JPH09270528A - Light emitting diode element and manufacturing method thereof - Google Patents

Light emitting diode element and manufacturing method thereof

Info

Publication number
JPH09270528A
JPH09270528A JP7682396A JP7682396A JPH09270528A JP H09270528 A JPH09270528 A JP H09270528A JP 7682396 A JP7682396 A JP 7682396A JP 7682396 A JP7682396 A JP 7682396A JP H09270528 A JPH09270528 A JP H09270528A
Authority
JP
Japan
Prior art keywords
light emitting
emitting diode
diode element
light
steps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7682396A
Other languages
Japanese (ja)
Inventor
Masaiku Hashimoto
昌育 橋本
Shuji Katayama
修治 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP7682396A priority Critical patent/JPH09270528A/en
Publication of JPH09270528A publication Critical patent/JPH09270528A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the quantity of light emission by forming steps on the side faces of a GaP light emitting diode element having an approximately parallel emitting junction to the surface or bottom face and forming natural fracture planes on the side faces as high as more than 2/3 of the height thereof. SOLUTION: Steps different in height are formed on adjacent side faces e.g. 13, 14 of a GaP light emitting diode element. The upper sides of such steps 18, 19 are cut to form fracture planes and natural fracture planes 28 are formed on the lower sides of them as high as more than 2/3 of the height thereof. Such steps 18, 19 are formed and natural fracture planes 28 are exposed to result in that the side face crystals of the element are deformed by the cutting to increase the light absorption due to the crystal damage, thus light emitting efficiency is more improved than that of an element having a perfect cleavage face or light emitting diode element having a cut fracture plane. Thus, the quantity of light emission is more than that of a light emitting diode element obtained by the dividing method such as dicing method or cleavage scribe.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、GaP発光ダイオ
ード素子及びその製造方法に関する。
TECHNICAL FIELD The present invention relates to a GaP light emitting diode device and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来より発光ダイオード素子において
は、特開昭53−102685号公報に示されるよう
に、広い発光接合、即ち表面または底面と略平行な発光
接合を有する発光ダイオード素子において、ウエハから
ダイシング法などを用いてほぼサイコロ(ダイス)状の
発光ダイオード素子を得ており、その場合メサエッチン
グなどにより周辺部に段差を付けていた。このような段
差は、発光接合の面積を素子表面積より広くしたい場
合、ウエハが割り難くウエハを薄くすると壊れやすい場
合などに分割部分のみ薄くしてから分割する場合などに
よく用いられた構造である。また発光ダイオードの光取
りだし量を多くするためには粗面化処理をすればよいこ
とが特公昭51−23868号公報などでよく知られて
いる。
2. Description of the Related Art Conventionally, in a light emitting diode element, as shown in JP-A-53-102685, a light emitting diode element having a wide light emitting junction, that is, a light emitting junction substantially parallel to a front surface or a bottom surface, is formed from a wafer. Almost dice-shaped light emitting diode elements are obtained by using a dicing method or the like, in which case a step is formed in the peripheral portion by mesa etching or the like. Such a step is a structure that is often used when it is desired to make the area of the light emitting junction larger than the surface area of the element, when the wafer is difficult to divide and is easily broken when the wafer is thin, and only when the divided portion is thinned and then divided. . It is well known from Japanese Patent Publication No. 51-23868 that surface roughening treatment may be performed in order to increase the light extraction amount of the light emitting diode.

【0003】[0003]

【発明が解決しようとする課題】然し乍ら、ガリウム燐
発光ダイオード素子においては光吸収の程度と結晶の脆
さから、通常はダイシング法により素子分割が成されて
おり、その場合の発光ダイオードの光取りだし量を検討
した結果、発光ダイオードの側面から放出される光は、
必ずしも粗面にすることで向上せず、特に結晶が発光す
る光に透明な場合においては劈開面に近い面を側面とす
ればよいことが分かってきた。
However, in the gallium phosphorous light emitting diode element, the element division is usually performed by the dicing method due to the degree of light absorption and the fragility of the crystal, and the light extraction of the light emitting diode in that case is performed. As a result of examining the amount, the light emitted from the side surface of the light emitting diode is
It has been found that the rough surface does not always improve, and especially when the crystal is transparent to the light emitted, the side close to the cleavage plane should be used.

