JPH09276896A - Denitrification treatment of waste water containing ammonia - Google Patents

Denitrification treatment of waste water containing ammonia

Info

Publication number
JPH09276896A
JPH09276896A JP8823196A JP8823196A JPH09276896A JP H09276896 A JPH09276896 A JP H09276896A JP 8823196 A JP8823196 A JP 8823196A JP 8823196 A JP8823196 A JP 8823196A JP H09276896 A JPH09276896 A JP H09276896A
Authority
JP
Japan
Prior art keywords
nitrification
waste water
piping
treatment
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8823196A
Other languages
Japanese (ja)
Inventor
Masahide Shibata
雅秀 柴田
Tetsuro Fukase
哲朗 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP8823196A priority Critical patent/JPH09276896A/en
Publication of JPH09276896A publication Critical patent/JPH09276896A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform efficient denitrification treatment, in subjecting waste water containing a specific amt. or more of ammonia to denitrification treatment, by dividing waste water into two parts and subjecting one part to biological nitrification treatment to form nitrite ions to mix the treated part with the other part and decomposing formed ammonium nitrite. SOLUTION: In the denitrification treatment of waste water containing ammonia such as excretion type sewage, at first, raw water (waste water with an NH4 <+> concn. of 500mg-N/L or more) introduced from piping 10 is equally divided into first and second flow parts and the first flow part is introduced into an aerobic tank 1 from piping 11 to perform biological NO2 type nitrification under an aerobic condition by nitrifying bacteria to form NO2 <-> ions. NO2 <-> of the nitrification treatment soln. of the first flow part and NH4 <-> of the second flow part (raw water) are mixed to form NH4 NO2 . This mixed soln. is supplied to a decomposition column 2 to be inorganically decomposed and denitrified and the treated soln. is sent to a gas venting tank 4 from piping 15 through a water cooling pipe 3 to separate N2 gas and discharged out of the system through piping 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はアンモニアを含む排
水の脱窒素処理方法に係り、特に、アンモニアを含む排
水を生物学的に硝化処理して亜硝酸アンモニウム(NH
4 NO2 )を生成させ、生成したNH4 NO2 を分解し
て窒素(N2 )ガスとする方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for denitrifying wastewater containing ammonia, and more particularly, to a method for biologically nitrifying wastewater containing ammonia to perform ammonium nitrification (NH 3).
4 NO 2 ) and decompose the generated NH 4 NO 2 into nitrogen (N 2 ) gas.

【0002】[0002]

【従来の技術】し尿系汚水には、3000〜4000p
pmのアンモニア性窒素等が含有されていることから、
し尿系汚水の処理には、これを効率的に除去する必要が
ある。従来、窒素除去プロセスとしては生物学的な硝化
脱窒法が多く用いられている。
2. Description of the Related Art For night soil sewage, 3000-4000 p
Since it contains pm of ammonia nitrogen,
For the treatment of night soil sewage, it is necessary to remove it efficiently. Conventionally, a biological nitrification denitrification method has been widely used as a nitrogen removal process.

【0003】従来の生物学的硝化脱窒法における硝化反
応は、亜硝酸菌と硝酸菌との2種の硝化菌による2段逐
次反応であり、NH4 +は亜硝酸菌によりNO2 -に酸化さ
れた後、硝酸菌によりNO3 -に酸化される。そして、生
成したNO3 -が生物学的に脱窒されてN2 ガスとなる。
The nitrification reaction in the conventional biological nitrification denitrification method is a two-step sequential reaction by two kinds of nitrifying bacteria, nitrite and nitric acid bacterium, and NH 4 + is oxidized to NO 2 by nitrite. Then, it is oxidized to NO 3 by nitric acid bacteria. Then, the produced NO 3 is biologically denitrified into N 2 gas.

