二プレス工程のプレス温度へ昇温するまでに、その亀裂から無機繊維の熱分解ガスが外に放出される場合がある。また、プレス工程の効率化の観点からも第一プレス工程と第二プレス工程のプレス工程は連続して行うことが好ましい。   The pressing in the first pressing step and the second pressing step may be performed at intervals or may be performed continuously. However, once the temperature in the first press step is finished, once the temperature is lowered, cracks occur in the ceramics in the sealed state, and from the crack, the inorganic fibers are removed from the crack until the temperature is raised to the press temperature in the second press step. Pyrolysis gas may be released to the outside. Moreover, it is preferable to perform the press process of a 1st press process and a 2nd press process continuously from a viewpoint of efficiency improvement of a press process.

第一プレス工程と第二プレス工程の雰囲気は、不活性ガス雰囲気であり、一般的には、アルゴンガス雰囲気が好ましい。また、セラミックス粉末を焼結させて、熱分解により発生するガスをコントロールする際の効果をより高める方法として、雰囲気圧力を高めることも有効である。ホットプレス装置内の雰囲気圧を高めると、熱分解反応により発生したガスの放出を減少させる効果がある。また、雰囲気圧力を高めることは、セラミックス粉末の密閉状態のバラツキによる熱分解ガスの放出を防止する有効な手段である。昇温開始から雰囲気圧力を高めておくことにより、セラミックス粉末の焼結前においても熱分解を抑制できる。雰囲気圧力は、通常0.01〜1MPaの範囲であり、特に0.1〜1MPaの範囲が好ましい。但し、無機繊維結合型セラミックス内にボイドを巻き込まないためには、プレス圧力以下である必要がある。   The atmosphere of the first press step and the second press step is an inert gas atmosphere, and an argon gas atmosphere is generally preferable. It is also effective to increase the atmospheric pressure as a method of further enhancing the effect of controlling the gas generated by thermal decomposition by sintering ceramic powder. Increasing the atmospheric pressure in the hot press apparatus has the effect of reducing the release of gas generated by the thermal decomposition reaction. Further, increasing the atmospheric pressure is an effective means for preventing the release of pyrolysis gas due to the variation in the hermetic state of the ceramic powder. By increasing the atmospheric pressure from the start of temperature rise, thermal decomposition can be suppressed even before the ceramic powder is sintered. The atmospheric pressure is usually in the range of 0.01 to 1 MPa, particularly preferably in the range of 0.1 to 1 MPa. However, in order not to entrap voids in the inorganic fiber-bonded ceramics, it is necessary to be below the pressing pressure.

以下、本発明を実施例、及び比較例により示す。まず、実施例、及び比較例の無機繊維結合型セラミックスの検査、及び特性評価は、次の方法で実施した。   Hereinafter, the present invention will be illustrated by examples and comparative examples. First, the inspection and characteristic evaluation of the inorganic fiber bonded ceramics of Examples and Comparative Examples were performed by the following methods.

(蛍光探傷試験)
成形した無機繊維結合型セラミックスの端部と中央部の表面欠陥の状態を検査するために、精密機械部品の検査に用いる蛍光探傷試験を実施した。蛍光探傷試験の方法は以下のとおりである。まず、平面研削盤により、成形した無機繊維結合型セラミックスの表面を0.5〜1mm程度研削した後、浸透液の浸透を妨げる付着物や油脂類などの汚れなどをエタノールで洗浄し、70℃で乾燥させた。次に、浸透液(スーパーグロー蛍光浸透探傷剤、OD−2800 III)を刷毛塗りし、10分程度放置した後、浸透液を流水で軽く洗浄し、現像液(スーパーグロー、DN−600P)を極僅か噴霧した。そして、5分程度、放置した後、指示模様が明瞭に識別できる紫外線強度(800μW/cm以上)をもつ紫外線照射装置を用い、直ちに暗所で波長330〜360nmの紫外線を照射し、表面を目視により観察し、写真撮影を行った。
(Fluorescence testing)
In order to inspect the state of surface defects at the edge and center of the formed inorganic fiber-bonded ceramics, a fluorescent flaw detection test used for inspection of precision machine parts was performed. The method of the fluorescent flaw detection test is as follows. First, after grinding the surface of the formed inorganic fiber-bonded ceramics by about 0.5 to 1 mm with a surface grinder, dirt such as deposits and oils that impede penetration of the permeate is washed with ethanol, and 70 ° C. And dried. Next, brush the penetrant (Super Glow Fluorescent Penetrant, OD-2800 III) and let it stand for about 10 minutes, then lightly wash the penetrant with running water and remove the developer (Super Glow, DN-600P). Sprayed very little. Then, after leaving for about 5 minutes, using an ultraviolet irradiation device having an ultraviolet intensity (800 μW / cm 2 or more) with which the indication pattern can be clearly identified, immediately irradiate the surface with ultraviolet rays having a wavelength of 330 to 360 nm in the dark. It was observed visually and photographed.

(4点曲げ試験)
第二プレス工程後の無機繊維結合型セラミックスより、幅4mm、高さ3mm、長さ40mmの4点曲げ試験片を採取し、材料試験機を用いて、上部支点間距離10mm、下部支点間距離30mm、クロスヘッド速度0.5mm/minで4点曲げ試験を実施し、成形した無機繊維結合型セラミックスの端部から中央部までの曲げ強度を測定した。
(4-point bending test)
From the inorganic fiber-bonded ceramics after the second pressing step, a 4-point bending test piece with a width of 4 mm, a height of 3 mm, and a length of 40 mm was taken, and using a material testing machine, the distance between the upper fulcrums was 10 mm and the distance between the lower fulcrums. A 4-point bending test was performed at 30 mm and a crosshead speed of 0.5 mm / min, and the bending strength from the end to the center of the formed inorganic fiber-bonded ceramic was measured.

