JPH05343742A - Manufacture of gallium nitride series compound semiconductor chip - Google Patents

Manufacture of gallium nitride series compound semiconductor chip

Info

Publication number
JPH05343742A
JPH05343742A JP17204292A JP17204292A JPH05343742A JP H05343742 A JPH05343742 A JP H05343742A JP 17204292 A JP17204292 A JP 17204292A JP 17204292 A JP17204292 A JP 17204292A JP H05343742 A JPH05343742 A JP H05343742A
Authority
JP
Japan
Prior art keywords
gallium nitride
layer
compound semiconductor
sapphire substrate
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17204292A
Other languages
Japanese (ja)
Other versions
JP2914014B2 (en
Inventor
Shigeto Iwasa
成人 岩佐
Shinichi Nagahama
慎一 長浜
Shuji Nakamura
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP17204292A priority Critical patent/JP2914014B2/en
Publication of JPH05343742A publication Critical patent/JPH05343742A/en
Priority to JP27938698A priority patent/JP3679626B2/en
Application granted granted Critical
Publication of JP2914014B2 publication Critical patent/JP2914014B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • H01S5/0202Cleaving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP

Landscapes

  • Dicing (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To separate a sapphire board into chip states without impairing crystallizability of gallium nitride series semiconductor laminated on a board by cutting the board by dicing or scribing. CONSTITUTION:A protective layer is first provided on a p-type layer 3 of an uppermost layer of a wafer laminated on a sapphire board 1. The layer 3 is etched up to an n-type layer 2. After the etching is finished, the protective layer is removed. Further, the layer 2 is etched or diced to the board 1 except a space provided with an n-type electrode on a surface of the layer 2. Then, the board 1 is separated by dicing or scribing. The drawing shows a state in which electrodes 6 are formed on the separated layers 2, 3 of a gallium nitride series compound semiconductor element. Thus, a boundary between the layers 2 and 3, i.e., a p-n junction surface can be separated without stress.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は青色発光ダイオード、青
色レーザーダイオード等の発光デバイスに使用される窒
化ガリウム系化合物半導体チップの製造方法に係り、特
に、サファイア基板上に積層された窒化ガリウム系化合
物半導体の結晶性を損ねること無くチップ状に分離する
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a gallium nitride compound semiconductor chip used in a light emitting device such as a blue light emitting diode or a blue laser diode, and more particularly to a gallium nitride compound compound laminated on a sapphire substrate. The present invention relates to a method for separating a semiconductor into chips without damaging the crystallinity.

【0002】[0002]

【従来の技術】一般に発光ダイオード、レーザダイオー
ド等の発光デバイスはステム上に発光源である半導体チ
ップが設置されている。その半導体チップを構成する材
料として、例えば赤色、橙色、黄色、緑色発光ダイオー
ドではGaAs、GaAlAs、GaP等が知られてい
る。青色ダイオード、青色レーザーダイオードについて
は、数々の半導体材料が研究されているが、未だ実験段
階であり実用化には至っていない。しかし、実用的な青
色発光材料として、GaN、InGaN、GaAlN等
の窒化ガリウム系化合物半導体が注目されている。
2. Description of the Related Art Generally, in a light emitting device such as a light emitting diode or a laser diode, a semiconductor chip as a light emitting source is installed on a stem. Known materials for forming the semiconductor chip include GaAs, GaAlAs, and GaP for red, orange, yellow, and green light-emitting diodes. Although various semiconductor materials have been studied for blue diodes and blue laser diodes, they are still in the experimental stage and have not been put to practical use. However, gallium nitride-based compound semiconductors such as GaN, InGaN, and GaAlN are receiving attention as practical blue light emitting materials.

