JPH09275165A - Circuit board and semiconductor device using the same - Google Patents

Circuit board and semiconductor device using the same

Info

Publication number
JPH09275165A
JPH09275165A JP9024733A JP2473397A JPH09275165A JP H09275165 A JPH09275165 A JP H09275165A JP 9024733 A JP9024733 A JP 9024733A JP 2473397 A JP2473397 A JP 2473397A JP H09275165 A JPH09275165 A JP H09275165A
Authority
JP
Japan
Prior art keywords
bonding material
conductive foil
circuit pattern
semiconductor device
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9024733A
Other languages
Japanese (ja)
Inventor
Akira Tanaka
明 田中
Ryuichi Saito
隆一 斉藤
Tadao Kushima
忠雄 九嶋
Hideo Shimizu
英雄 清水
Nobusuke Okada
亘右 岡田
Yoshihiko Koike
義彦 小池
Kazuji Yamada
一二 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9024733A priority Critical patent/JPH09275165A/en
Publication of JPH09275165A publication Critical patent/JPH09275165A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Structure Of Printed Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrain generation of cracks of an insulating board which are caused by temperature change of a module, by forming the end portion of bounding material in such a manner that it exists outside the end portion of a conducting foil. SOLUTION: The area of a bonding material 2 is formed wider than that of a conducting foil circuit pattern 3. Since an end portion 14 of the conducting foil circuit pattern does not coincide with an end portion 15 of the bonding material, the concentrated stress applied to a ceramic board is relieved independently of the thickness of the conducting foil pattern 3. By forming the conducting foil circuit pattern 3 inside the pattern of the bonding material 2, and making the bonding material 2 coming directly into contact with the ceramic board thinner than the circuit pattern, the stress concentrating in the end portion 15 of the bonding material can be reduced. Thereby, reliability of the ceramics board can be ensured, when the conducting circuit pattern 3 is thickened in order to apply a large current. Application to the corner part of the conducting foil circuit pattern where stress concentration is apt to happen is especially effective.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、パワー半導体装置
の実装技術に係わり、特に、導電箔が接合された絶縁性
基板を備えたモジュール構造の半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mounting technique for a power semiconductor device, and more particularly to a semiconductor device having a module structure including an insulating substrate to which a conductive foil is joined.

【0002】[0002]

【従来の技術】従来、パワー半導体素子を搭載するモジ
ュールは図4に示すように導電箔回路パターン3が付い
た絶縁性基板1からなる回路基板に半導体素子4が半田
6で接続される。この回路基板はモリブデンや銅などの
金属ベース基板8上に半田7を用いて接合されていた。
前記絶縁性基板1としては、酸化アルミニウムや窒化ア
ルミニウムなどのセラミックス基板が用いられてきた。
このセラミックス基板に回路パターンを形成する銅箔を
接合する方法としては、例えば特開昭60−177634号公報
に開示されている銀ろうによる活性金属法や、特開昭56
−163093号公報に開示されている銅と窒化アルミニウム
とを直接接合するDBC法がある。前記活性金属法によ
り接合した銅箔付絶縁性基板は、DBC法に比べて低い
温度で接合するので、窒化アルミニウムと銅の熱膨脹率
の差に起因する残留応力が小さく、ヒートサイクルなど
の熱荷重に対して耐久性がある。
2. Description of the Related Art Conventionally, in a module having a power semiconductor element mounted thereon, a semiconductor element 4 is connected by solder 6 to a circuit board made of an insulating substrate 1 having a conductive foil circuit pattern 3 as shown in FIG. This circuit board was bonded onto a metal base board 8 made of molybdenum, copper, or the like using solder 7.
As the insulating substrate 1, a ceramic substrate such as aluminum oxide or aluminum nitride has been used.
As a method for joining a copper foil for forming a circuit pattern to this ceramic substrate, for example, an active metal method using silver solder disclosed in JP-A-60-177634 and JP-A-56
There is a DBC method disclosed in Japanese Laid-Open Patent Publication No. 163093 in which copper and aluminum nitride are directly joined. Since the insulating substrate with a copper foil joined by the active metal method is joined at a lower temperature than the DBC method, the residual stress due to the difference in thermal expansion coefficient between aluminum nitride and copper is small, and the thermal load such as heat cycle is applied. Durable against.

【0003】[0003]

【発明が解決しようとする課題】動作中の半導体素子4
から発生した熱は、導電箔回路パターン3が付いた絶縁
性基板1,モリブデンや銅などの金属ベース基板8,グ
リース9を介して冷却体10から放熱される。このた
め、半導体素子動作時は、モジュール構成部材である導
電箔回路パターン3が付いた絶縁性基板1及び金属ベー
ス基板8の温度が上昇する。また、半導体素子4が動作
を停止しているときには、前記部分の温度が降下する。
このように、モジュール構成部材は、温度の上昇降下を
繰り返す。このために、導電箔回路パターン3と絶縁性
基板1との熱膨脹率の差により、熱応力が発生し、絶縁
性基板1にクラックが生じる場合がある。このクラック
により半導体素子4から金属ベース基板8,冷却体10
への熱伝導が阻害されるために、半導体素子4の温度が
上昇し、半導体素子4が熱破壊を受ける問題があった。
本発明の目的は、パワー半導体素子を搭載したモジュー
ルにおいて、モジュールの温度変化による絶縁性基板の
クラックを生じにくい信頼性の高い回路基板及びそれを
用いた半導体装置を提供することにある。
The semiconductor element 4 in operation.
The heat generated from the cooling body 10 is radiated through the insulating substrate 1 having the conductive foil circuit pattern 3, the metal base substrate 8 such as molybdenum or copper, and the grease 9. Therefore, during operation of the semiconductor device, the temperatures of the insulating substrate 1 and the metal base substrate 8 having the conductive foil circuit pattern 3 which is a module constituent member rise. Further, when the semiconductor element 4 stops operating, the temperature of the portion drops.
In this way, the module constituent members repeatedly rise and fall in temperature. Therefore, thermal stress may be generated due to the difference in coefficient of thermal expansion between the conductive foil circuit pattern 3 and the insulating substrate 1, and the insulating substrate 1 may be cracked. Due to this crack, the semiconductor element 4 to the metal base substrate 8 and the cooling body 10
Since the heat conduction to the semiconductor element 4 is hindered, the temperature of the semiconductor element 4 rises and the semiconductor element 4 is thermally damaged.
It is an object of the present invention to provide a highly reliable circuit board in which a power semiconductor element is mounted in a module, which is unlikely to cause cracks in the insulating substrate due to temperature change of the module, and a semiconductor device using the circuit board.

【0004】[0004]

【課題を解決するための手段】本発明の半導体装置は、
金属ベース基板上に絶縁性基板と接合材と導電箔と半導
体素子を積層し該導電箔を該接合材により該絶縁性基板
に接合した半導体装置において、前記接合材の端部が前
記導電箔端部より外側に存在し、前記接合材端部のはみ
だし部の長さが、前記接合材の厚さより長く、前記接合
材端部のはみ出し部の厚さが0.1mm 以下である。
According to the present invention, there is provided a semiconductor device comprising:
In a semiconductor device in which an insulating substrate, a bonding material, a conductive foil, and a semiconductor element are laminated on a metal base substrate and the conductive foil is bonded to the insulating substrate by the bonding material, the end of the bonding material is the conductive foil end. Existing outside the portion, the length of the protruding portion at the end of the bonding material is longer than the thickness of the bonding material, and the thickness of the protruding portion at the end of the bonding material is 0.1 mm or less.