(実施例1)
無機繊維として、繊維径8.5μmのチラノ繊維(登録商標:宇部興産株式会社製)を用いて繻子織物を作製し、80×80mm角に切断した後、1000℃の空気中で20時間保持して無機繊維部、及び表面層から構成される被覆無機繊維からなる織物シートを得た。この被覆無機繊維の表面にはa=0.06に相当する平均約510nmの均一な表面層が形成されていた。ここでaとは、被覆無機繊維の表面層の厚さをTμm、無機繊維の直径をDμmとした場合、a=T/Dである。そして、この繻子織物シートを100枚積層し、有機バインダーで固めた積層物を作製した。この積層物中の被覆無機繊維の無機繊維部は、主にSi、Ti、C及びOを含む非晶質物質、並びにβ−SiC、TiC及びCを含む結晶質超微粒子と、SiO及びTiOを含む非晶質物質との集合体の混合物で構成され、表面層は、主にSi及びO、Tiを含む非晶質物質で構成されていた。
Example 1
As an inorganic fiber, a cocoon fabric is prepared using a Tyranno fiber (registered trademark: manufactured by Ube Industries, Ltd.) having a fiber diameter of 8.5 μm, cut into 80 × 80 mm square, and then kept in air at 1000 ° C. for 20 hours. Thus, a woven fabric sheet made of coated inorganic fibers composed of an inorganic fiber portion and a surface layer was obtained. A uniform surface layer having an average of about 510 nm corresponding to a = 0.06 was formed on the surface of the coated inorganic fiber. Here, a is a = T / D, where the thickness of the surface layer of the coated inorganic fiber is T μm and the diameter of the inorganic fiber is D μm. And 100 sheets of this insulator fabric sheet were laminated | stacked, and the laminated body hardened with the organic binder was produced. The inorganic fiber portion of the coated inorganic fiber in the laminate is mainly composed of an amorphous substance containing Si, Ti, C and O, and crystalline ultrafine particles containing β-SiC, TiC and C, and SiO 2 and TiO. The surface layer was mainly composed of an amorphous material containing Si, O, and Ti.

次に、作製した積層物をカーボンダイスにセットした。
図1に、本実施例の第一プレス工程と第二プレス工程のプレスに用いたダイスの写真を示す。図1(a)は、4つのパーツからなるダイスの上面図、図1(b)は、ダイスを分割したときの1つのパーツの斜視図、図1(c)は、図1(b)の1つのパーツの斜視図の点線部を拡大した写真である。ダイスは、図1(a)に示すように4つのパーツで1つのダイスを形成し、4つのパーツはそれぞれ分割できるようになっている。その1つのパーツの斜視図が図1(b)であり、パーツの内側は、プレスに用いられると、パンチ棒、積層物、セラミック粉末等が接し、熱分解により発生したガスの影響により、内側表面が損傷する。その損傷した代表的なダイスを図1(c)に示した。本実施例で用いたダイスは、本来であれば、無機繊維結合型セラミックス成形体の作製が困難なダイス表面が損傷した内寸が90×90mm角のカーボンダイスである。ダイス内部の表面には、熱分解により発生したガスの影響で形成された凹凸のある様子が観察された。
Next, the produced laminate was set on a carbon die.
In FIG. 1, the photograph of the die | dye used for the press of the 1st press process of a present Example and a 2nd press process is shown. 1 (a) is a top view of a four-part die, FIG. 1 (b) is a perspective view of one part when the die is divided, and FIG. 1 (c) is a perspective view of FIG. 1 (b). It is the photograph which expanded the dotted line part of the perspective view of one part. As shown in FIG. 1A, the dice form one die with four parts, and each of the four parts can be divided. The perspective view of one of the parts is shown in FIG. 1 (b). When the inside of the part is used in a press, the inside of the part is in contact with punch bars, laminates, ceramic powder, etc., and is affected by the gas generated by thermal decomposition. The surface is damaged. A typical damaged die is shown in FIG. The die used in this example is a carbon die having an inside dimension of 90 × 90 mm square, where the surface of the die, which is difficult to produce an inorganic fiber bonded ceramic molded body, is damaged. On the surface inside the die, it was observed that there were irregularities formed by the influence of gas generated by thermal decomposition.