【0004】このような生物学的硝化脱窒法は、多くの
利点を有する反面、硝化のために多量のO2 が必要であ
る;脱窒のために水素供与体としてBODの供給が必要
である;といった欠点がある。
Such a biological nitrification denitrification method has many advantages, but on the other hand, a large amount of O 2 is required for nitrification; it is necessary to supply BOD as a hydrogen donor for denitrification. There are drawbacks such as;

【0005】これに対して、硝化反応において、硝化を
亜硝酸(NO2 )型に維持できれば、硝化時の必要O2
量や生物脱窒する場合のBOD量の低減を図ることがで
きる上に、NH4 ++NO2 -→N2 ↑+2H2 Oという化
学脱窒プロセスを導入できることから、より一層の必要
2 量の低減を図ることができ、工業的に極めて有利で
ある。
On the other hand, in the nitrification reaction, if nitrification can be maintained in the nitrous acid (NO 2 ) type, O 2 required for nitrification is required.
On which can be reduced BOD amount when the amount and biological denitrification, NH 4 + + NO 2 - → N 2 ↑ + 2H since 2 O can be introduced chemical denitrification process that, even more necessary amount of O 2 Can be reduced, which is extremely advantageous industrially.

【0006】なお、第28回日本水環境学会要旨集(1
996)「生物によるNH4 NO2生産を利用した窒化
処理法の検討」には、生物学的硝化により生成したNH
4 NO2 を触媒により高速分解可能であることが報告さ
れている。
The 28th Annual Meeting of the Japan Society on Water Environment (1)
996) “Examination of nitriding treatment method utilizing NH 4 NO 2 production by living organisms” describes NH produced by biological nitrification.
It has been reported that 4 NO 2 can be decomposed at high speed by a catalyst.

【0007】このようなNH4 NO2 の分解を行うため
に、特開平2−198695号公報には、生物学的硝化
に当り、好気槽内のpHを6〜8に調整すると共にNO
2 -イオンを50mg−N/L以上に保持してNO2 型硝
化を行う方法が提案されている。この方法は、pH6〜
8,NO2 -イオン濃度50mg−N/L以上であれば、
亜硝酸菌は阻害されることなく硝酸菌のみが選択的に阻
害され、NO2 型の硝化が行えることを利用したもので
ある。
In order to carry out such decomposition of NH 4 NO 2 , in JP-A-2-198695, the pH in the aerobic tank is adjusted to 6 to 8 and NO in biological nitrification.
A method has been proposed in which NO 2 -type nitrification is carried out by keeping 2 - ions at 50 mg-N / L or more. This method has a pH of 6-
If ion concentration 50 mg-N / L or more, - 8, NO 2
It utilizes that nitric acid bacterium is not inhibited and only nitric acid bacterium is selectively inhibited and NO 2 type nitrification can be performed.

【0008】また、特開平2−198696号公報に
は、排水中のNH4 +濃度とアルカリ度を測定し、この当
量比が所定値となるように酸又はアルカリを添加して硝
化率を制御する方法が開示されている。
Further, in Japanese Patent Laid-Open No. 2-198696, NH 4 + concentration and alkalinity in waste water are measured, and acid or alkali is added to control the nitrification rate so that the equivalent ratio becomes a predetermined value. A method of doing so is disclosed.

【0009】更に、特開平3−161095号公報に
は、し尿を嫌気処理し、生物学的硝化によりNH4 NO
2 を生成させ、その後、NH4 NO2 をN2 に分解する
方法が、また、特開平3−161096号公報には、有
機性排水を好気性処理してBODを分解すると共に生物
学的硝化によりNH4 NO2 生成させ、その後、NH4
NO2 をN2 に分解する方法が提案されている。
Further, in Japanese Unexamined Patent Publication No. 3-161095, NH 4 NO is obtained by anaerobically treating human sewage and performing biological nitrification.
2 is generated, and then NH 4 NO 2 is decomposed into N 2, and in JP-A-3-161096, organic waste water is aerobically treated to decompose BOD and biological nitrification. NH 4 NO 2 is produced by, then, NH 4
A method of decomposing NO 2 into N 2 has been proposed.