【0003】従来、半導体材料が積層されたウエハーを
チップに分離する方法としては一般にダイサー、または
スクライバーが使用されている。ダイサーとは通常ダイ
シングソーとも呼ばれ、刃先をダイヤモンドとする円盤
の回転運動により、ウエハーをフルカットするか、また
は刃先巾よりも広い巾の溝を切り込んだ後、外力によっ
てカットする装置である。一方、スクライバーとは先端
をダイヤモンドとする針の往復直線運動によりウエハー
に極めて細いスクライブライン(罫書線)を、例えば碁
盤目状に引いた後、外力によってカットする装置であ
る。
Conventionally, a dicer or a scriber is generally used as a method for separating a wafer in which semiconductor materials are laminated into chips. A dicer is usually called a dicing saw, and is a device that cuts a wafer by an external force after the wafer is fully cut by a rotary motion of a disk having a diamond edge, or a groove having a width wider than the edge width is cut. On the other hand, the scriber is a device that draws an extremely thin scribe line (scoring line) on the wafer by reciprocating linear motion of a needle having a diamond tip, for example, in a grid pattern, and then cuts by an external force.

【0004】[0004]

【発明が解決しようとする課題】前記GaP、GaAs
等のせん亜鉛構造の結晶はへき開性が「110」方向に
あるため、この性質を利用してスクライバーで、この方
向にスクライブラインを入れることによりチップ状に簡
単に分離できる。しかしながら、窒化ガリウム系化合物
半導体はサファイア基板の上に積層されるいわゆるヘテ
ロエピ構造であり、窒化ガリウム系化合物半導体とサフ
ァイアとは格子定数不整が大きい。さらに、サファイア
は六方晶系という結晶の性質上、へき開性を有していな
い。従って、スクライバーで切断することは不可能であ
った。また、サファイア、窒化ガリウム系化合物半導体
ともモース硬度がほぼ9と非常に硬い物質であるため、
ダイサーでフルカットすると、その切断面にクラック、
チッピングが発生しやすくなり、綺麗に切断できなかっ
た。さらに、ダイサーの刃が長時間ウエハー切断面に接
することにより、ウエハーの横方向に応力(ストレス)
が生じる。このため、特にn型層とp型層との界面にク
ラック、チッピング等が発生しやすくなり、肝心の窒化
ガリウム系化合物半導体の結晶性を損ねてしまうため、
輝度が低下したり、寿命が非常に短くなってしまうとい
う問題点があった。
The above GaP, GaAs
Since a crystal having a zinc-zinc structure such as Cleavage has a cleavage property in the “110” direction, it can be easily separated into chips by using a scriber by inserting a scribe line in this direction. However, the gallium nitride-based compound semiconductor has a so-called heteroepitaxial structure stacked on the sapphire substrate, and the lattice constant of the gallium nitride-based compound semiconductor and sapphire is large. Furthermore, sapphire does not have cleavage due to the crystal property of hexagonal system. Therefore, it was impossible to cut with a scriber. In addition, since sapphire and gallium nitride-based compound semiconductors are very hard materials with a Mohs hardness of about 9,
When full cut with a dicer, cracks on the cut surface,
Chipping was likely to occur and it was not possible to cut it neatly. In addition, the blade of the dicer is in contact with the cut surface of the wafer for a long time, which causes stress in the lateral direction of the wafer.
Occurs. For this reason, cracks, chippings and the like are likely to occur particularly at the interface between the n-type layer and the p-type layer, and the crystallinity of the gallium nitride-based compound semiconductor, which is essential, is impaired.
There are problems that the brightness is lowered and the life is extremely shortened.

【0005】従って、本発明はサファイアを基板とする
窒化ガリウム系化合物半導体ウエハーをチップ状にカッ
トするに際し、切断面、界面のクラック、チッピングの
発生を防止し、窒化ガリウム系化合物半導体の結晶性を
損なうことなく優れた発光性能を有する窒化ガリウム系
化合物半導体チップを得ると共に、歩留良く所望の形、
サイズに切断する方法を提供することを目的とするもの
である。
Therefore, according to the present invention, when a gallium nitride-based compound semiconductor wafer using sapphire as a substrate is cut into chips, cracks at the cut surface, interfaces, and chipping are prevented, and the crystallinity of the gallium nitride-based compound semiconductor is improved. In addition to obtaining a gallium nitride-based compound semiconductor chip having excellent light emission performance without loss, a desired shape with good yield,
It is intended to provide a method of cutting to size.