【0005】また、本発明の半導体装置は、金属ベース
基板上に絶縁性基板と接合材と導電箔と半導体素子を積
層し該導電箔を該接合材により該絶縁性基板に接合した
半導体装置において、前記接合材の面積が前記導電箔の
面積より広く、前記接合材端部のはみだし部の長さが、
前記接合材の厚さより長く、前記接合材端部のはみ出し
部の厚さが0.1mm 以下である。
The semiconductor device of the present invention is a semiconductor device in which an insulating substrate, a bonding material, a conductive foil and a semiconductor element are laminated on a metal base substrate and the conductive foil is bonded to the insulating substrate by the bonding material. The area of the bonding material is wider than the area of the conductive foil, and the length of the protruding portion of the bonding material end is
The thickness of the protruding portion at the end of the bonding material is 0.1 mm or less, which is longer than the thickness of the bonding material.

【0006】本発明の半導体装置は、金属ベース基板上
に絶縁性基板と接合材と導電箔と半導体素子を積層し該
導電箔を該接合材により該絶縁性基板に接合した半導体
装置において、前記接合材の接合パターンのコーナー部
の端部が前記導電箔の回路パターンのコーナー部の端部
より外側に存在し、前記接合材パターンのコーナー部の
端部の最大はみだし部の長さが、前記接合材の厚さより
長く、前記接合材パターンのコーナー部の端部の最大は
みだし部の厚さが0.1mm 以下である。
The semiconductor device of the present invention is a semiconductor device in which an insulating substrate, a bonding material, a conductive foil and a semiconductor element are laminated on a metal base substrate and the conductive foil is bonded to the insulating substrate by the bonding material. The end portion of the corner portion of the bonding pattern of the bonding material is present outside the end portion of the corner portion of the circuit pattern of the conductive foil, the maximum protrusion length of the end portion of the corner portion of the bonding material pattern, It is longer than the thickness of the bonding material, and the thickness of the maximum protruding portion at the end of the corner portion of the bonding material pattern is 0.1 mm or less.

【0007】本発明の半導体装置は、金属ベース基板上
に絶縁性基板と接合材と導電箔と半導体素子を積層し該
導電箔を該接合材により該絶縁性基板を接合した半導体
装置において、前記接合材の端部が前記導電箔端部より
外側に存在し、前記導電箔が複数の種類の接合材で前記
絶縁性基板に接合され、前記接合材が前記導電箔上にも
ある。
The semiconductor device of the present invention is a semiconductor device in which an insulating substrate, a bonding material, a conductive foil, and a semiconductor element are laminated on a metal base substrate, and the conductive foil is bonded to the insulating substrate by the bonding material. An end portion of the bonding material exists outside the end portion of the conductive foil, the conductive foil is bonded to the insulating substrate with a plurality of kinds of bonding materials, and the bonding material is also on the conductive foil.

【0008】なお上記各半導体装置において、絶縁性基
板と接合材と導電箔の積層されたものが回路基板に相当
する。
In each of the above semiconductor devices, a laminate of an insulating substrate, a bonding material and a conductive foil corresponds to a circuit board.

【0009】本発明によれば、接合材パターンの端部上
に導電箔が無い。このため、接合材パターンの端部下に
位置する絶縁基板の部分が加わる熱応力が低減される。
According to the present invention, there is no conductive foil on the end of the bonding material pattern. For this reason, the thermal stress applied to the portion of the insulating substrate located below the end of the bonding material pattern is reduced.

【0010】[0010]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)図1の実施例により、本発明を従来技術と
比較しながら説明する。
(Embodiment 1) The present invention will be described with reference to the embodiment of FIG.

【0011】従来、導電箔回路パターン3が付いた絶縁
性基板1は、次のような方法で作製している。まず、絶
縁性基板1上に接合材2を回路パターン形状に印刷後、
銅箔を被せ、加圧接合する。その後、銅箔をエッチング
し所望の回路パターンを形成する。このとき、接合材2
のパターンは、エッチング後の銅箔の回路パターンと同
一形状になるように作製されていた。
Conventionally, the insulating substrate 1 provided with the conductive foil circuit pattern 3 is manufactured by the following method. First, after printing the bonding material 2 in a circuit pattern shape on the insulating substrate 1,
Cover with copper foil and press bond. Then, the copper foil is etched to form a desired circuit pattern. At this time, the bonding material 2
The pattern was prepared so as to have the same shape as the circuit pattern of the copper foil after etching.

【0012】通常、導電箔回路パターン3は、銅箔から
なり、絶縁性基板1はセラミックスからなる。銅の熱膨
脹率は17×10~6/℃であり、セラミックスの熱膨脹
率は、例えば酸化アルミニウムが6.5×10~6/℃,
窒化アルミニウムが4.5×10~6/℃である。このた
め、半導体素子4の動作時には、半導体素子4の発熱に
より、導電箔回路パターン3と絶縁性基板1との熱膨脹
率の差により、セラミックス基板上の導電箔回路パター
ン端部14で最も大きな応力が発生する。
Usually, the conductive foil circuit pattern 3 is made of copper foil, and the insulating substrate 1 is made of ceramics. The coefficient of thermal expansion of copper is 17 × 10 6 / ° C., and the coefficient of thermal expansion of ceramics is, for example, 6.5 × 10 6 / ° C. for aluminum oxide,
Aluminum nitride is 4.5 × 10 6 / ° C. Therefore, when the semiconductor element 4 is operating, the heat generated in the semiconductor element 4 causes a difference in coefficient of thermal expansion between the conductive foil circuit pattern 3 and the insulating substrate 1 to cause the greatest stress at the conductive foil circuit pattern end portion 14 on the ceramic substrate. Occurs.