カーボンダイスへの積層物のセット方法を図2(a)を用いて説明する。まず、下パンチ棒10をセットしたカーボンダイス1(カーボン製モールド)の側面に、カーボンシート6を配置した。次に、セットした下パンチ棒10の上に厚さ5mmのCC複合材料製スペーサー5を置き、その上に厚さ0.2mmのカーボンシート6を敷いて、アルミナ粉末8を120g入れて表面を平坦に整えた。そして、そのアルミナ粉末8上にカーボンシート6を敷き積層物7を配置した。次に、この積層物7(80×80mm)とダイス1(90×90mm)の隙間にアルミナ粉末8を30g充填し、さらに、積層物7上にカーボンシート6を敷き、その上にもアルミナ粉末8を120g入れ、表面を平坦に整えた。これで積層物7は、アルミナ粉末8で囲まれていることになる。その後、アルミナ粉8末上にカーボンシート6を敷き、その上にCC複合材料製スペーサー5を置き、最後に上パンチ棒4をセットした。   A method of setting the laminate on the carbon die will be described with reference to FIG. First, the carbon sheet 6 was disposed on the side surface of the carbon die 1 (carbon mold) on which the lower punch bar 10 was set. Next, a 5 mm thick CC composite material spacer 5 is placed on the set lower punch bar 10, a carbon sheet 6 having a thickness of 0.2 mm is laid thereon, and 120 g of alumina powder 8 is placed on the surface. Flattened. Then, a carbon sheet 6 was laid on the alumina powder 8 to arrange the laminate 7. Next, 30 g of alumina powder 8 is filled in the gap between the laminate 7 (80 × 80 mm) and the die 1 (90 × 90 mm), and a carbon sheet 6 is further laid on the laminate 7, and the alumina powder is also deposited thereon. 120 g of 8 was put and the surface was made flat. Thus, the laminate 7 is surrounded by the alumina powder 8. Thereafter, a carbon sheet 6 was laid on the end of the alumina powder 8, a CC composite material spacer 5 was placed thereon, and finally the upper punch bar 4 was set.

カーボンダイスに積層物をセットした状態を図2(a)に示す。なお、図2(a)は模式図のため、カーボンシート6が強調されているが、カーボンシート6の厚さは0.2mmであり、加圧によりさらに薄くなり、表面にはアルミナ粉末8が密着しているため、アルミナ粉末8とカーボンシート6の間から熱分解ガスがダイス外に放出されることは極めて少ない。この状態でアルゴン雰囲気下、温度1400℃、圧力40MPaで第一プレス工程のプレスを行った。引き続き、圧力を保持した状態で温度1750℃に昇温し、1時間保持することによって第二プレス工程のプレスを行い、実施例1に係る無機繊維結合型セラミックスを得た。   FIG. 2A shows a state in which the laminate is set on the carbon die. 2A is a schematic diagram, and the carbon sheet 6 is emphasized. However, the thickness of the carbon sheet 6 is 0.2 mm, which is further reduced by pressurization, and alumina powder 8 is formed on the surface. Due to the close contact, pyrolysis gas is hardly released from the die between the alumina powder 8 and the carbon sheet 6. In this state, pressing in the first pressing step was performed in an argon atmosphere at a temperature of 1400 ° C. and a pressure of 40 MPa. Subsequently, while maintaining the pressure, the temperature was raised to 1750 ° C. and held for 1 hour to perform pressing in the second pressing step, and an inorganic fiber-bonded ceramic according to Example 1 was obtained.

(実施例2)
次に、実施例1と同様の手順で積層物をカーボンダイスにセットして、温度1400℃、圧力40MPaで第一プレス工程のプレスを行い、引き続き圧力を保持した状態で温度1850℃に昇温し1時間保持することによって第二プレス工程のプレスを行い、実施例2に係る無機繊維結合型セラミックスを得た。その他の条件は、実施例1と同様である。積層物を囲んでいるアルミナは、第二プレス工程後の冷却された室温では、繊維結合型セラミックスとアルミナとの熱膨張差により、亀裂が入っており、また、アルミナ粉末と積層物の間にカーボンシートを挟んでいた為、アルミナの角をプラスチックハンマー等で軽く叩くと容易に除去できた。
(Example 2)
Next, the laminate is set on a carbon die in the same procedure as in Example 1, and the first pressing step is performed at a temperature of 1400 ° C. and a pressure of 40 MPa, and then the temperature is increased to 1850 ° C. while maintaining the pressure. By holding for 1 hour, the second pressing step was pressed to obtain an inorganic fiber-bonded ceramic according to Example 2. Other conditions are the same as in the first embodiment. The alumina surrounding the laminate is cracked due to the difference in thermal expansion between the fiber-bonded ceramic and alumina at the cooled room temperature after the second pressing step, and between the alumina powder and the laminate. Since the carbon sheet was sandwiched, it was easily removed by tapping the corners of alumina with a plastic hammer.

得られた実施例1及び2に係る無機繊維結合型セラミックスの蛍光探傷試験後の写真を図3(a)及び(b)に示した。   The photograph after the fluorescent flaw test of the obtained inorganic fiber bonded ceramics according to Examples 1 and 2 is shown in FIGS.

2つの無機繊維結合型セラミックスを比較すると、若干、成形温度の低い実施例1の無機繊維結合型セラミックスの方が、端部の欠陥部分(図3の白黒写真では白色部分)が少ない傾向はあるが、何れも欠陥部分は少ない。この図3の白色部分は、無機繊維結合型セラミックス側面にボイドが存在することを示している。このボイドは、熱分解反応により発生した分解ガスが過度にダイスの外に放出されたためにできたと考えられる。このボイドについては、後述するが、曲げ試験後の試験片側面を電子顕微鏡で観察して確認した。なお、蛍光探傷試験後の写真において、無機繊維結合型セラミックス全体で観察される縞模様は、繊維の織り目模様であり欠陥ではない。   Comparing two inorganic fiber-bonded ceramics, the inorganic fiber-bonded ceramics of Example 1 having a slightly lower molding temperature tend to have fewer defective portions (white portions in the black-and-white photo in FIG. 3). However, all have few defective parts. The white portion in FIG. 3 indicates that voids are present on the side surface of the inorganic fiber bonded ceramic. It is thought that this void was formed because the decomposition gas generated by the thermal decomposition reaction was excessively released out of the die. Although this void will be described later, the side surface of the test piece after the bending test was confirmed by observing with an electron microscope. In the photograph after the fluorescent flaw detection test, the striped pattern observed in the entire inorganic fiber-bonded ceramic is a fiber texture pattern and not a defect.