【0004】[0004]

【課題を解決するための手段】本発明は、このような検
討結果に基づいて成されたもので、表面または底面と略
平行な発光接合を有するガリウム燐発光ダイオード素子
において、その側面に段差を設け、その側面の高さの2
/3以上において自然破断面を設けたものである。
The present invention has been made on the basis of the results of such studies, and in a gallium phosphorous light emitting diode element having a light emitting junction substantially parallel to the surface or the bottom surface, a step is formed on the side surface thereof. Provided, the height of its side is 2
A natural fracture surface is provided at / 3 or more.

【0005】また本発明は、表面若しくは底面に略平行
な発光接合を有したガリウム燐ウエハの厚みの1/3以
下の浅い溝を設け、その浅い溝に対向する表面若しくは
底面に傷を設け、その傷または溝を設けた部分で個々の
素子に分割するものである。
Further, according to the present invention, a shallow groove having a thickness of 1/3 or less of the thickness of a gallium phosphide wafer having a light emitting junction substantially parallel to the surface or the bottom surface is provided, and a scratch is provided on the surface or the bottom surface facing the shallow groove. The element is divided into individual elements at the scratched or grooved portion.

【0006】[0006]

【発明の実施の形態】図1は本発明実施例の発光ダイオ
ード素子の斜視図で、発光色に対して結晶が透明であ
る、例えば結晶が橙色をしたガリウム燐黄緑色発光ダイ
オード素子(発光波長565nm)を例にとっている。
同じ発光ダイオードであってもガリウムヒ素やガリウム
アルミヒ素の他の結晶と異なり、ガリウム燐(又は燐化
ガリウム:GaP)は光吸収の程度と結晶の脆さから、
通常はダイシング法により素子分割が成されている。こ
の発光ダイオード素子は略サイコロ状を成し、1辺は約
300μmで、表面と底面は略平行で各々電極10を有
している。そして、表面側に表面または底面と略平行な
発光接合2を有し、これは例えば表面から略30〜50
μmの深さに約60000μm2の広さである。
FIG. 1 is a perspective view of a light emitting diode device according to an embodiment of the present invention, in which a crystal is transparent with respect to a light emission color, for example, a gallium phosphor yellow green light emitting diode device having an orange crystal (light emission wavelength). 565 nm) is taken as an example.
Unlike other crystals of gallium arsenide or gallium aluminum arsenide, gallium phosphide (or gallium phosphide: GaP) is the same light emitting diode because of the degree of light absorption and the fragility of the crystal.
Usually, element division is performed by a dicing method. This light emitting diode element has a substantially dice shape, one side is about 300 μm, and a surface and a bottom surface are substantially parallel to each other and each has an electrode 10. Then, on the front surface side, there is a light emitting junction 2 substantially parallel to the front surface or the bottom surface, which is, for example, approximately 30 to 50 from the front surface.
It is about 60,000 μm 2 wide at a depth of μm.