【0013】さらに、接合材の印刷マスクや回路エッチ
ングパターンの重ね合わせ精度などにより、接合材の端
部15が導電箔回路パターン端部14より内側に形成さ
れると前記応力集中が大きくなりセラミックス基板にク
ラックが生じやすくなる。また、導電箔回路パターン3
の厚さが増すほど、セラミックス基板に加わる応力が増
大する。このため、導電箔回路パターン端部14を段部
を介して薄肉とする方法が特開平5−152461 号公報に開
示されている。しかし、プレス等の機械的手段やエッチ
ング等の化学的手段により端縁を薄くするために、プレ
スの加圧やエッチングによりセラミックス基板にクラッ
クが入る恐れがあった。これに対して、本発明では接合
材2の面積を導電箔回路パターン3の面積より広く設け
ることにより問題を解決した。即ち、導電箔回路パター
ンの端部14と接合材の端部15が揃っていないため、
導電箔回路パターン3の厚さにかかわらず、セラミック
ス基板に加わる応力集中が緩和される。導電箔回路パタ
ーン3を接合材2のパターンより内側に設け、セラミッ
クス基板と直接接する接合材2の厚さを回路パターンの
厚さより薄くすることにより、接合材の端部15に集中
する応力が半分以下にすることが実験結果から明らかと
なった。もちろん、導電箔回路パターン3の端縁にテー
パを付け徐々に薄くしても良い。また従来通りのエッチ
ングを導電箔回路パターン3の端縁に行っても構わな
い。即ち、導電箔回路パターン3の作製方法や断面形状
は如何なるものでも構わない。これにより、電流を多く
流すために導電箔回路パターン3を厚くしてもセラミッ
クス基板の信頼性は確保できる。また、本発明は応力集
中が起こりやすい導電箔回路パターン3のコーナー部に
適用すると特に有効である。
Further, when the end portion 15 of the bonding material is formed inside the end portion 14 of the conductive foil circuit pattern due to the printing mask of the bonding material, the overlay accuracy of the circuit etching pattern, and the like, the stress concentration increases and the ceramic substrate Cracks are likely to occur. Also, the conductive foil circuit pattern 3
As the thickness increases, the stress applied to the ceramic substrate increases. Therefore, a method of thinning the conductive foil circuit pattern end portion 14 through the step portion is disclosed in Japanese Patent Laid-Open No. 5-152461. However, since the edge is thinned by a mechanical means such as a press or a chemical means such as an etching, there is a possibility that the ceramic substrate may be cracked by pressurization or etching of the press. On the other hand, in the present invention, the problem is solved by providing the area of the bonding material 2 larger than the area of the conductive foil circuit pattern 3. That is, since the end portion 14 of the conductive foil circuit pattern and the end portion 15 of the bonding material are not aligned,
Regardless of the thickness of the conductive foil circuit pattern 3, stress concentration applied to the ceramic substrate is relieved. By providing the conductive foil circuit pattern 3 inside the pattern of the bonding material 2 and making the thickness of the bonding material 2 that is in direct contact with the ceramic substrate thinner than the thickness of the circuit pattern, the stress concentrated on the end portion 15 of the bonding material is halved. It became clear from the experimental results that the following is done. Of course, the edge of the conductive foil circuit pattern 3 may be tapered to be gradually thinned. Further, conventional etching may be performed on the edge of the conductive foil circuit pattern 3. That is, any method of manufacturing the conductive foil circuit pattern 3 and its cross-sectional shape may be used. As a result, the reliability of the ceramic substrate can be ensured even if the conductive foil circuit pattern 3 is thickened to allow a large amount of current to flow. Further, the present invention is particularly effective when applied to the corner portion of the conductive foil circuit pattern 3 where stress concentration is likely to occur.

【0014】(実施例2)図2(a)に本実施例に用い
た導電箔回路パターン3が付いた絶縁性基板1の平面図
を示す。図2(b)にA−A断面図を示す。絶縁性基板
1として窒化アルミニウムを用いた。絶縁性基板1には
窒化アルミニウムの他に、例えば酸化アルミニウムや炭
化硅素などのセラミックスや、金属とセラミックスを積
層した複合材料など、電気絶縁性を備えた材料からなる
基板を用いることができる。接合材2には、銀と銅を主
成分とする銀ろうを用いた。導電箔回路パターン3とセ
ラミックス基板との熱膨脹率の差を緩和させるために、
銀ろうに導電箔回路パターン3の材質とセラミックス基
板の材質の中間の熱膨脹率を示す金属を添加すると良
い。また、好ましくは、窒化アルミニウム基板との接合
強度を上げるため、銀ろうに水素化チタンを添加すると
良い。本実施例では圧延銅箔を用いて導電箔回路パター
ン3を形成した。この導電箔回路パターン3が付いた絶
縁性基板1は、以下のようにして作製した。まず、窒化
アルミニウム基板の両面に、接合材2の銀ろうを所定の
パターンにスクリーン印刷し、乾燥した。次に、銅箔を
前記銀ろうが印刷された窒化アルミニウム基板の表と裏
に接触するように配置した後、スペーサを介して銅箔に
荷重を加えて加熱処理し、銅箔が接合された絶縁性基板
を得た。次に、この銅箔が接合された絶縁性基板をエッ
チング処理して、所定の導電箔回路パターン3を得た。
エッチング処理する際のレジストパターンは、エッチン
グ後の銅箔の回路パターンが最終的に銀ろうのパターン
より内側に形成されるように塗布した。以上の工程によ
り、図2(a)に示すように接合材2のパターンが、導
電箔回路パターン3より広い面積を有する絶縁性基板1
を得た。この導電箔回路パターン3が付いた絶縁性基板
1の銅箔に酸化防止処理として、無電解ニッケル−リン
メッキを行った。次にモリブデン製の金属ベース基板8
に前記絶縁性基板1及び電極端子(図示せず)を接合
後、ケース(図示せず)を接合し図1に示すモジュール
を得た。表1に作製したモジュールの−40℃〜125
℃の温度サイクル信頼性試験結果を示す。
(Embodiment 2) FIG. 2A shows a plan view of an insulating substrate 1 having a conductive foil circuit pattern 3 used in this embodiment. FIG. 2B shows a sectional view taken along line AA. Aluminum nitride was used as the insulating substrate 1. As the insulating substrate 1, in addition to aluminum nitride, a substrate made of a material having electrical insulation such as ceramics such as aluminum oxide or silicon carbide, or a composite material in which metal and ceramics are laminated can be used. As the bonding material 2, a silver brazing material containing silver and copper as main components was used. In order to reduce the difference in coefficient of thermal expansion between the conductive foil circuit pattern 3 and the ceramic substrate,
It is advisable to add a metal having a coefficient of thermal expansion intermediate to that of the material of the conductive foil circuit pattern 3 and the material of the ceramic substrate to the silver solder. Further, it is preferable to add titanium hydride to the silver brazing material in order to increase the bonding strength with the aluminum nitride substrate. In this example, the rolled copper foil was used to form the conductive foil circuit pattern 3. The insulating substrate 1 provided with the conductive foil circuit pattern 3 was produced as follows. First, silver solder of the bonding material 2 was screen-printed in a predetermined pattern on both surfaces of the aluminum nitride substrate and dried. Next, a copper foil was placed so as to contact the front and back of the aluminum nitride substrate on which the silver solder was printed, and then a load was applied to the copper foil via a spacer to perform heat treatment, and the copper foil was joined. An insulating substrate was obtained. Next, the insulating substrate to which this copper foil was joined was subjected to an etching treatment to obtain a predetermined conductive foil circuit pattern 3.
The resist pattern for the etching treatment was applied so that the circuit pattern of the copper foil after etching was finally formed inside the silver brazing pattern. Through the above steps, the insulating substrate 1 in which the pattern of the bonding material 2 has a larger area than the conductive foil circuit pattern 3 as shown in FIG.
I got Electroless nickel-phosphorus plating was performed on the copper foil of the insulating substrate 1 having the conductive foil circuit pattern 3 as an antioxidant treatment. Next, molybdenum metal base substrate 8
After the insulating substrate 1 and the electrode terminals (not shown) were joined to the above, a case (not shown) was joined to obtain the module shown in FIG. -40 ° C to 125 of the module prepared in Table 1
The temperature cycle reliability test results of ° C are shown.

【0015】[0015]

【表1】 [Table 1]

【0016】銀ろうが銅箔よりも広い面積形状を備えた
モジュールは、1000サイクルの試験後でも、絶縁性
基板1のクラックによる銅箔の剥離は生じずモジュール
は正常に動作した。一方、銀ろうと銅箔が同じ面積形状
であるモジュールは、前記温度サイクル信頼性試験を行
った結果、200サイクルで絶縁性基板1のクラックに
よる銅箔の剥離が生じた。また、銀ろうが銅箔より内側
にある面積形状の絶縁性基板を用いたモジュールは、2
0サイクルの試験で絶縁性基板のクラックによる銅箔の
剥離が生じた。
With respect to the module in which the silver solder has a larger area shape than the copper foil, the copper foil was not peeled off due to cracks in the insulating substrate 1 even after the 1000-cycle test, and the module operated normally. On the other hand, in the module in which the silver solder and the copper foil have the same area shape, as a result of the temperature cycle reliability test, peeling of the copper foil due to cracks in the insulating substrate 1 occurred after 200 cycles. In addition, a module using an area-shaped insulating substrate in which the silver solder is inside the copper foil is
In the 0-cycle test, peeling of the copper foil occurred due to cracks in the insulating substrate.