【0010】これらの方法のうち、例えば、特開平3−
161096号公報に記載される方法においては、生物
学的硝化によりNH4 NO2 を生成させるために、次の
ような原理に基いて、排水中のNH4 +濃度とアルカリ度
を測定し、両者の当量比が1になるように酸又はアルカ
リを添加して硝化菌による硝化を行うことにより、硝化
率を50%としてNH4 /NO2 =1の処理水を得、こ
のようにして亜硝酸型硝化とNH4 NO2 の化学的分解
とを段階的に行って、硝化脱窒を効率的に実施してい
る。
Among these methods, for example, Japanese Unexamined Patent Publication No.
In the method described in Japanese Patent No. 161096, in order to generate NH 4 NO 2 by biological nitrification, NH 4 + concentration and alkalinity in wastewater are measured based on the following principle. By adding an acid or an alkali so that the equivalent ratio of 1 is 1, the nitrification by nitrifying bacteria is carried out to obtain a treated water of NH 4 / NO 2 = 1 with a nitrification rate of 50%. Type nitrification and chemical decomposition of NH 4 NO 2 are carried out stepwise to efficiently carry out nitrification denitrification.

【0011】即ち、汚水中には重炭酸塩、炭酸塩、リン
酸塩等の様々なpH緩衝力を有する物質即ちバッファー
が存在する。そして硝化が進行しNO2 -イオンが生成す
ると共に、バッファーが消費される。バッファーが全て
消費されるとpHが急激に低下し、硝化が止まる。従っ
て、廃水中のNH4 +濃度とバッファー濃度即ちアルカリ
度とを測定し、この当量比を調整するべく酸又はアルカ
リを添加することにより、バッファーを調整し、硝化率
を所望の値にすることができる。即ち、廃水中のNH4 +
濃度とアルカリ度とが等当量の場合には、廃水中のNH
4 +の半分が硝化されNH4 NO2 (NH4 /NO2
1)が生成した段階でバッファーが残存しないため、p
Hが低下し硝化が止まり、硝化率50%となる。また、
アンモニア濃度がアルカリ度よりも高い場合には、硝化
量がより少ない段階でバッファーが全て消化され硝化が
止まった際にNH4 +が残存し、硝化率は50%未満とな
る。一方、アンモニア濃度がアルカリ度よりも低い場合
には、硝化が半分進行した段階でも、バッファーが残存
するためpHは下がらず、更に硝化が進み硝化率は50
%を超えるものとなる。
That is, in the wastewater, there are substances having various pH buffering powers such as bicarbonates, carbonates and phosphates, that is, buffers. Then, nitrification proceeds and NO 2 ions are generated, and the buffer is consumed. When all the buffer is consumed, the pH drops sharply and nitrification stops. Therefore, the NH 4 + concentration in the wastewater and the buffer concentration, that is, the alkalinity is measured, and the buffer is adjusted by adding an acid or an alkali to adjust this equivalence ratio, and the nitrification rate is set to a desired value. You can That is, NH 4 + in the wastewater
If the concentration and alkalinity are equivalent, NH in the wastewater
Half of 4 + is nitrified and NH 4 NO 2 (NH 4 / NO 2 =
Since the buffer does not remain when 1) is generated, p
H is lowered, nitrification is stopped, and the nitrification rate becomes 50%. Also,
When the ammonia concentration is higher than the alkalinity, NH 4 + remains when the buffer is completely digested and nitrification stops when the nitrification amount is smaller, and the nitrification rate becomes less than 50%. On the other hand, when the ammonia concentration is lower than the alkalinity, the pH does not decrease because the buffer remains even at the stage where the nitrification has progressed to half, and the nitrification further proceeds and the nitrification rate is 50%.
% Will be exceeded.

【0012】ところで、生物的硝化反応は次の基礎式で
示される。
By the way, the biological nitrification reaction is expressed by the following basic equation.