次に、図4に無機繊維結合型セラミックスの端部から中央部までの4点曲げ試験の結果を示す。損傷したダイスを使用したにも係らず、実施例1及び2はともに端部から中央部まで安定した4点曲げ強度を維持していた。また、端部より採取した4点曲げ試験片の側面を電子顕微鏡により観察した。その結果を図5に示す。繊維間の間隙は、原料繊維の表面層により充填され、ボイドは観察されなかった。実施例1及び2の無機繊維結合型セラミックスは、端部まで、組織構造、及び力学的特性ともに中央部と同等であることがわかった。この結果により、これまで廃棄していたダイスを使用できることが明らかになり、ダイスの寿命を延長することができることがわかった。また、ダイスの寸法(90×90mm)に対して、10mmも小さな積層物(80×80mm)を用いて、ダイスと積層物とのクリアランスが非常に大きいにも係らず前述の結果を達成できた。   Next, FIG. 4 shows the result of a four-point bending test from the end to the center of the inorganic fiber-bonded ceramic. Despite the use of a damaged die, both Examples 1 and 2 maintained stable 4-point bending strength from the end to the center. Moreover, the side surface of the 4-point bending test piece extract | collected from the edge part was observed with the electron microscope. The result is shown in FIG. The gap between the fibers was filled with the surface layer of the raw fiber, and no void was observed. It was found that the inorganic fiber-bonded ceramics of Examples 1 and 2 were equivalent to the center part in the structure and mechanical properties up to the end part. As a result, it became clear that the previously discarded dies could be used, and it was found that the life of the dies could be extended. In addition, a laminate (80 × 80 mm) as small as 10 mm with respect to the dimensions of the die (90 × 90 mm) was used, and the above-mentioned result could be achieved even though the clearance between the die and the laminate was very large. .

(実施例3)
繊維径8.5μmのチラノ繊維(登録商標:宇部興産株式会社製)からなる繻子織物を180×180mm角に切断した後、実施例1と同様にして繻子織物シートを500枚積層した積層物を作製した。カーボンダイスとしては、本来であれば無機繊維結合型セラミックス成形体の作製が困難なダイス表面の損傷した内寸が190×190mm角の大型のカーボンダイスを用いた。カーボンダイスへの積層物のセット方法は実施例1と同様であるが、アルミナ粉末は実施例1に比べて隙間の容積が大きいため、積層物の下に500g、積層物(180×180mm)とダイス(190×190mm)の隙間に80g、積層物の上に500g入れた。この状態でアルゴン雰囲気下、温度1400℃、圧力40MPaで第一プレス工程のプレスを行った。引き続き、圧力を保持した状態で温度1750℃、保持時間2時間の条件で第二プレス工程のプレスを行い、実施例1より大きな実施例3に係る無機繊維結合型セラミックスを得た。
(Example 3)
After a cocoon fabric made of Tyranno fiber (registered trademark: manufactured by Ube Industries Co., Ltd.) having a fiber diameter of 8.5 μm was cut into 180 × 180 mm squares, a laminate in which 500 cocoon fabric sheets were laminated in the same manner as in Example 1 Produced. As the carbon die, a large carbon die having a 190 × 190 mm square inner dimension with a damaged die surface, which is difficult to produce an inorganic fiber-bonded ceramic molded body, was used. The method of setting the laminate on the carbon die is the same as in Example 1. However, since alumina powder has a larger gap volume than Example 1, 500 g below the laminate, and the laminate (180 × 180 mm) 80 g was put in a gap between dies (190 × 190 mm), and 500 g was put on the laminate. In this state, pressing in the first pressing step was performed in an argon atmosphere at a temperature of 1400 ° C. and a pressure of 40 MPa. Subsequently, the second press step was pressed under the conditions of a temperature of 1750 ° C. and a holding time of 2 hours while maintaining the pressure, and an inorganic fiber-bonded ceramic according to Example 3 larger than Example 1 was obtained.

得られた180×180×厚さ約60mmの実施例3に係る無機繊維結合型セラミックスの180×180mmの面の端部、及び中央部より、それぞれ厚さ方向に15本の曲げ試験片を採取し、端部と中央部の4点曲げ強度を測定した。測定結果を図6に示す。損傷したダイスを使用したにも係らず、また、実施例1に比べて大きなサイズであったにも係らず、実施例3に係る無機繊維結合型セラミックスの端部と中央部の強度にバラツキはなかった。この結果により、これまで廃棄していたダイスが使用できることが明らかになり、ダイスの寿命を延長することができることがわかった。また、ダイスの寸法(190×190mm)に対して、10mmも小さな積層物(180×180mm)を用いて、ダイスと積層物とのクリアランスが非常に大きいにも係らず前述の結果を達成できた。さらには、実施例1に比べて、大きな形状であり積層物の粗密が大きいにも係らず、突発的なダイス等の破損もなく、中央部と端部で強度のバラツキのない無機繊維結合型セラミックスを成形できた。   Fifteen bending test specimens were collected in the thickness direction from the end and center of the 180 × 180 mm surface of the obtained inorganic fiber-bonded ceramic according to Example 3 having a thickness of about 180 × 180 × about 60 mm. Then, the four-point bending strength at the end and the center was measured. The measurement results are shown in FIG. Despite the use of a damaged die and a large size compared to Example 1, there is variation in the strength of the end and center of the inorganic fiber bonded ceramic according to Example 3. There wasn't. As a result, it became clear that the previously discarded dies could be used, and it was found that the life of the dies could be extended. In addition, a laminate (180 × 180 mm) as small as 10 mm with respect to the dimensions of the die (190 × 190 mm) was used, and the above-mentioned result could be achieved even though the clearance between the die and the laminate was very large. . Furthermore, compared with Example 1, although it is a big shape and the density of a laminated body is large, there is no breakage of a sudden die etc., and there is no intensity | strength variation in a center part and an edge part, and an inorganic fiber bond type Ceramics could be formed.