【0007】そして4つの側面は、底面側からの側面の
高さの2/3以上に当る270μmと230μmにおい
て自然破断面28を設けてある。側面は対向する面同士
が同じ形状を成し、隣接する側面、例えば側面13と側
面14とで高さが異なる段差18、19が設けられてい
る。このような段差18、19の上側は切断による破断
面を成し、段差の下側が自然破断面になっている。段差
18は表面から15〜80μmの個所に段差幅1〜50
μmで、階段状になっていてもよいし、なだらかになっ
ていてもよい。一方の段差19は表面から20〜90μ
mのところに設けられ、段差幅や断面形状はいずれも余
り変わらない。そしてより好ましくは、このような側面
の少なくとも1側面は劈開面に近い面に合わせられ、そ
の場合は一方の段差の基板側(底面側)は実質的に複数
の劈開面となっている。
The four side surfaces are provided with natural fracture surfaces 28 at 270 μm and 230 μm, which correspond to 2/3 or more of the height of the side surface from the bottom surface side. The side surfaces facing each other have the same shape, and adjacent side surfaces, for example, side surfaces 13 and 14 are provided with steps 18, 19 having different heights. The upper side of the steps 18, 19 forms a fracture surface by cutting, and the lower side of the step has a natural fracture surface. The step 18 has a step width of 1 to 50 at a position of 15 to 80 μm from the surface.
In μm, the shape may be stepwise or gentle. One step 19 is 20 to 90 μm from the surface
It is provided at m, and the step width and the cross-sectional shape do not change much. And more preferably, at least one of the side surfaces is aligned with a surface close to the cleavage surface, and in that case, the substrate side (bottom surface side) of one step is substantially a plurality of cleavage surfaces.

【0008】このような発光ダイオード素子は、次の様
にして得られる。図2を参照して、まず、表面若しくは
底面に略平行な発光接合20を有たガリウム燐ウエハ1
の劈開方向Aに略直交させて発光接合20よりも深いが
厚みの1/3より十分浅い溝4を設ける。次いで、劈開
方向Aに略沿って浅い溝3を設ける。その結果、浅い溝
3と深い溝4は略直交し、発光接合20は4角形に区分
けされる。次いで、溝3、4に対向する底面にダイヤモ
ンドポイントでケガキ線5を入れてスクライブを行う。
その後、その溝3、4を設けた部分で個々の素子に分割
する。この分割に当っては、通常のスクライブで行うロ
ーラー加圧を行わないで、ケガキ線5若しくは溝3、4
にステンレス刃やセラミック刃などの刃を当てて、その
刃に加重を掛けることで素子分割を行うのが最も好まし
い。このように行うことで、ダイシングした部分と素子
が割れた部分との間で段差が形成され、しかも割れるべ
き個所に集中的に力が加わるのでチップ欠けが少ないば
かりか、自然破断面が広い面積にわたって現れ、光取り
だし効率が高くなる。ケガキ線5の代わりに、それと同
様の切断線を入れてもよく、結局はガリウム燐ウエハの
厚みの1/3以下の浅い溝を設け、その浅い溝に対向す
る表面若しくは底面に傷を設け、その傷または溝を設け
た部分で個々の素子に分割すればよいことになる。
Such a light emitting diode device is obtained as follows. Referring to FIG. 2, first, a gallium phosphide wafer 1 having a light emitting junction 20 substantially parallel to the surface or the bottom surface.
A groove 4 deeper than the light emitting junction 20 but sufficiently shallower than ⅓ of the thickness is provided so as to be substantially orthogonal to the cleavage direction A. Next, the shallow groove 3 is provided substantially along the cleavage direction A. As a result, the shallow groove 3 and the deep groove 4 are substantially orthogonal to each other, and the light emitting junction 20 is divided into square shapes. Then, a scribing line 5 is inserted at the diamond point on the bottom surface facing the grooves 3 and 4, and scribing is performed.
Then, the element provided with the grooves 3 and 4 is divided into individual elements. In this division, the marking line 5 or the grooves 3 and 4 are not subjected to the roller pressurization which is usually performed by the scribe.
It is most preferable to apply a blade such as a stainless blade or a ceramic blade to and to apply a weight to the blade to divide the element. By doing in this way, a step is formed between the dicing part and the part where the element is cracked, and moreover, the force is concentrated on the part to be cracked, so not only chipping is small, but also the natural fracture surface is large. And the light extraction efficiency becomes high. Instead of the scribing line 5, a cutting line similar to that may be inserted, and in the end, a shallow groove having a thickness of 1/3 or less of the thickness of the gallium phosphide wafer is provided, and a scratch is provided on the surface or the bottom surface facing the shallow groove. It is sufficient to divide the element into individual elements at the portion where the scratch or groove is provided.