【0013】 NH4 ++3/2 O2 →NO2 -+H2 O+2H+ 従来においては生成するH+ によるpHの低下を防ぐた
め通常、pHコントロールを行って100%硝化を行っ
ている。
NH 4 + +3/2 O 2 → NO 2 + H 2 O + 2H + Conventionally, in order to prevent a decrease in pH due to generated H + , pH control is usually performed to perform 100% nitrification.

【0014】一方、排水中のNの形態はNH4 +−Nが多
く、その発生の源はタンパクのアミノ基の分解による。
排水中に共存するBODが分解すると、CO2 の生成が
あり、これとNH4 +が結合して、NH4 +の形態はNH4
HCO3 となる。NH4 HCO3 をpH無調整で硝化反
応を行った時の反応式は下記の通りである。
On the other hand, the form of N in the waste water is mostly NH 4 + -N, and the source of the generation is due to the decomposition of the amino group of the protein.
When BOD coexisting in the waste water is decomposed, there is the generation of CO 2, which the NH 4 + are bonded, NH 4 + forms NH 4
It becomes HCO 3 . The reaction formula of the nitrification reaction of NH 4 HCO 3 without adjusting the pH is as follows.

【0015】NH4 HCO3 +3/4 O2 →1/2 NH4
2 +3/2 H2 O+CO2 NH4 NO2 が生成した時、排水中のNH4 HCO3
全て消費され、これ以外のバッファーが液中になけれ
ば、pHが低下し、硝化が止まる。即ち、NH4/NO2
=1の状態で自然に反応が停止する。
NH 4 HCO 3 +3/4 O 2 → 1/2 NH 4 N
When O 2 +3/2 H 2 O + CO 2 NH 4 NO 2 is produced, all NH 4 HCO 3 in the waste water is consumed, and if no other buffer is present in the liquid, the pH will drop and nitrification will stop. That is, NH 4 / NO 2
The reaction stops spontaneously when = 1.

【0016】従って、バッファー量がNH4 +と等モル量
であれば、pH無調整でNH4 /NO2 =1の処理水を
得ることができるが、前処理工程等の要因でNH4 +とア
ルカリ度の当量関係がずれてNH4 /NO2 =1となら
ない場合には、NH4 +濃度と、液のバッファー量即ちア
ルカリ度を測定して、予めその当量比を調整することが
必要となる。即ち、NH4 /NO2 >1の場合では、所
定量のアルカリを添加し、NH4 /NO2 <1の場合で
は酸を添加する。
Therefore, if the buffer amount is equimolar to NH 4 + , it is possible to obtain treated water of NH 4 / NO 2 = 1 without adjusting the pH, but due to factors such as the pretreatment step, NH 4 + When NH 4 / NO 2 = 1 is not obtained due to the equivalence relationship between the alkalinity and the alkalinity, it is necessary to measure the NH 4 + concentration and the buffer amount of the solution, that is, the alkalinity, and adjust the equivalent ratio in advance. Becomes That is, in the case of NH 4 / NO 2 > 1, a predetermined amount of alkali is added, and in the case of NH 4 / NO 2 <1, the acid is added.

【0017】[0017]

【発明が解決しようとする課題】このように生物学的硝
化において、NO2 型硝化を行ってNH4 NO2 を生成
させるための制御基準として、排水中のNH4 +濃度とア
ルカリ度を採用する方法では、NH4 +濃度及びアルカリ
度を測定し、この測定値に基いて酸又はアルカリを添加
するための装置及び操作を必要とし、実施が容易ではな
い。
As described above, in biological nitrification, the NH 4 + concentration and alkalinity in the wastewater are used as the control criteria for performing NO 2 -type nitrification to generate NH 4 NO 2. The method described above requires an apparatus and operation for measuring the NH 4 + concentration and alkalinity and adding an acid or an alkali based on the measured values, and is not easy to carry out.