(比較例1)
繊維径8.5μmのチラノ繊維(登録商標:宇部興産株式会社製)からなる繻子織物を89×89mm角に切断した後、1000℃の空気中で20時間処理して無機繊維部、及び表面層から構成される被覆無機繊維の織物シートを得た。この被覆無機繊維の表面には実施例と同様にa=0.06に相当する平均約510nmの均一な表面層が形成されていた。次に、実施例1と同様に本来であれば無機繊維結合型セラミックス成形体の作製が困難なダイス表面の損傷した内寸が90×90mm角のカーボンダイスを用いてホットプレスを実施した。ダイスへの積層物のセット方法を図2(b)を用いて説明する。まず、下パンチ棒10をセットしたカーボンダイス1(カーボン製モールド)の側面に、カーボンシート6を配置した。次に、セットした下パンチ棒10の上に厚さ5mmのCC複合材料製スペーサー5を置き、その上に厚さ0.2mmのカーボンシート6を敷いて、織物シートを100枚積層し有機バインダーで固めた積層物7を配置した。そして、その上にカーボンシート6を敷いて、さらに、カーボンシート6上にCC複合材料製スペーサー5を置き、最後に上パンチ棒4をセットした。積層物をカーボンダイスにセットした状態を図2(b)に示す。そして、実施例1と同様にアルゴン雰囲気下、圧力40MPa、温度1750℃、保持時間1時間の条件でホットプレス成形を行い、比較例1に係る無機繊維結合型セラミックスを得た。
(Comparative Example 1)
An insulator woven fabric made of Tyranno fiber (registered trademark: manufactured by Ube Industries Co., Ltd.) having a fiber diameter of 8.5 μm is cut into 89 × 89 mm square, then treated in air at 1000 ° C. for 20 hours, and an inorganic fiber portion and a surface layer A woven sheet of coated inorganic fibers composed of A uniform surface layer having an average of about 510 nm corresponding to a = 0.06 was formed on the surface of the coated inorganic fiber as in the example. Next, similarly to Example 1, hot pressing was performed using a carbon die having a 90 × 90 mm square inside dimension with a damaged die surface, which was difficult to produce an inorganic fiber bonded ceramic molded body. A method of setting the laminate on the die will be described with reference to FIG. First, the carbon sheet 6 was disposed on the side surface of the carbon die 1 (carbon mold) on which the lower punch bar 10 was set. Next, a 5 mm thick CC composite material spacer 5 is placed on the set lower punch bar 10, a carbon sheet 6 having a thickness of 0.2 mm is laid thereon, and 100 woven fabric sheets are laminated to form an organic binder. The laminate 7 hardened in (1) was placed. Then, a carbon sheet 6 was laid thereon, a CC composite material spacer 5 was placed on the carbon sheet 6, and finally the upper punch bar 4 was set. FIG. 2B shows a state where the laminate is set on a carbon die. In the same manner as in Example 1, hot press molding was performed in an argon atmosphere under the conditions of a pressure of 40 MPa, a temperature of 1750 ° C., and a holding time of 1 hour to obtain an inorganic fiber bonded ceramic according to Comparative Example 1.

(比較例2)
次に、比較例1と同様の手順で積層物をカーボンダイスにセットして、温度1850℃でホットプレス成形を行い、比較例2に係る無機繊維結合型セラミックスを得た。その他の条件は、比較例1と同様である。
(Comparative Example 2)
Next, the laminate was set on a carbon die in the same procedure as in Comparative Example 1, and hot press molding was performed at a temperature of 1850 ° C. to obtain an inorganic fiber bonded ceramic according to Comparative Example 2. Other conditions are the same as in Comparative Example 1.