【0017】(実施例3)図3に本実施例に用いた導電
箔回路パターン3の平面図を示す。モジュールに大電流
を流すためには、導電箔回路パターン3を広く取ること
が好ましい。このため、導電箔回路パターン3の直線部
分は、接合材3の端部と導電箔回路パターン3の端部を
合わせ、導電箔回路パターン3のコーナー部では導電箔
回路パターン3の端部の曲率半径を接合材2のパターン
の端部の曲率半径より大きくし、導電箔回路パターン3
のコーナー部において、接合材2がはみ出している形状
とした。本実施例のモジュールを用いた温度サイクル試
験を行った結果、1000サイクルでも絶縁性基板1に
クラックが生じずモジュールは正常に動作した。
(Embodiment 3) FIG. 3 shows a plan view of the conductive foil circuit pattern 3 used in this embodiment. In order to pass a large current through the module, it is preferable to make the conductive foil circuit pattern 3 wide. Therefore, the straight portion of the conductive foil circuit pattern 3 is aligned with the end of the bonding material 3 and the end of the conductive foil circuit pattern 3, and the curvature of the end of the conductive foil circuit pattern 3 at the corner of the conductive foil circuit pattern 3. The radius is made larger than the radius of curvature of the end of the pattern of the bonding material 2, and the conductive foil circuit pattern 3 is formed.
In the corner portion of the above, the bonding material 2 is formed to protrude. As a result of a temperature cycle test using the module of the present example, the insulating substrate 1 did not crack even after 1000 cycles, and the module operated normally.

【0018】本実施例に示すように、必ずしも導電箔回
路パターン3全周に渡って銀ろうが外側にはみ出してい
なくてもよく、導電箔回路パターン3のコーナー部だけ
でも、銀ろうが導電箔より外側にはみ出していればよ
い。
As shown in the present embodiment, the silver brazing material does not necessarily have to extend to the outside over the entire circumference of the conductive foil circuit pattern 3, and the silver brazing material is not covered with the conductive foil circuit pattern 3 only at the corners. It only has to protrude to the outside.

【0019】(実施例4)導電箔回路パターン端部14
からの接合材端部のはみ出し部16の長さを種々変えた
モジュールを作製した。モジュールの作製方法は、実施
例1と同様である。本実施例では、導電箔回路パターン
の銅箔の厚さを0.3mm 一定とした。また、接合材の厚
さは0.03mm 一定とした。図5に導電箔回路パターン
端部14からの接合材端部のはみ出し部16の長さを変
えた場合の、クラックが発生した温度サイクル数を示
す。モジュールの実用上、温度サイクル試験500サイ
クルまではクラックの発生を抑えなければならない。接
合材端部のはみ出し部の長さが0.02mm のモジュール
は、400サイクルからクラックが発生し、該はみ出し
部の長さが0.03mm のモジュールでは800サイクル
からクラックが発生した。このように、接合材端部のは
み出し部の長さ16が、接合材の厚さ以上であれば、実
用上、クラックの発生を防ぐことができる。
(Embodiment 4) Conductive foil circuit pattern end portion 14
Modules having various lengths of the protruding portion 16 at the end of the joining material from No. 3 were produced. The method of manufacturing the module is the same as that of the first embodiment. In this embodiment, the thickness of the copper foil of the conductive foil circuit pattern is fixed at 0.3 mm. Further, the thickness of the bonding material was fixed to 0.03 mm. FIG. 5 shows the number of temperature cycles in which a crack is generated when the length of the protruding portion 16 at the end of the bonding material from the end 14 of the conductive foil circuit pattern is changed. In practical use of the module, it is necessary to suppress the generation of cracks until the temperature cycle test reaches 500 cycles. The module with the length of the protruding portion at the end of the bonding material of 0.02 mm generated cracks after 400 cycles, and the module with the length of the protruding portion of 0.03 mm generated cracks after 800 cycles. As described above, when the length 16 of the protruding portion at the end of the bonding material is equal to or larger than the thickness of the bonding material, it is possible to practically prevent the generation of cracks.

【0020】(実施例5)導電箔回路パターン3を形成
する銅箔の厚さを種々変えたモジュールを作製した。モ
ジュールの作製方法は、実施例1と同様である。接合材
2の厚さは0.03mm一定とした。導電箔回路パターン端部
14からの接合材のはみ出し部16の長さは0.1mm 一
定とした。導電箔回路パターン3の銅箔の厚さを0.
1,0.3,0.6 ,1,2mmと変えて、温度サイクル
試験を行った。1000サイクルまで試験したが、いず
れのモジュールにおいてもセラミックス基板にクラック
は発生せずモジュールは正常に動作した。
Example 5 Modules having various thicknesses of copper foil forming the conductive foil circuit pattern 3 were produced. The method of manufacturing the module is the same as that of the first embodiment. The thickness of the bonding material 2 was constant at 0.03 mm. The length of the protruding portion 16 of the bonding material from the end portion 14 of the conductive foil circuit pattern was constant at 0.1 mm. The thickness of the copper foil of the conductive foil circuit pattern 3 is set to 0.
A temperature cycle test was conducted by changing to 1, 0.3, 0.6, 1, 2 mm. Although the test was performed up to 1000 cycles, no cracks were generated in the ceramic substrate in any of the modules, and the modules operated normally.

【0021】(実施例6)図6に本実施例の導電箔回路
パターン3の一部を示す。図6(b)は平面図、図6
(a)は図6(b)のB−Bでの断面図である。接合材
2には、銀ろうを用いている。また導電箔回路パターン
3のコーナー部の下には、銀ろうとは異なる材質の接合
材として、樹脂11を用いた。樹脂11としては、シリ
コーン系樹脂を用いた。用いる樹脂は、150℃以上の
耐熱性を備えていればシリコーン樹脂以外の樹脂でも良
い。樹脂11は、回路パターンの端縁の内側から存在
し、端縁からはみ出して存在している。本実施例のモジ
ュールについて温度サイクル試験を行って結果、100
0サイクルでもセラミックス基板にクラックは生じずモ
ジユールは正常に動作した。
(Embodiment 6) FIG. 6 shows a part of a conductive foil circuit pattern 3 of this embodiment. 6 (b) is a plan view, FIG.
FIG. 6A is a sectional view taken along line BB in FIG. Silver solder is used for the bonding material 2. Further, under the corner portion of the conductive foil circuit pattern 3, resin 11 was used as a bonding material made of a material different from silver solder. A silicone-based resin was used as the resin 11. The resin used may be a resin other than the silicone resin as long as it has a heat resistance of 150 ° C. or higher. The resin 11 is present from the inside of the edge of the circuit pattern and is present outside the edge. As a result of performing a temperature cycle test on the module of this example, 100
Even at 0 cycles, the ceramic substrate did not crack and the module operated normally.