【0018】特開平2−198695号公報に記載され
る、NO2 -イオンの存在による硝化菌の選択的阻害効果
を利用する方法であれば、アルカリ度の測定等を行う必
要はないが、この硝化菌の選択的阻害効果を安定かつ確
実に得るためには、NO2 -イオン濃度500mg−N/
L以上であることが必要とされることが判明した。即
ち、この方法をNH4 NO2 の生成に適用する場合、N
2 型硝化後、NH4 NO2 が生成した硝化処理液中の
NO2 -イオン濃度が500mg−N/L以上であること
が必要とされる。このためには、原水のNH4 +濃度が1
000mg−N/L以上であることが必要となる。従っ
て、この方法は、NH4 +濃度が1000mg−N/Lよ
り低い排水には適用できないこととなる。
If the method described in JP-A-2-198695 utilizes the selective inhibitory effect of nitrifying bacteria due to the presence of NO 2 ions, it is not necessary to measure the alkalinity, etc. to obtain a selective inhibitory effect of nitrifying bacteria stably and reliably, NO 2 - ion concentration 500 mg-N /
It has been found that L or more is required. That is, when applying this method to the production of NH 4 NO 2 ,
After O 2 type nitrification, it is necessary that the NO 2 ion concentration in the nitrification treatment liquid in which NH 4 NO 2 is generated is 500 mg-N / L or more. To do this, the NH 4 + concentration in the raw water is 1
It is necessary to be 000 mg-N / L or more. Therefore, this method cannot be applied to wastewater having an NH 4 + concentration lower than 1000 mg-N / L.

【0019】本発明は上記従来の問題点を解決し、アン
モニア含有排水の生物学的硝化脱窒において、NH4 +
度が1000mg−N/Lより低い排水にも適用するこ
とが可能で、しかも、アルカリ度の測定等を必要とする
ことなく、容易かつ確実にNO2 型硝化を行ってNH4
NO2 を生成させ、効率的な脱窒素処理を行う方法を提
供することを目的とする。
The present invention solves the above conventional problems and can be applied to the biological nitrification denitrification of ammonia-containing wastewater having a NH 4 + concentration lower than 1000 mg-N / L. , without the need for measurement of alkalinity, NH 4 performed easily and reliably NO 2 type nitrification
It is an object of the present invention to provide a method for producing NO 2 and performing an efficient denitrification treatment.

【0020】[0020]

【課題を解決するための手段】本発明のアンモニアを含
む排水の脱窒素処理方法は、アンモニアを500mg−
N/L以上含む排水を脱窒素処理する方法において、該
排水を2分割し、一方を生物学的硝化処理して亜硝酸イ
オンを生成させた後、他方と混合して生成する亜硝酸ア
ンモニウムを分解することを特徴とする。
The method for denitrifying wastewater containing ammonia according to the present invention comprises 500 mg-ammonia of ammonia.
In a method for denitrifying a wastewater containing N / L or more, the wastewater is divided into two parts, one of them is subjected to a biological nitrification treatment to generate nitrite ions, and then the other is mixed to decompose ammonium nitrite formed. It is characterized by doing.