得られた比較例1及び2に係る2種類の無機繊維結合型セラミックスの蛍光探傷試験後の写真を図3に示す。図3(c)及び(d)はそれぞれ比較例1及び2の結果を示している。成形温度1750℃の(c)比較例1は白黒写真の白色部分が中央部まで達している箇所がある。これは、表面に欠陥(クラック)があることを示している。また、成形温度1850℃の(d)比較例2は、比較例1に比べて、若干、端部の白色部分が広くなっている。これは、端部に欠陥(無機繊維結合型セラミックスの側面部から中央部に向かって存在するボイド)が多数あり、その欠陥は成形温度が上昇すると範囲が広くなっていることを示している。比較例1及び2で得られたどちらの無機繊維結合型セラミックスも、実施例1及び2で得られた無機繊維結合型セラミックスと比較すると、比較例1ではクラックが存在し、また、比較例2では端部の欠陥(ボイド)が表面に向かって広くなっている。次に、図4に比較例1及び2に係る無機繊維結合型セラミックスの端部から中央部までの4点曲げ試験の結果を示す。損傷したダイスを使用したため、比較例1及び2はどちらも端部から中央部までの4点曲げ強度は大きくバラツキ、また、全てにおいて、実施例の4点曲げ強度に比べて低い値を示していた。また、端部より採取した4点曲げ試験片の側面を電子顕微鏡で観察した結果を図5(b)に示す。無機繊維結合型セラミックスの端部から多数のボイドが観察された。この結果は、蛍光探傷試験の結果とよく一致していた。   The photograph after the fluorescence flaw test of the two types of inorganic fiber-bonded ceramics according to Comparative Examples 1 and 2 is shown in FIG. 3 (c) and 3 (d) show the results of Comparative Examples 1 and 2, respectively. (C) Comparative Example 1 having a molding temperature of 1750 ° C. has a portion where the white portion of the black and white photograph reaches the center. This indicates that there are defects (cracks) on the surface. Further, in (d) Comparative Example 2 at a molding temperature of 1850 ° C., the white portion at the end is slightly wider than Comparative Example 1. This indicates that there are many defects (voids existing from the side surface portion to the center portion of the inorganic fiber-bonded ceramic) at the end portion, and the range of the defects increases as the molding temperature rises. Both inorganic fiber-bonded ceramics obtained in Comparative Examples 1 and 2 have cracks in Comparative Example 1 compared to the inorganic fiber-bonded ceramics obtained in Examples 1 and 2, and Comparative Example 2 Then, the defects (voids) at the end portion become wider toward the surface. Next, FIG. 4 shows the results of a four-point bending test from the end to the center of the inorganic fiber-bonded ceramics according to Comparative Examples 1 and 2. Since the damaged dies were used, both Comparative Examples 1 and 2 showed large variations in the four-point bending strength from the end to the center, and all showed lower values than the four-point bending strength of the example. It was. Moreover, the result of having observed the side surface of the 4-point bending test piece extract | collected from the edge part with an electron microscope is shown in FIG.5 (b). Many voids were observed from the edge of the inorganic fiber bonded ceramic. This result was in good agreement with the result of the fluorescence flaw detection test.

以上より、本発明によれば、これまでホットプレス過程における熱分解で発生するガスの制御が困難であった損傷した寸法精度の劣悪なダイスを用いても、端部までボイドがなく緻密で、且つ高い力学的特性を中央部から端部まで維持している無機繊維結合型セラミックスを得ることができることがわかる。   From the above, according to the present invention, even with a damaged die having poor dimensional accuracy, which has been difficult to control the gas generated by the thermal decomposition in the hot press process, there is no void up to the end, and It can also be seen that an inorganic fiber-bonded ceramic that maintains high mechanical properties from the center to the end can be obtained.

本発明の無機繊維結合型セラミックスの製造方法によって得られた無機繊維結合型セラミックスは、空気中1000℃以上の酸化雰囲気をはじめとする高温の過酷な環境下で使用可能であり、優れた耐熱性を有し、且つ高い断熱性と力学特性とを兼ね備えている。   The inorganic fiber-bonded ceramic obtained by the method for producing an inorganic fiber-bonded ceramic of the present invention can be used in a severe environment of high temperature including an oxidizing atmosphere of 1000 ° C. or higher in air and has excellent heat resistance. And has both high heat insulation properties and mechanical properties.

1 カーボンダイス(パーツ)
3 積層物をセットする位置
4 上パンチ棒
5 CC複合材製スペーサー
6 カーボンシート
7 積層物
8 アルミナ粉末
9 CC複合材製モールド
10 下パンチ棒
12 ボイド
1 Carbon dice (parts)
3 Position for Setting Laminate 4 Upper Punch Bar 5 CC Composite Spacer 6 Carbon Sheet 7 Laminate 8 Alumina Powder 9 CC Composite Mold 10 Lower Punch Bar 12 Void

Claims (7)