【0022】(実施例7)図7は、本実施例の導電箔回
路パターン3の一部である。導電箔回路パターン3に大
電流を流すためには、該回路パターンの面積をできるだ
け広くとることが好ましい。このため、本実施例では、
導電箔回路パターンの直線部分では、接合材2の端部ま
で該回路パターンを広げ、銀ろうとは異なる材質の接合
材として、樹脂11を導電箔回路パターンのコーナー部
を用いた。
(Embodiment 7) FIG. 7 shows a part of a conductive foil circuit pattern 3 of this embodiment. In order to pass a large current through the conductive foil circuit pattern 3, it is preferable to make the area of the circuit pattern as large as possible. For this reason, in this embodiment,
In the straight line portion of the conductive foil circuit pattern, the circuit pattern was spread to the end of the bonding material 2, and the resin 11 was used as a corner material of the conductive foil circuit pattern as a bonding material made of a material different from silver solder.

【0023】また、図7に示すように、導電箔回路パタ
ーン端部下の内側17では、必ずしも全面に樹脂11が
存在する必要はなく、導電箔回路パターン端部に沿って
存在していれば良い。また、樹脂11は、導電箔回路パ
ターン端面に包むように存在し、該回路パターンの上に
存在していても良い。本実施例のモジュールを用い温度
サイクル試験を行った結果、1000サイクルでもセラ
ミックス基板にクラックは生じずモジュールは正常に動
作した。
Further, as shown in FIG. 7, the resin 11 does not necessarily need to be present on the entire surface of the inner side 17 under the end portion of the conductive foil circuit pattern, but may be present along the end portion of the conductive foil circuit pattern. . Further, the resin 11 may be present so as to be wrapped around the end face of the conductive foil circuit pattern, and may be present on the circuit pattern. As a result of performing a temperature cycle test using the module of this example, no crack was generated in the ceramic substrate even after 1000 cycles, and the module operated normally.

【0024】(実施例8)本実施例では、接合材2の銀
ろうの厚さを変えたモジュールを作製した。モジュール
の作製方法は、実施例2と同様である。導電箔回路パタ
ーン3の銅箔の厚さは0.3mm 一定とし、導電箔回路パ
ターン端部14からの接合材端部のはみ出し部16の長
さは0.1mm一定とした。接合材2の銀ろうの厚さを0.
01,0.03,0.05,0.1,0.2mm と変えて、温度
サイクル試験を行った。銀ろうの厚さが0.2mm のモジ
ュールでは1000サイクル以下でセラミックス基板に
クラックが生じた。一方、銀ろうの厚さ0.1mm 以下の
モジュールでは、1000サイクルでもセラミックス基
板にクラックは発生せずモジュールは正常に動作した。
(Embodiment 8) In this embodiment, modules in which the thickness of the silver solder of the bonding material 2 was changed were produced. The manufacturing method of the module is the same as that of the second embodiment. The thickness of the copper foil of the conductive foil circuit pattern 3 was constant at 0.3 mm, and the length of the protruding portion 16 from the conductive foil circuit pattern end 14 to the end of the bonding material was constant at 0.1 mm. The thickness of the silver solder of the bonding material 2 is set to 0.
The temperature cycle test was conducted by changing the values to 01, 0.03, 0.05, 0.1 and 0.2 mm. With a module having a silver solder thickness of 0.2 mm, cracks occurred in the ceramic substrate after 1000 cycles or less. On the other hand, in a module having a silver solder thickness of 0.1 mm or less, cracks did not occur in the ceramic substrate even after 1000 cycles, and the module operated normally.

【0025】(実施例9)図8(b)に本実施例に用い
た導電箔回路パターン3が付いた絶縁性基板1の一部の
平面図を示す。図8(a)は図8(b)のD−D断面図
を示す。導電箔回路パターン2上に電極端子12が端子
接合材13により接合されている。この電極端子12の
接合部周辺において、導電箔回路パターン3の接合材2
が図8(b)に示すようにはみ出ている。電極端子12
は、銅板を折り曲げたものを用い、端子接合材13は半
田を用いた。モジュールに温度サイクルがかかると、電
極端子12の熱膨脹により、電極端子下の導電箔回路パ
ターン3を通じてセラミックス基板に応力が発生する。
この場合、電極端子12周辺の導電箔回路パターンの面
積が小さいと、導電箔回路パターン端部においてセラミ
ックス基板に大きな応力が発生する。接合材2の幅を図
8(b)に示すように導電箔回路パターン3より広くす
ることによって、セラミックス基板に生じる応力を低減
できる。本実施例においては、図8(b)に示すよう
に、電極端子12周辺に導電箔回路パターン3から接合
材2が最大で0.2mm はみ出した基板を作製し、この基
板に電極端子12を接合し、モジュールを組み立てた。
このモジュールを用いて、温度サイクル試験を行った結
果、1000サイクル後も、セラミックス基板にクラッ
クは生じず、モジュールは正常に動作した。
(Embodiment 9) FIG. 8B shows a plan view of a part of the insulating substrate 1 having the conductive foil circuit pattern 3 used in this embodiment. FIG. 8A is a sectional view taken along line D-D of FIG. 8B. The electrode terminals 12 are bonded onto the conductive foil circuit pattern 2 with a terminal bonding material 13. Around the joint of the electrode terminal 12, the joint material 2 of the conductive foil circuit pattern 3 is formed.
Is protruding as shown in FIG. 8 (b). Electrode terminal 12
Was a bent copper plate, and the terminal bonding material 13 was solder. When the module is subjected to a temperature cycle, thermal expansion of the electrode terminals 12 causes stress on the ceramic substrate through the conductive foil circuit pattern 3 below the electrode terminals.
In this case, if the area of the conductive foil circuit pattern around the electrode terminal 12 is small, a large stress is generated in the ceramic substrate at the end of the conductive foil circuit pattern. By making the width of the bonding material 2 wider than that of the conductive foil circuit pattern 3 as shown in FIG. 8B, the stress generated in the ceramic substrate can be reduced. In this embodiment, as shown in FIG. 8 (b), a substrate was prepared in which the bonding material 2 protruded from the conductive foil circuit pattern 3 by 0.2 mm at the maximum around the electrode terminal 12, and the electrode terminal 12 was formed on this substrate. Joined and assembled the module.
As a result of performing a temperature cycle test using this module, the ceramic substrate did not crack even after 1000 cycles, and the module operated normally.

【0026】一方、比較のために、導電箔回路パターン
3端部から接合材がはみ出していない基板を作製した。
電極端子12をこの基板に接合し、組み立てたモジュー
ルの温度サイクル試験を行った。その結果、1000サ
イクル後に、モジュールは正常に動作しなかった。この
正常に動作しなかったモジュールを分解してみると、電
極端子12周辺部のセラミックス基板にクラックが入っ
ていた。
On the other hand, for comparison, a substrate was prepared in which the bonding material did not protrude from the end of the conductive foil circuit pattern 3.
The electrode terminal 12 was joined to this substrate, and the assembled module was subjected to a temperature cycle test. As a result, the module did not operate normally after 1000 cycles. When the module that did not operate normally was disassembled, cracks were found in the ceramic substrate around the electrode terminals 12.