【0021】本発明のアンモニアを含む排水の脱窒素処
理方法では、NH4 +濃度500mg−N/L以上の排水
を2分割し、一方(以下「第1流分」と称する場合があ
る。)を生物学的硝化してNO2 -イオンを生成させる。
即ち、NO2 -イオン濃度500mg−N/L以上の流分
を得る。この流分は、NO2 -イオン濃度500mg−N
/L以上となるから、NO2 -イオンの存在による硝化菌
の選択的阻害効果で硝化はNO2 型となり、NO3 -の生
成は殆どない。そして、このNO2 -イオン濃度500m
g−N/L以上の第1流分の硝化処理液を、排水を2分
割したときの他方の流分(以下「第2流分」と称する場
合がある。)と混合する。この第2流分はNH4 +濃度5
00mg−N/L以上で第1流分のNO2 -イオンと等当
量のNH4 +を含有するものであるから、この第2流分と
第1流分の硝化処理液とを混合することで、NH4 NO
2 が確実に生成する。
In the denitrification treatment method for wastewater containing ammonia according to the present invention, wastewater having an NH 4 + concentration of 500 mg-N / L or more is divided into two parts (hereinafter, sometimes referred to as "first stream"). Is biologically nitrified to produce NO 2 ions.
That, NO 2 - and a stream portion of higher ion concentration 500mg-N / L. This stream fraction is, NO 2 - ion concentration 500 mg-N
/ L or more, nitrification becomes NO 2 type due to the selective inhibitory effect of nitrifying bacteria due to the presence of NO 2 ions, and NO 3 is hardly generated. Then, the NO 2 - ion concentration 500m
The nitrification treatment liquid for the first flow of g-N / L or more is mixed with the other flow when the waste water is divided into two (hereinafter sometimes referred to as "second flow"). This second stream is NH 4 + concentration 5
200 mg-N / L or more in the first flow amount of NO 2 - from those containing NH 4 + ions and finally the amount, mixing the second stream component and a first flow portion of nitrified liquid Then NH 4 NO
2 will definitely generate.

【0022】[0022]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態につき詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings.

【0023】図1は本発明のアンモニアを含む排水の脱
窒素処理方法の一実施例方法を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a denitrification treatment method for wastewater containing ammonia according to the present invention.

【0024】図示の如く、本発明においては、まず、配
管10から導入された原水(NH4 +濃度500mg−N
/L以上の排水)を第1流分と第2流分とに等量に2分
割し、第1流分を配管11より曝気管1Aを備える好気
槽1に導入して好気条件下亜硝化菌により生物学的NO
2 型硝化を行いNO2 -イオンを生成させる。そして、配
管12より抜き出した第1流分の硝化処理液と、配管1
3からの第2流分(原水)とを混合する。
As shown in the figure, in the present invention, first, the raw water (NH 4 + concentration 500 mg-N
/ L or more of wastewater) is divided into an equal amount into a first stream and a second stream, and the first stream is introduced from a pipe 11 into an aerobic tank 1 equipped with an aeration pipe 1A under aerobic conditions. Biological NO by nitrite
Type 2 nitrification is performed to generate NO 2 ions. Then, the first stream of the nitrification treatment liquid extracted from the pipe 12 and the pipe 1
Mix the second stream from 3 (raw water).

【0025】この混合液には、第2流分(原水)のNH
4 +と第1流分の硝化処理液のNO2 -とが当量混合される
ことでNH4 NO2 が生成する。この混合液をヒータ2
Aを備え、触媒2Bが充填された分解塔2に送給して、
NH4 NO2 を無機的にN2ガスに分解脱窒する。分解
塔2の処理水は、配管15より抜き出し、水冷管3を経
て、ガス抜き槽4に送り、N2 ガスを分離し、処理水は
配管16を経て系外へ排出する。
This mixed solution contains NH 2 of the second stream (raw water).
NH 4 NO 2 is produced by mixing 4 + and the NO 2 of the nitrification treatment liquid of the first stream in an equivalent amount. This mixed liquid is used for the heater 2
A is supplied to the decomposition tower 2 filled with the catalyst 2B,
NH 4 NO 2 is inorganically decomposed and denitrified into N 2 gas. The treated water in the decomposition tower 2 is extracted from the pipe 15, sent through the water cooling pipe 3 to the degassing tank 4, N 2 gas is separated, and the treated water is discharged out of the system through the pipe 16.

【0026】このように、原水を2分割して第1流分の
みを硝化菌により生物的硝化を行ってNO2 -を生成さ
せ、これをNH4 +を含む第2流分と混合してNH4 NO
2 を生成させ、生成したNH4 NO2 を無機的にN2
スに脱窒することにより、効率的な脱窒素処理を行うこ
とが可能とされる。
Thus, the raw water is divided into two, and only the first stream is subjected to biological nitrification with nitrifying bacteria to produce NO 2 , which is mixed with the second stream containing NH 4 +. NH 4 NO
2 to generate, by the generated NH 4 NO 2 to denitrification in inorganically N 2 gas, is it possible to perform efficient denitrification.