熱分解開始温度が1900℃以下の無機繊維からなる無機繊維部と、該無機繊維どうしを結合するための無機物質からなる表面層とにより構成される被覆無機繊維の成形体を積層した積層物を、セラミックス粉末で囲むようにカーボンダイスにセットし、不活性ガス雰囲気中、1000〜1800℃の温度及び5〜50MPaの圧力でプレスする第一プレス工程、及び
該第一プレス工程で得られたセラミックス被覆積層物を、不活性ガス雰囲気中、1600〜1900℃の温度でかつ前記第一プレス工程よりも高い温度及び5〜100MPaの圧力でプレスする第二プレス工程、
を備えることを特徴とする無機繊維結合型セラミックスの製造方法。
A laminate in which a molded body of coated inorganic fibers composed of an inorganic fiber portion made of inorganic fibers having a thermal decomposition start temperature of 1900 ° C. or less and a surface layer made of an inorganic substance for bonding the inorganic fibers together is laminated. A first press step of setting the carbon die so as to surround the ceramic powder, and pressing in an inert gas atmosphere at a temperature of 1000 to 1800 ° C. and a pressure of 5 to 50 MPa, and the ceramic obtained by the first press step A second pressing step of pressing the coating laminate in an inert gas atmosphere at a temperature of 1600 to 1900 ° C. and at a temperature higher than that of the first pressing step and a pressure of 5 to 100 MPa;
A method for producing an inorganic fiber-bonded ceramic, comprising:
前記無機繊維部は、
(a)Si、M、C及びOを含む非晶質物質(MはTi又はZrを示す。)、
(b)β−SiC、MC及びCを含む結晶質超微粒子と、SiO及びMOを含む非晶質物質との集合体(Mは(a)と同様である。)、又は
(c)上記(a)と上記(b)との混合物
を含有する無機質物質で構成され、
前記表面層は、
(d)Si及びO、場合によりMを含む非晶質物質(MはTi又はZrを示す。)、
(e)結晶質のSiO及び/又はMOを含む結晶質物質(Mは(d)と同様である。)、又は
(f)上記(d)と上記(e)との混合物
を含有する無機質物質で構成されていることを特徴とする請求項1記載の無機繊維結合型セラミックスの製造方法。
The inorganic fiber part is
(A) an amorphous material containing Si, M, C and O (M represents Ti or Zr),
(B) an assembly of crystalline ultrafine particles containing β-SiC, MC and C and an amorphous material containing SiO 2 and MO 2 (M is the same as (a)), or (c) It is composed of an inorganic substance containing a mixture of (a) and (b) above,
The surface layer is
(D) Amorphous material containing Si and O, optionally M (M represents Ti or Zr),
(E) a crystalline substance containing crystalline SiO 2 and / or MO 2 (M is the same as (d)), or (f) containing a mixture of (d) and (e) above. 2. The method for producing an inorganic fiber-bonded ceramic according to claim 1, wherein the method is made of an inorganic substance.
前記表面層の厚さT(単位μm)が、T=aD(ここで、aは0.023〜0.090の範囲内の数値であり、Dは無機繊維部の繊維径(単位μm)である。)であることを特徴とする請求項1又は2記載の無機繊維結合型セラミックスの製造方法。   The thickness T (unit: μm) of the surface layer is T = aD (where a is a numerical value within the range of 0.023 to 0.090, and D is the fiber diameter (unit: μm) of the inorganic fiber portion. 3. The method for producing an inorganic fiber-bonded ceramic according to claim 1 or 2, wherein: 前記セラミックス粉末が、アルミナ粉末であることを特徴とする請求項1記載の無機繊維結合型セラミックスの製造方法。   2. The method for producing an inorganic fiber bonded ceramic according to claim 1, wherein the ceramic powder is an alumina powder. 前記セラミックス粉末が、1800℃以下で溶融する無機物質と、前記第二プレス工程のプレス温度より溶融温度の高い無機物質との混合物を含むことを特徴とする請求項1記載の無機繊維結合型セラミックスの製造方法。   2. The inorganic fiber-bonded ceramic according to claim 1, wherein the ceramic powder includes a mixture of an inorganic substance that melts at 1800 ° C. or less and an inorganic substance that has a melting temperature higher than the pressing temperature of the second pressing step. Manufacturing method. 前記1800℃以下で溶融する無機物質が、SiOを主成分とするガラスであり、前記第二プレス工程のプレス温度より溶融温度の高い無機物質が、炭素又はBNであることを特徴とする請求項5記載の無機繊維結合型セラミックスの製造方法。The inorganic substance that melts at 1800 ° C. or less is glass mainly composed of SiO 2 , and the inorganic substance having a melting temperature higher than the pressing temperature in the second pressing step is carbon or BN. Item 6. A method for producing an inorganic fiber-bonded ceramic according to Item 5. 前記第一プレス工程及び第二プレス工程の雰囲気圧力が、0.01〜1MPaであることを特徴とする請求項1記載の無機繊維結合型セラミックスの製造方法。
The method for producing an inorganic fiber-bonded ceramic according to claim 1, wherein the atmospheric pressure in the first press step and the second press step is 0.01 to 1 MPa.
JP2014507775A 2012-03-29 2013-03-21 Manufacturing method of inorganic fiber bonded ceramics Active JP5910728B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012075315 2012-03-29
JP2012075315 2012-03-29
PCT/JP2013/058016 WO2013146514A1 (en) 2012-03-29 2013-03-21 Process for producing inorganic-fiber-bonded ceramic material

Publications (2)

Publication Number Publication Date
JPWO2013146514A1 true JPWO2013146514A1 (en) 2015-12-14
JP5910728B2 JP5910728B2 (en) 2016-04-27

Family

ID=49259771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014507775A Active JP5910728B2 (en) 2012-03-29 2013-03-21 Manufacturing method of inorganic fiber bonded ceramics

Country Status (4)

Country Link
US (1) US9701587B2 (en)
EP (1) EP2832709B1 (en)
JP (1) JP5910728B2 (en)
WO (1) WO2013146514A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10753884B2 (en) 2016-06-14 2020-08-25 Rolls-Royce Corporation Nondestructive inspection of composite materials
CN107234551A (en) * 2017-06-30 2017-10-10 福建瑞祺新材料有限公司 A kind of high-temperature-resistant high cube nitrification borax wheel ceramic combination agent and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616180A (en) * 1984-06-16 1986-01-11 工業技術院長 Thermal hydrostatic pressure treatment for ceramic
JPH0543338A (en) * 1991-08-14 1993-02-23 Ube Ind Ltd Inorganic fiber sintered compact and its production
JPH0769747A (en) * 1993-09-03 1995-03-14 Ube Ind Ltd Sintered material of inorganic fiber and its production
JPH09278537A (en) * 1996-04-16 1997-10-28 Matsushita Electric Ind Co Ltd Production of ceramic sintered compact
JP2004131365A (en) * 2002-08-09 2004-04-30 Ube Ind Ltd Highly heat resistant inorganic fiber-bonded type ceramic member, and its producing method
JP2005112658A (en) * 2003-10-07 2005-04-28 Chubu Electric Power Co Inc Method of manufacturing metal oxide sintered compact, and metal oxide sintered compact
WO2011122219A1 (en) * 2010-03-31 2011-10-06 宇部興産株式会社 CERAMIC MATERIAL COATED WITH SiC AND HAVING SiC FIBERS BOUND THERETO