【0027】(実施例10)図9(b)に本実施例に用
いた導電箔回路パターン3が付いた絶縁性基板1の一部
の平面図示す。図9(a)は図9(b)のE−E断面図
を示す。導電箔回路パターン3上に電極端子12が端子
接合材13を用いて接合されている。本実施例において
は、隣接する導電箔回路パターン(図示せず)との絶縁
距離を確保し、かつ、できるだけ導電箔回路パターン3
同士を近付けるために、この電極端子12の接合部周辺
に樹脂11を用いた。本実施例のモジュールを温度サイ
クル試験を行った結果、1000サイクル後も、モジュ
ールは正常に動作した。
(Embodiment 10) FIG. 9B shows a plan view of a part of the insulating substrate 1 with the conductive foil circuit pattern 3 used in this embodiment. FIG. 9A shows a sectional view taken along line EE of FIG. 9B. The electrode terminals 12 are bonded onto the conductive foil circuit pattern 3 using a terminal bonding material 13. In this embodiment, an insulating distance from an adjacent conductive foil circuit pattern (not shown) is secured, and the conductive foil circuit pattern 3 is formed as much as possible.
In order to bring them closer to each other, the resin 11 was used around the joint of the electrode terminal 12. As a result of performing a temperature cycle test on the module of this example, the module operated normally even after 1000 cycles.

【0028】(実施例11)図10(a)及び(b)
は、本発明の実施例である回路基板の端部の部分断面図
である。
(Embodiment 11) FIGS. 10A and 10B.
FIG. 3 is a partial cross-sectional view of an end portion of a circuit board that is an embodiment of the present invention.

【0029】図10(a)においては、銅箔3の厚さが
端部において階段上に薄くなっている。また、図10
(b)においては、銅箔3の端部にテーパを付けて、銅
箔の厚さを徐々に薄くしている。各図における銅箔はセ
ラミック基板の表面に接合材2により接合され、かつ接
合材2の端部が銅箔3の端部よりも外側に位置する。
In FIG. 10A, the thickness of the copper foil 3 is thin on the stairs at the end. FIG.
In (b), the end of the copper foil 3 is tapered to gradually reduce the thickness of the copper foil. The copper foil in each figure is joined to the surface of the ceramic substrate by the joining material 2, and the end of the joining material 2 is located outside the end of the copper foil 3.

【0030】本実施例によれば、セラミック基板1の接
合材2の端部下に位置する部分における熱応力が低減さ
れる。さらに、セラミック基板1の銅箔3の端部下に位
置する部分の熱応力も低減される。
According to this embodiment, the thermal stress in the portion of the ceramic substrate 1 located below the end of the bonding material 2 is reduced. Further, the thermal stress of the portion of the ceramic substrate 1 located below the end of the copper foil 3 is also reduced.

【0031】なお、銅箔3の端縁と接合材2の端縁の位
置は一致していてもよい。
The positions of the edge of the copper foil 3 and the edge of the bonding material 2 may be the same.

【0032】[0032]

【発明の効果】本発明によれば、回路パターン端部から
絶縁性基板に応じる応力集中を緩和できるため、繰り返
し熱負荷に対する信頼性が向上した半導体装置を提供す
ることができる。
According to the present invention, the stress concentration due to the insulating substrate can be relaxed from the end of the circuit pattern, so that it is possible to provide a semiconductor device with improved reliability against repeated thermal loads.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例によるモジュールの概略断面
図。
FIG. 1 is a schematic sectional view of a module according to an embodiment of the present invention.

【図2】本発明の実施例の平面図(a)と断面図
(b)。
FIG. 2 is a plan view (a) and a sectional view (b) of an embodiment of the present invention.

【図3】本発明の実施例の平面図。FIG. 3 is a plan view of an embodiment of the present invention.

【図4】従来のモジュールの概略断面図。FIG. 4 is a schematic sectional view of a conventional module.

【図5】導電箔回路パターン端部からの接合材端部はみ
出し部の長さとクラックが発生した温度サイクル数の関
係を示す図。
FIG. 5 is a diagram showing a relationship between a length of a bonding material end portion protruding from a conductive foil circuit pattern end portion and the number of temperature cycles in which a crack is generated.

【図6】本発明の実施例の断面図(a)と平面図
(b)。
FIG. 6 is a sectional view (a) and a plan view (b) of an embodiment of the present invention.

【図7】本発明の実施例の断面図(a)と平面図
(b)。
FIG. 7 is a sectional view (a) and a plan view (b) of an embodiment of the present invention.

【図8】本発明の実施例の断面図(a)と平面図
(b)。
FIG. 8 is a sectional view (a) and a plan view (b) of an embodiment of the present invention.

【図9】本発明の実施例の断面図(a)と平面図
(b)。
FIG. 9 is a sectional view (a) and a plan view (b) of an embodiment of the present invention.

【図10】本発明の実施例の部分断面図(a)及び
(b)。
FIG. 10 is a partial sectional view (a) and (b) of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…絶縁性基板、2…接合材、3…導電箔回路パター
ン、4…半導体素子、5…ワイヤ、6,7…半田、8…
金属ベース基板、9…グリース、10…冷却体、11…
樹脂、12…電極端子、13…端子接合材、14…導電
箔回路パターン端部、15…接合材の端部、16…接合
材端部のはみ出し部、17…導電箔回路パターン端部下
の内側。
1 ... Insulating substrate, 2 ... Bonding material, 3 ... Conductive foil circuit pattern, 4 ... Semiconductor element, 5 ... Wire, 6,7 ... Solder, 8 ...
Metal base substrate, 9 ... Grease, 10 ... Cooling body, 11 ...
Resin, 12 ... Electrode terminal, 13 ... Terminal bonding material, 14 ... Conductive foil circuit pattern end portion, 15 ... Bonding material end portion, 16 ... Bonding material end portion protrusion, 17 ... Inside of conductive foil circuit pattern end portion .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水 英雄 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 岡田 亘右 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 小池 義彦 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 山田 一二 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideo Shimizu, Inventor Hideo Shimizu, 1-1-1, Omika-cho, Hitachi-shi, Ibaraki Hitachi, Ltd. Hitachi Research Laboratory (72) Inventor Wataru Okada, 7-chome, Omika-cho, Hitachi-shi, Ibaraki No. 1-1 Hitachi Ltd., Hitachi Research Laboratory (72) Inventor Yoshihiko Koike Seven-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Kazu Yamada Ibaraki Prefecture Hitachi 7-1 Mika-cho, Oita-shi, Hitachi, Ltd. Hitachi Research Laboratory

Claims (22)