【0027】なお、本発明において、第1流分と第2流
分とは等量であることが最適であるが、必ずしも正確に
等量である必要はなく、第1流分:第2流分=50〜5
5:45〜50の範囲であれば十分な効果を得ることが
できる。
In the present invention, it is optimal that the first and second streams are equal in quantity, but it is not necessary that they are exactly equal in quantity. Min = 50-5
A sufficient effect can be obtained in the range of 5:45 to 50.

【0028】[0028]

【実施例】以下に実施例及び比較例を挙げて、本発明を
より具体的に説明する。
The present invention will be described more specifically with reference to the following examples and comparative examples.

【0029】実施例1 第1図に示す方法により表1に示す水質のアンモニア含
有水の処理を第1流分1L/日、第2流分1L/日の流
量で行った。
Example 1 The treatment of ammonia-containing water having the water quality shown in Table 1 was performed by the method shown in FIG. 1 at a flow rate of 1 L / day for the first stream and 1 L / day for the second stream.

【0030】なお、好気槽では、固定化硝化菌充填率2
0%、滞留時間1日で処理した。
In the aerobic tank, the filling rate of immobilized nitrifying bacteria is 2
The treatment was carried out at 0% and a residence time of 1 day.

【0031】分解塔2には触媒として0.5%Pt−ア
ルミナを充填し、温度200℃、圧力25kg/cm
2 、滞留時間20分で処理した。
The decomposition tower 2 was filled with 0.5% Pt-alumina as a catalyst, and the temperature was 200 ° C. and the pressure was 25 kg / cm.
2. Treated with a residence time of 20 minutes.

【0032】各工程の処理水の水質を表1に示す。Table 1 shows the quality of treated water in each step.

【0033】表1より、本発明の方法によれば、単に原
水を2分割するのみで、高度な制御や煩雑な操作を要す
ることなくNH4 NO2 を生成させてこれを分解し、高
水質の処理水を得ることができることが明らかである。
From Table 1, according to the method of the present invention, by simply dividing the raw water into two, NH 4 NO 2 is produced and decomposed without the need for sophisticated control and complicated operation, and high water quality is obtained. It is clear that the treated water can be obtained.

【0034】[0034]

【表1】 [Table 1]

【0035】比較例1 表2に示す如く、NH4 +濃度が500mg−N/Lより
低い原水を実施例1と同様にして処理し、得られた処理
水を表2に示した。
Comparative Example 1 As shown in Table 2, raw water having an NH 4 + concentration lower than 500 mg-N / L was treated in the same manner as in Example 1, and the obtained treated water is shown in Table 2.

【0036】[0036]

【表2】 [Table 2]

【0037】表2より、NH4 +濃度500mg−N/L
未満の原水では、NO2 型硝化を行えないことが明らか
である。
From Table 2, NH 4 + concentration 500 mg-N / L
It is clear that NO 2 -type nitrification cannot be performed with raw water of less than 1.

【0038】[0038]

【発明の効果】以上詳述した通り、本発明のアンモニア
を含む排水の脱窒素処理方法によれば、NO2 型硝化を
行って生成させたNH4 NO2 を分解するアンモニア含
有排水の脱窒素処理に当り、煩雑な制御を要することな
く、確実にNH4 NO2 を生成させて、効率的な脱窒素
処理を行うことができる。
As described above in detail, according to the denitrification treatment method for wastewater containing ammonia of the present invention, the denitrification of wastewater containing ammonia for decomposing NH 4 NO 2 produced by NO 2 type nitrification is produced. It is possible to surely generate NH 4 NO 2 and perform an efficient denitrification process without complicated control in the process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のアンモニアを含む排水の脱窒素処理方
法の一実施例方法を示す系統図である。
FIG. 1 is a system diagram showing an example method of a method for denitrifying wastewater containing ammonia according to the present invention.