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1497990A (en) * 1975-11-10 1978-01-12 Tokyo Shibaura Electric Co Composite ceramic articles and a method of manufacturing the same
DE2737208C2 (en) * 1977-08-18 1986-06-19 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Process for encapsulating a molded body made of ceramic
JPS5839708A (en) * 1981-09-01 1983-03-08 Kobe Steel Ltd Hot hydrostatic pressing method
US4428906A (en) * 1982-04-28 1984-01-31 Kelsey-Hayes Company Pressure transmitting medium and method for utilizing same to densify material
JPH0819592B2 (en) 1986-06-06 1996-02-28 旭化成工業株式会社 Interlining
GB8701761D0 (en) * 1987-01-27 1987-03-04 Ae Plc Production of engineering materials
US5348694A (en) * 1988-12-20 1994-09-20 Superior Graphite Co. Method for electroconsolidation of a preformed particulate workpiece
JP3134729B2 (en) 1995-08-17 2001-02-13 宇部興産株式会社 Fiber-bonded ceramics and manufacturing method thereof
US5855997A (en) 1996-02-14 1999-01-05 The Penn State Research Foundation Laminated ceramic cutting tool

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616180A (en) * 1984-06-16 1986-01-11 工業技術院長 Thermal hydrostatic pressure treatment for ceramic
JPH0543338A (en) * 1991-08-14 1993-02-23 Ube Ind Ltd Inorganic fiber sintered compact and its production
JPH0769747A (en) * 1993-09-03 1995-03-14 Ube Ind Ltd Sintered material of inorganic fiber and its production
JPH09278537A (en) * 1996-04-16 1997-10-28 Matsushita Electric Ind Co Ltd Production of ceramic sintered compact
JP2004131365A (en) * 2002-08-09 2004-04-30 Ube Ind Ltd Highly heat resistant inorganic fiber-bonded type ceramic member, and its producing method
JP2005112658A (en) * 2003-10-07 2005-04-28 Chubu Electric Power Co Inc Method of manufacturing metal oxide sintered compact, and metal oxide sintered compact
WO2011122219A1 (en) * 2010-03-31 2011-10-06 宇部興産株式会社 CERAMIC MATERIAL COATED WITH SiC AND HAVING SiC FIBERS BOUND THERETO

Also Published As

Publication number Publication date
JP5910728B2 (en) 2016-04-27
EP2832709A1 (en) 2015-02-04
EP2832709B1 (en) 2019-05-08
US9701587B2 (en) 2017-07-11
EP2832709A4 (en) 2015-03-25
US20150137411A1 (en) 2015-05-21
WO2013146514A1 (en) 2013-10-03

Similar Documents

Publication Publication Date Title
Tian et al. Process parameters analysis of direct laser sintering and post treatment of porcelain components using Taguchi's method
KR101619889B1 (en) Heat insulating material and method for producing same
KR20030089880A (en) Manufacturing method for carbon-carbon composites
CN108116002B (en) A kind of sandwich thermally protective materials and its manufacturing method with high slab strength
CN105541387B (en) Composite refractory and method for producing same
JP2014094855A (en) Silicon carbide ceramic joined body, and manufacturing method for the same
Gurauskis et al. Joining green ceramic tapes made from water-based slurries by applying low pressures at ambient temperature
JP5910728B2 (en) Manufacturing method of inorganic fiber bonded ceramics
US4857093A (en) Method for producing integral chopped fiber reinforced glass or glass-ceramic structures
JP5549314B2 (en) INORGANIC FIBER CERAMIC CERAMIC BODY, COMPOSITE THEREOF, AND METHOD FOR PRODUCING THEM
DK1756882T3 (en) Process for producing piezoelectric materials
EP0179908B1 (en) Method for forming fiber reinforced composite articles
CN113416087B (en) Preparation method of high-strength combined carbon/carbon hot-pressing mold
Liu et al. Fabrication and properties of SiC/Si3N4 multilayer composites with different layer thickness ratios by aqueous tape casting
JPH0848576A (en) Abrasion-ersistant composite material
KR101810885B1 (en) Manufacturing Methods of Transparent Yttria With Gradient Composition
JP2009149474A (en) Molding die and method for manufacturing the die
KR101053101B1 (en) Hot press sintering mold and its manufacturing method
JP5880208B2 (en) Method for producing inorganic fibrous ceramic porous body
EP0546877B1 (en) Process for making hollow, complex structures by uniaxial hot pressing of a composite material having a vitreous matrix and the products obtained thereby
JP2023019719A (en) Heat insulating material and method for producing heat insulating material
JP2014189440A (en) Inorganic fiber-bonded ceramics and method of producing the same
JP3035230B2 (en) Manufacturing method of multilayer ceramics
KR102487220B1 (en) Uniformly doped plasma resistant material and manufacturing method thereof
JP3598726B2 (en) SiC-based composite material with improved oxidation resistance and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R150 Certificate of patent or registration of utility model

Ref document number: 5910728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250