【特許請求の範囲】[Claims] 【請求項1】絶縁性基板と接合材と導電箔とを積層し該
導電箔を該接合材を介して該絶縁性基板に接合した回路
基板において、前記接合材の端部が前記導電箔端部より
外側に存在していることを特徴とする回路基板。
1. A circuit board in which an insulating substrate, a bonding material, and a conductive foil are laminated and the conductive foil is bonded to the insulating substrate via the bonding material, and the end of the bonding material is the conductive foil end. A circuit board that is present outside the part.
【請求項2】請求項1記載の回路基板において、前記接
合材端部のはみだし部の長さが、前記接合材の厚さより
長いことを特徴とする回路基板。
2. The circuit board according to claim 1, wherein the length of the protruding portion at the end of the bonding material is longer than the thickness of the bonding material.
【請求項3】請求項1記載の回路基板において、前記接
合材端部のはみ出し部の厚さが0.1mm以下であることを
特徴とする回路基板。
3. The circuit board according to claim 1, wherein the thickness of the protruding portion at the end of the bonding material is 0.1 mm or less.
【請求項4】絶縁性基板と接合材と導電箔とを積層し該
導電箔を該接合材を介して該絶縁性基板に接合した回路
基板において、前記接合材の面積が前記導電箔の面積よ
り広いことを特徴とする回路基板。
4. A circuit board in which an insulating substrate, a bonding material and a conductive foil are laminated and the conductive foil is bonded to the insulating substrate via the bonding material, and the area of the bonding material is the area of the conductive foil. A circuit board that is wider.
【請求項5】請求項4記載の回路基板において、前記接
合材端部のはみだし部の長さが、前記接合材の厚さより
長いことを特徴とする回路基板。
5. The circuit board according to claim 4, wherein the length of the protruding portion at the end of the bonding material is longer than the thickness of the bonding material.
【請求項6】請求項4記載の回路基板において、前記接
合材端部のはみ出し部の厚さが0.1mm以下であることを
特徴とする回路基板。
6. The circuit board according to claim 4, wherein the thickness of the protruding portion at the end of the bonding material is 0.1 mm or less.
【請求項7】絶縁性基板と接合材と導電箔とを積層し該
導電箔を該接合材を介して該絶縁性基板に接合した回路
基板において、前記接合材の接合パターンのコーナー部
の端部が前記導電箔の回路パターンのコーナー部の端部
より外側に存在していることを特徴とする回路基板。
7. A circuit board in which an insulating substrate, a bonding material, and a conductive foil are laminated, and the conductive foil is bonded to the insulating substrate via the bonding material, and an end of a corner portion of a bonding pattern of the bonding material. The circuit board is characterized in that the portion exists outside the end portion of the corner portion of the circuit pattern of the conductive foil.
【請求項8】請求項7記載の回路基板において、前記接
合材パターンのコーナー部の端部の最大はみだし部の長
さが、前記接合材の厚さより長いことを特徴とする回路
基板。
8. The circuit board according to claim 7, wherein the maximum protruding portion at the end of the corner portion of the bonding material pattern is longer than the thickness of the bonding material.
【請求項9】請求項7記載の回路基板において、前記接
合材パターンのコーナー部の端部の最大はみだし部の厚
さが0.1mm 以下であることを特徴とする回路基板。
9. The circuit board according to claim 7, wherein the thickness of the maximum protruding portion at the end of the corner portion of the bonding material pattern is 0.1 mm or less.
【請求項10】請求項1記載の回路基板において、前記
導電箔が複数の種類の接合材で前記絶縁性基板に接合さ
れていることを特徴とする回路基板。
10. The circuit board according to claim 1, wherein the conductive foil is bonded to the insulating board with a plurality of kinds of bonding materials.
【請求項11】請求項10記載の回路基板において、前
記接合材が前記導電箔上にもあることを特徴とする回路
基板。
11. The circuit board according to claim 10, wherein the bonding material is also on the conductive foil.
【請求項12】金属ベース基板上に絶縁性基板と接合材
と導電箔と半導体素子を積層し該導電箔を該接合材を介
して該絶縁性基板に接合した半導体装置において、前記
接合材の端部が前記導電箔端部より外側に存在している
ことを特徴とする半導体装置。
12. A semiconductor device in which an insulating substrate, a bonding material, a conductive foil, and a semiconductor element are laminated on a metal base substrate, and the conductive foil is bonded to the insulating substrate via the bonding material. A semiconductor device, wherein an end portion is present outside the end portion of the conductive foil.
【請求項13】請求項12記載の半導体装置において、
前記接合材端部のはみだし部の長さが、前記接合材の厚
さより長いことを特徴とする半導体装置。
13. The semiconductor device according to claim 12,
A semiconductor device, wherein a length of a protruding portion at an end portion of the bonding material is longer than a thickness of the bonding material.
【請求項14】請求項12記載の半導体装置において、
前記接合材端部のはみ出し部の厚さが0.1mm 以下であ
ることを特徴とする半導体装置。
14. The semiconductor device according to claim 12,
A semiconductor device, wherein the thickness of the protruding portion at the end of the bonding material is 0.1 mm or less.
【請求項15】金属ベース基板上に絶縁性基板と接合材
と導電箔と半導体素子を積層し該導電箔を該接合材を介
して該絶縁性基板に接合した半導体装置において、前記
接合材の面積が前記導電箔の面積より広いことを特徴と
する半導体装置。
15. A semiconductor device in which an insulating substrate, a bonding material, a conductive foil, and a semiconductor element are laminated on a metal base substrate and the conductive foil is bonded to the insulating substrate via the bonding material. A semiconductor device having an area larger than that of the conductive foil.
【請求項16】請求項15記載の半導体装置において、
前記接合材端部のはみ出し部の長さが、前記接合材の厚
さより長いことを特徴とする半導体装置。
16. The semiconductor device according to claim 15,
The semiconductor device is characterized in that the length of the protruding portion at the end of the bonding material is longer than the thickness of the bonding material.
【請求項17】請求項15記載の半導体装置において、
前記接合材端部のはみ出し部の厚さが0.1mm 以下であ
ることを特徴とする半導体装置。
17. The semiconductor device according to claim 15,
A semiconductor device, wherein the thickness of the protruding portion at the end of the bonding material is 0.1 mm or less.
【請求項18】金属ベース基板上に絶縁性基板と接合材
と導電箔と半導体素子を積層し該導電箔を該接合材を介
して該絶縁性基板に接合した半導体装置において、前記
接合材の接合パターンのコーナー部の端部が前記導電箔
の回路パターンのコーナー部の端部より外側に存在して
いることを特徴とする半導体装置。
18. A semiconductor device in which an insulating substrate, a bonding material, a conductive foil, and a semiconductor element are laminated on a metal base substrate, and the conductive foil is bonded to the insulating substrate via the bonding material. A semiconductor device, wherein an end portion of a corner portion of the bonding pattern exists outside an end portion of a corner portion of the circuit pattern of the conductive foil.
【請求項19】請求項18記載の半導体装置において、
前記接合材パターンのコーナー部の端部の最大はみだし
部の長さが、前記接合材の厚さより長いことを特徴とす
る半導体装置。
19. The semiconductor device according to claim 18,
A semiconductor device, wherein the length of the maximum protruding portion at the end of the corner portion of the bonding material pattern is longer than the thickness of the bonding material.
【請求項20】請求項18記載の半導体装置において、
前記接合材パターンのコーナー部の端部の最大はみだし
部の厚さが0.1mm 以下であることを特徴とする半導体
装置。
20. The semiconductor device according to claim 18,
A semiconductor device, wherein the thickness of the maximum protruding portion at the end of the corner portion of the bonding material pattern is 0.1 mm or less.
【請求項21】請求項12記載の半導体装置において、
前記導電箔が複数の種類の接合材で前記絶縁性基板に接
合されていることを特徴とする半導体装置。
21. The semiconductor device according to claim 12,
A semiconductor device, wherein the conductive foil is bonded to the insulating substrate with a plurality of kinds of bonding materials.
【請求項22】請求項21記載の半導体装置において、
前記接合材が前記導電箔上にもあることを特徴とする半
導体装置。
22. The semiconductor device according to claim 21,
A semiconductor device, wherein the bonding material is also on the conductive foil.
JP9024733A 1996-02-07 1997-02-07 Circuit board and semiconductor device using the same Pending JPH09275165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9024733A JPH09275165A (en) 1996-02-07 1997-02-07 Circuit board and semiconductor device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-20897 1996-02-07
JP2089796 1996-02-07
JP9024733A JPH09275165A (en) 1996-02-07 1997-02-07 Circuit board and semiconductor device using the same