【0006】[0006]

【課題を解決するための手段】本発明の窒化ガリウム系
化合物半導体チップの製造方法は、サファイア基板上に
n型およびp型の窒化ガリウム系化合物半導体が順に積
層されたウエハーをチップ状に分離する方法であって、
サファイア基板を研磨して薄くする工程と、p型層
の一部をn型層までエッチングする工程と、n型層を
サファイア基板までエッチング、またはダイシングする
工程と、サファイア基板をダイシング、またはスクラ
イビングにより切断する工程と、を具備することを特徴
とするものである。
According to the method of manufacturing a gallium nitride compound semiconductor chip of the present invention, a wafer in which n-type and p-type gallium nitride compound semiconductors are sequentially stacked on a sapphire substrate is separated into chips. Method,
By polishing and thinning the sapphire substrate, etching a part of the p-type layer to the n-type layer, etching or dicing the n-type layer to the sapphire substrate, and dicing or scribing the sapphire substrate. And a step of cutting.

【0007】以下、本発明の一実施例の製造方法を図面
を参照しながら詳説する。図1〜図6は窒化ガリウム系
化合物半導体ウエハー、および素子の構造を示す断面図
であり、1はサファイア基板、2はn型窒化ガリウム系
化合物半導体層(以下n型層という。)、3はp型窒化
ガリウム系化合物半導体層(以下p型層という。)であ
る。但し、本発明の方法は、図面の構造の窒化ガリウム
系化合物半導体ウエハーにのみ適用されるものではな
い。
A manufacturing method according to an embodiment of the present invention will be described below in detail with reference to the drawings. 1 to 6 are cross-sectional views showing the structures of gallium nitride-based compound semiconductor wafers and devices, 1 is a sapphire substrate, 2 is an n-type gallium nitride-based compound semiconductor layer (hereinafter referred to as n-type layer), and 3 is. It is a p-type gallium nitride-based compound semiconductor layer (hereinafter referred to as p-type layer). However, the method of the present invention is not applied only to the gallium nitride-based compound semiconductor wafer having the structure shown in the drawing.

【0008】通常、窒化ガリウム系化合物半導体ウエハ
ーの厚さは、サファイア基板1で400〜800μm、
その上に積層されたn型層2、およびp型層3の厚さは
多くても十数μmであり、そのほとんどがサファイア基
板1の厚さで占められている。従って、の工程におい
て、サファイア基板1を研磨して、その厚さを50〜3
00μmに調整することが好ましい。50μmよりも薄
いと、ウエハー全体が割れ易くなったり、またウエハー
に反りが生じる傾向にある。また、300μmよりも厚
いと、の工程において、ダイシング、またはスクライ
ビングによる切断の際にサファイア基板にチッピング、
クラックが発生しやすくなる。またスクライビングする
場合は、スクライブラインを深くしなければならないた
め、細かいチップができにくくなり、チップ分離が困難
になる傾向がある。研磨された基板のさらに好ましい厚
さとしては100〜200μmである。なお、の工程
は、の工程の後に行ってもよい。
Generally, the gallium nitride compound semiconductor wafer has a thickness of 400 to 800 μm on the sapphire substrate 1.
The thickness of the n-type layer 2 and the p-type layer 3 laminated thereon is at most tens of μm, and most of them are occupied by the thickness of the sapphire substrate 1. Therefore, in the step of, the sapphire substrate 1 is polished to a thickness of 50 to 3
It is preferably adjusted to 00 μm. If the thickness is less than 50 μm, the entire wafer tends to be cracked or the wafer tends to warp. Further, when the thickness is thicker than 300 μm, chipping on the sapphire substrate during dicing or cutting by scribing in the step of
Cracks are likely to occur. In addition, when scribing, since the scribe line must be deep, it is difficult to form fine chips, and chip separation tends to be difficult. A more preferable thickness of the polished substrate is 100 to 200 μm. The step of may be performed after the step of.