【0009】このように段差を付け自然破断面を広く露
出させることによって、完全劈開面の素子や切断破断面
の発光ダイオード素子よりも数パーセント〜数割の光取
りだし効率がよくなった。この理由は正確には不明であ
るが、切断により素子の側面結晶が歪み力を受け、結晶
ダメージによる光吸収が大きくなっている可能性が高
く、他方完全な1枚の劈開面では光の内部反射成分が増
えるためと思われる。自然破断面では複数の劈開面が現
れ、この場合に最も光取り出し効率が高く、そのために
は表面または裏面から溝を付け、他方の面からも傷を付
ければ、加圧しても両面から割れ方が拘束され、自然破
断面が得られる。一方では、厚いウエハをスクライブ法
でいきなり分割すると、ダイス状に割れにくいばかりか
無理な力が結晶に残留し、他方深い溝を設けておいて分
割する場合には、チップ欠けが多く発生すると共に切断
による光吸収性結晶部分が多くなるという製造工程上の
事由も存在する。このような推測及び制約から、段差
(溝)を設けるのは表面からでも底面からでもよいこと
となる。
By thus forming the step and exposing the natural fracture surface widely, the light extraction efficiency of several percent to several percent is improved as compared with the element of the completely cleaved surface or the light emitting diode element of the cut fracture surface. The reason for this is not exactly known, but it is highly possible that the side surface crystal of the element is distorted by cutting and the light absorption due to crystal damage is large, while on the other hand, a perfect cleaved surface has the internal light inside. It seems that the reflection component increases. Multiple cleavage planes appear on the natural fracture surface, and in this case the light extraction efficiency is the highest. For that purpose, if grooves are made on the front or back surface and scratches are made on the other surface, cracking will occur on both surfaces even if pressure is applied. Is constrained and a natural fracture surface is obtained. On the other hand, if a thick wafer is suddenly divided by the scribe method, not only is it difficult to break into a die shape, but an unreasonable force remains in the crystal. On the other hand, if a deep groove is provided and the wafer is divided, chipping often occurs. There is also a reason in the manufacturing process that the light-absorbing crystal portion is increased due to cutting. From such assumptions and restrictions, it is possible to provide the step (groove) from the top surface or the bottom surface.

【0010】そこで厚さが300μm、270μm、2
50μm、220μmの4種類のウエハにおいて、溝の
深さと作業性、光学特性などを検討した。図3と図4
は、厚さが270μmのガリウム燐発光ダイオードウエ
ハの例で、図3は溝の深さとチップ欠けの程度を代表的
なロットごとに示しており、溝が深くなれば欠けが多く
なることを示している。また図4においては、溝の深さ
とチップ輝度の関係を示しており、溝を深くする、つま
り自然破断面が狭くなると次第にチップ輝度が低下し、
その程度は深くなればなるほど低下の量が大きくなって
いることを示している。図では6mcd以上のロットが
存在するものも5mcd以下のロットが存在しないもの
も100μm以下の溝を設けた場合であるが、4種類の
ウエハに共通するのは、段差をその側面の高さの略2/
3以上において自然破断面が得られるように設けると、
作業性もよく光取りだし効率も高いということであっ
た。
Therefore, the thickness is 300 μm, 270 μm, 2
For four types of wafers of 50 μm and 220 μm, the groove depth, workability, optical characteristics, etc. were examined. 3 and 4
Is an example of a gallium phosphide light emitting diode wafer having a thickness of 270 μm, and FIG. 3 shows the depth of the groove and the degree of chip breakage for each representative lot. It is shown that the deeper the groove, the more chips there are. ing. Further, FIG. 4 shows the relationship between the depth of the groove and the chip brightness. When the groove is deepened, that is, the natural fracture surface becomes narrow, the chip brightness gradually decreases,
It shows that the deeper the degree, the greater the amount of decrease. In the figure, there are lots of 6 mcd or more, and lots of 5 mcd or less do not have a groove of 100 μm or less. Approximately 2 /
If it is provided so that a natural fracture surface can be obtained at 3 or more,
It was said that workability was good, light was taken out, and efficiency was high.