【符号の説明】[Explanation of symbols]

1 好気槽 2 分解塔 3 水冷管 4 ガス抜き槽 1 aerobic tank 2 decomposition tower 3 water cooling tube 4 degassing tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アンモニアを500mg−N/L以上含
む排水を脱窒素処理する方法において、該排水を2分割
し、一方を生物学的硝化処理して亜硝酸イオンを生成さ
せた後、他方と混合して生成する亜硝酸アンモニウムを
分解することを特徴とするアンモニアを含む排水の脱窒
素処理方法。
1. A method for denitrifying a wastewater containing 500 mg-N / L or more of ammonia, wherein the wastewater is divided into two, one of which is subjected to a biological nitrification treatment to generate nitrite ions, and the other is then treated. A method for denitrifying wastewater containing ammonia, which comprises decomposing ammonium nitrite produced by mixing.
JP8823196A 1996-04-10 1996-04-10 Denitrification treatment of waste water containing ammonia Pending JPH09276896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8823196A JPH09276896A (en) 1996-04-10 1996-04-10 Denitrification treatment of waste water containing ammonia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8823196A JPH09276896A (en) 1996-04-10 1996-04-10 Denitrification treatment of waste water containing ammonia

Publications (1)

Publication Number Publication Date
JPH09276896A true JPH09276896A (en) 1997-10-28

Family

ID=13937100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8823196A Pending JPH09276896A (en) 1996-04-10 1996-04-10 Denitrification treatment of waste water containing ammonia

Country Status (1)

Country Link
JP (1) JPH09276896A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100315874B1 (en) * 1999-07-30 2001-12-13 채문식 Method and Apparatus of Biological Nitrogen Removal from the High Concentration Industrial Wastewater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100315874B1 (en) * 1999-07-30 2001-12-13 채문식 Method and Apparatus of Biological Nitrogen Removal from the High Concentration Industrial Wastewater

Similar Documents

Publication Publication Date Title
KR101188480B1 (en) Method of nitrifying ammonium-nitrogen-containing water and method of treating the same
JP3531481B2 (en) Wastewater treatment method and apparatus
JP4644107B2 (en) Method for treating wastewater containing ammonia
JPH01207197A (en) Method and device for purifying soil water
US7404897B2 (en) Method for nitrogen removal and treatment of digester reject water in wastewater using bioaugmentation
JP4453397B2 (en) Biological nitrogen removal method
JP2003126887A (en) Method and device for treating water containing phosphorus and ammonia
JP5292658B2 (en) A method for nitrification of ammonia nitrogen-containing water
JP4848144B2 (en) Waste water treatment equipment
JP2004230338A (en) Method for removing ammonia nitrogen compound from waste water
JP4867099B2 (en) Biological denitrification method
JPH08141597A (en) Apparatus for treating waste water containing nitrogen and fluorine
JPH09276896A (en) Denitrification treatment of waste water containing ammonia
JPH08309366A (en) Removal of nitrogen and phosphorus from waste water
JPS6316100A (en) Biological nitraification and denitrification for drainage containing ammonia
JP3944981B2 (en) Method for treating selenium and nitrogen-containing water
JP3376903B2 (en) Intermittent aeration activated sludge treatment method
JP2001252690A (en) Nitrite forming method
JP3293218B2 (en) Biological nitrification denitrification treatment method
JP3677811B2 (en) Biological denitrification method
WO2007050714A2 (en) Method and apparatus for nitrogen removal in wastewater using bioaugmentation
JPH1085790A (en) Biological denitrification apparatus for drainage
JPH0773714B2 (en) Wastewater nitrification method
JPH03161096A (en) Treatment process for organic soil water
JPS6014997A (en) Treatment of organic filthy water