Publications (1)

Publication Number Publication Date
JPH09275165A true JPH09275165A (en) 1997-10-21

Family

ID=26357898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9024733A Pending JPH09275165A (en) 1996-02-07 1997-02-07 Circuit board and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JPH09275165A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049257A (en) * 1998-07-30 2000-02-18 Kyocera Corp Head radiation circuit board
JP2001168250A (en) * 1999-12-10 2001-06-22 Sumitomo Electric Ind Ltd Insulating substrate for semiconductor device, semiconductor device using that and manufacturing method of substrate
US6261703B1 (en) 1997-05-26 2001-07-17 Sumitomo Electric Industries, Ltd. Copper circuit junction substrate and method of producing the same
JP2003100965A (en) * 2001-09-20 2003-04-04 Denki Kagaku Kogyo Kk Reliability evaluating method of circuit board and circuit board
JP2003112980A (en) * 2001-09-28 2003-04-18 Dowa Mining Co Ltd Metal-ceramic joined body
JP2004014589A (en) * 2002-06-04 2004-01-15 Dowa Mining Co Ltd Metal-ceramic junction body and its manufacturing method
EP0921565A3 (en) * 1997-12-08 2005-07-27 Kabushiki Kaisha Toshiba Package for semiconductor power device and method for assembling the same
JP2006286897A (en) * 2005-03-31 2006-10-19 Dowa Mining Co Ltd Metal-ceramic bonding substrate
JP2006282417A (en) * 2005-03-31 2006-10-19 Dowa Mining Co Ltd Metal/ceramic joined substrate
JP2006351988A (en) * 2005-06-20 2006-12-28 Denki Kagaku Kogyo Kk Ceramic substrate, ceramic circuit board and power control component using same
JP2020161842A (en) * 2015-09-28 2020-10-01 株式会社東芝 Circuit substrate and semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196074A (en) * 1989-01-25 1990-08-02 Dowa Mining Co Ltd Production of ceramics-metal joined body
JPH03261669A (en) * 1990-03-13 1991-11-21 Dowa Mining Co Ltd Bonded product between ceramics and metal and production thereof
JPH0477369A (en) * 1990-07-16 1992-03-11 Showa Denko Kk Production of metal-ceramic laminated substrate
JPH0590444A (en) * 1991-09-26 1993-04-09 Toshiba Corp Ceramic circuit board
JPH05347469A (en) * 1992-06-12 1993-12-27 Toshiba Corp Ceramic circuit board
JPH0793326B2 (en) * 1987-06-11 1995-10-09 三菱電機株式会社 Semiconductor device
JPH104156A (en) * 1996-06-14 1998-01-06 Mitsubishi Electric Corp Insulating substrate for semiconductor device and the semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0793326B2 (en) * 1987-06-11 1995-10-09 三菱電機株式会社 Semiconductor device
JPH02196074A (en) * 1989-01-25 1990-08-02 Dowa Mining Co Ltd Production of ceramics-metal joined body
JPH03261669A (en) * 1990-03-13 1991-11-21 Dowa Mining Co Ltd Bonded product between ceramics and metal and production thereof
JPH0477369A (en) * 1990-07-16 1992-03-11 Showa Denko Kk Production of metal-ceramic laminated substrate
JPH0590444A (en) * 1991-09-26 1993-04-09 Toshiba Corp Ceramic circuit board
JPH05347469A (en) * 1992-06-12 1993-12-27 Toshiba Corp Ceramic circuit board
JPH104156A (en) * 1996-06-14 1998-01-06 Mitsubishi Electric Corp Insulating substrate for semiconductor device and the semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261703B1 (en) 1997-05-26 2001-07-17 Sumitomo Electric Industries, Ltd. Copper circuit junction substrate and method of producing the same
EP0921565A3 (en) * 1997-12-08 2005-07-27 Kabushiki Kaisha Toshiba Package for semiconductor power device and method for assembling the same
JP2000049257A (en) * 1998-07-30 2000-02-18 Kyocera Corp Head radiation circuit board
JP2001168250A (en) * 1999-12-10 2001-06-22 Sumitomo Electric Ind Ltd Insulating substrate for semiconductor device, semiconductor device using that and manufacturing method of substrate
JP2003100965A (en) * 2001-09-20 2003-04-04 Denki Kagaku Kogyo Kk Reliability evaluating method of circuit board and circuit board
JP2003112980A (en) * 2001-09-28 2003-04-18 Dowa Mining Co Ltd Metal-ceramic joined body
JP2004014589A (en) * 2002-06-04 2004-01-15 Dowa Mining Co Ltd Metal-ceramic junction body and its manufacturing method
JP2006286897A (en) * 2005-03-31 2006-10-19 Dowa Mining Co Ltd Metal-ceramic bonding substrate
JP2006282417A (en) * 2005-03-31 2006-10-19 Dowa Mining Co Ltd Metal/ceramic joined substrate
JP4498966B2 (en) * 2005-03-31 2010-07-07 Dowaホールディングス株式会社 Metal-ceramic bonding substrate
JP2006351988A (en) * 2005-06-20 2006-12-28 Denki Kagaku Kogyo Kk Ceramic substrate, ceramic circuit board and power control component using same
JP2020161842A (en) * 2015-09-28 2020-10-01 株式会社東芝 Circuit substrate and semiconductor device

Similar Documents

Publication Publication Date Title
US6881071B2 (en) Power semiconductor module with pressure contact means
JP4200256B2 (en) Thermoelectric conversion module
JP4226200B2 (en) Semiconductor device and manufacturing method thereof
JP2008211159A (en) Wiring board and electronic apparatus using the same
JP5091459B2 (en) Manufacturing method of high heat radiation type electronic component storage package
JPH09275165A (en) Circuit board and semiconductor device using the same
JP2002299495A (en) Semiconductor circuit board
JPH10149901A (en) Electric resistor, and manufacturing method of electric resistor
EP2169717B1 (en) Method of manufacturing an insulation substrate
JP3758331B2 (en) Shunt resistor element for semiconductor device, mounting method thereof, and semiconductor device
JPH10144967A (en) Thermoelectric element module for cooling
JP2001267475A (en) Mounting structure of semiconductor device and its mounting method
JP3382717B2 (en) Method of manufacturing thermoelectric generator
JPH07105460B2 (en) Semiconductor device
KR101388492B1 (en) Skeleton type thermoelectric module manufacture method and thermoelectric unit having skeleton type thermoelectric module and manufacture method thereof
JP5052290B2 (en) Manufacturing method of circuit board with metal fittings
JPH04287952A (en) Composite insulating board and semiconductor device using same
JPH104167A (en) Semiconductor device
JP3194791B2 (en) Ceramic circuit board
JPH06169109A (en) Thermoelectric element
JPS6076179A (en) Thermoelectric converter
JPS60150636A (en) Contact electrode for power semiconductor element
JP2583507B2 (en) Semiconductor mounting circuit device
JP2004072003A (en) Multilayer circuit board having metal base, and hybrid integrated circuit using the same
JPH11289037A (en) Metal plate for heat dissipation and package for electronic component using the same

Legal Events

Date Code Title Description
A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040128

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040220