【0011】[0011]

【発明の効果】以上の如く本発明は、ダイシング法など
の分割法や劈開スクライブで得られる発光ダイオード素
子よりも、光取りだし量が多くなる。
As described above, according to the present invention, the light extraction amount is larger than that of the light emitting diode element obtained by the division method such as the dicing method or the cleavage scribe.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の発光ダイオード素子の斜視図で
ある。
FIG. 1 is a perspective view of a light emitting diode device according to an embodiment of the present invention.

【図2】本発明実施例の発光ダイオード素子の製造方法
にかかる説明図である。
FIG. 2 is an explanatory diagram related to a method for manufacturing a light emitting diode device according to an embodiment of the present invention.

【図3】ウエハの溝の深さとチップ欠けの程度を代表的
なロットごとに示した特性図である。
FIG. 3 is a characteristic diagram showing, for each representative lot, the depth of a groove on a wafer and the degree of chipping.

【図4】ウエハの溝の深さとチップ輝度の関係を示す特
性図である。
FIG. 4 is a characteristic diagram showing the relationship between the groove depth of the wafer and the chip brightness.

【符号の説明】[Explanation of symbols]

1 ガリウム燐ウエハ 2、20 発光接合 13、14 側面 18、19 段差 28 自然破断面 3、4 溝 1 gallium phosphide wafer 2, 20 light emitting junction 13, 14 side surface 18, 19 step 28 natural fracture surface 3, 4 groove

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 表面または底面と略平行な発光接合を有
するガリウム燐発光ダイオード素子において、その側面
に段差を設け、その側面の高さの2/3以上において自
然破断面を設けたことを特徴とする発光ダイオード素
子。
1. A gallium phosphorous light emitting diode device having a light emitting junction substantially parallel to a surface or a bottom surface, wherein a step is provided on a side surface thereof, and a natural fracture surface is provided at 2/3 or more of a height of the side surface. And a light emitting diode element.
【請求項2】 表面若しくは底面に略平行な発光接合を
有したガリウム燐ウエハの厚みの1/3以下の浅い溝を
設け、その浅い溝に対向する表面若しくは底面に傷を設
け、その傷または溝を設けた部分で個々の素子に分割す
る工程とを具備したことを特徴とする発光ダイオード素
子の製造方法。
2. A shallow groove having a thickness of ⅓ or less of the thickness of a gallium phosphide wafer having light emitting junctions substantially parallel to the surface or the bottom surface is provided, and the surface or the bottom surface facing the shallow groove is provided with a scratch. And a step of dividing the device into individual devices at the portion where the groove is provided.
JP7682396A 1996-03-29 1996-03-29 Light emitting diode element and manufacturing method thereof Pending JPH09270528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7682396A JPH09270528A (en) 1996-03-29 1996-03-29 Light emitting diode element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7682396A JPH09270528A (en) 1996-03-29 1996-03-29 Light emitting diode element and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JPH09270528A true JPH09270528A (en) 1997-10-14

Family

ID=13616409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7682396A Pending JPH09270528A (en) 1996-03-29 1996-03-29 Light emitting diode element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH09270528A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004010510A3 (en) * 2002-07-19 2004-08-19 Cree Inc Trench cut light emitting diodes and methods of fabricating same
JP2005303286A (en) * 2004-03-19 2005-10-27 Showa Denko Kk Compound semiconductor light emitting element and its manufacturing method
US7008861B2 (en) 2003-12-11 2006-03-07 Cree, Inc. Semiconductor substrate assemblies and methods for preparing and dicing the same
US7160747B2 (en) 2002-12-20 2007-01-09 Cree, Inc. Methods of forming semiconductor devices having self aligned semiconductor mesas and contact layers

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004010510A3 (en) * 2002-07-19 2004-08-19 Cree Inc Trench cut light emitting diodes and methods of fabricating same
US6995032B2 (en) 2002-07-19 2006-02-07 Cree, Inc. Trench cut light emitting diodes and methods of fabricating same
JP2006510232A (en) * 2002-07-19 2006-03-23 クリー インコーポレイテッド Trench cut type light emitting diode and method of manufacturing the same
CN100375242C (en) * 2002-07-19 2008-03-12 克里公司 Trench cut light emitting diodes and methods of fabricating same
US7368756B2 (en) 2002-07-19 2008-05-06 Cree, Inc. Trench cut light emitting diodes and methods of fabricating same
US7160747B2 (en) 2002-12-20 2007-01-09 Cree, Inc. Methods of forming semiconductor devices having self aligned semiconductor mesas and contact layers
US7329569B2 (en) 2002-12-20 2008-02-12 Cree, Inc. Methods of forming semiconductor devices including mesa structures and multiple passivation layers
US7613219B2 (en) 2002-12-20 2009-11-03 Cree, Inc. Semiconductor devices having self aligned semiconductor mesas and contact layers
US7642626B2 (en) 2002-12-20 2010-01-05 Cree, Inc. Semiconductor devices including mesa structures and multiple passivation layers
US7008861B2 (en) 2003-12-11 2006-03-07 Cree, Inc. Semiconductor substrate assemblies and methods for preparing and dicing the same
JP2005303286A (en) * 2004-03-19 2005-10-27 Showa Denko Kk Compound semiconductor light emitting element and its manufacturing method
JP4540514B2 (en) * 2004-03-19 2010-09-08 昭和電工株式会社 Compound semiconductor light emitting device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN101015070B (en) Method for fabrication of semiconductor light-emitting device and the device fabricated by the method
JP4903434B2 (en) Trench cut type light emitting diode and method of manufacturing the same
JP3904585B2 (en) Manufacturing method of semiconductor device
TWI327340B (en) Production method for semiconductor device
JPH1044139A (en) Method for dividing board and manufacture of light emitting element using the board dividing
JPH07131069A (en) Method for manufacturing gallium nitride compound semiconductor chip
JP2001284293A (en) Chip division method for semiconductor wafer
JP2748355B2 (en) Method of manufacturing gallium nitride based compound semiconductor chip
JP2003151921A (en) Compound semiconductor and method of manufacturing the same
TW200524185A (en) Method for production of semiconductor chip and semiconductor chip
JPH05343742A (en) Manufacture of gallium nitride series compound semiconductor chip
JP3421523B2 (en) Wafer splitting method
JPH11177139A (en) Semiconductor light emitting element and its manufacture
US20060040500A1 (en) Nitride semiconductor chip and method for manufacturing nitride semiconductor chip
TW201234463A (en) Semiconductor device and cutting method thereof
JP3338360B2 (en) Gallium nitride based semiconductor wafer manufacturing method
JPH06283758A (en) Method of cutting gallium nitride compound semiconductor wafer
JPH09270528A (en) Light emitting diode element and manufacturing method thereof
US20040169185A1 (en) High luminescent light emitting diode
JP2006203251A (en) Production method for semiconductor device
JPH05166923A (en) Method for cutting gallium nitride compound semiconductor wafer
JPS60144985A (en) Manufacture of semiconductor light-emitting element
KR101088392B1 (en) Light emitting device chip and manufacturing method thereof
JPH0983081A (en) Fabrication of semiconductor laser element
JP3856639B2 (en) Manufacturing method of semiconductor light emitting device