【0009】まず、サファイア基板1上に、n型層2、
およびp型層3が順に積層されたウエハーの、最上層で
あるp型層3上に、図1に示すように保護膜4を設け
る。保護膜4はp型層3がエッチングにより侵食される
のを防ぐと共に、パターンエッチングを行うために設け
るものであって、フォトレジストでパターニングした
後、例えばSiO2等の材料でプラズマCVD法を用い
て形成することができる。なお、この図においてサファ
イア基板1は予め研磨して薄くしてある。
First, on the sapphire substrate 1, the n-type layer 2,
As shown in FIG. 1, a protective film 4 is provided on the uppermost p-type layer 3 of the wafer in which the and p-type layers 3 are sequentially stacked. The protective film 4 is provided to prevent the p-type layer 3 from being corroded by etching and to perform pattern etching. After patterning with a photoresist, a plasma CVD method using a material such as SiO 2 is used. Can be formed. In this figure, the sapphire substrate 1 has been thinned by polishing in advance.

【0010】次に、保護膜4が設けられたp型層3を、
n型層2までエッチングする(の工程)。エッチング
方法はドライ、ウエットいずれの方法でもよい。エッチ
ング終了後、図2に示すように、酸により保護膜4を除
去する。
Next, the p-type layer 3 provided with the protective film 4 is
Etching is performed up to the n-type layer 2 (step of). The etching method may be either dry or wet. After the etching is completed, as shown in FIG. 2, the protective film 4 is removed with acid.

【0011】さらに、図3に示すように、n型層2の表
面にn型電極を設けられるスペースを残して、n型層2
をサファイア基板1までエッチング、またはダイシング
する(の工程)。n型層2とサファイア基板1の界面
にできるだけストレスをかけないようにするには、エッ
チングが好ましい。エッチングする場合には、前述した
ように保護膜をエッチング面以外(p型層3とn型層2
の電極形成部分)に形成する必要がある。
Further, as shown in FIG. 3, the n-type layer 2 is left on the surface of the n-type layer 2 leaving a space for providing an n-type electrode.
Is etched or diced up to the sapphire substrate 1 (step of). Etching is preferred in order to minimize stress on the interface between the n-type layer 2 and the sapphire substrate 1. In the case of etching, as described above, the protective film is formed on the surface other than the etching surface (p-type layer 3 and n-type layer 2).
Electrode forming part).

【0012】次に、図4に示すように、の工程により
露出されたサファイア基板をスクライビングして、スク
ライブライン(罫書線)5を入れた後、サファイア基板
側から押し割って分離する(の工程)。の工程によ
りサファイア基板の厚さを薄くしているため、スクライ
ブライン5を入れて押し割ることによって、綺麗にチッ
プ状に分離することができる。スクライブラインの深さ
は特に規定するものではないが、基板の厚さの5%以上
の深さで入れることにより、へき開性の無いサファイア
でも切断面をほぼ平面状とすることができ、好ましく切
断できる。
Next, as shown in FIG. 4, the sapphire substrate exposed in the step (1) is scribed, scribe lines (scoring lines) 5 are inserted, and then the sapphire substrate is separated by being crushed. ). Since the thickness of the sapphire substrate is thinned by the step of 3, the chip can be neatly separated by inserting the scribe line 5 and pressing. The depth of the scribe line is not particularly specified, but by inserting it at a depth of 5% or more of the thickness of the substrate, even sapphire without cleavage can make the cut surface into a substantially flat surface, which is preferable. it can.

【0013】また、図5に示すように、ダイシングによ
りサファイア基板1を直接フルカットしてもよい。この
場合においても、サファイア基板1を予め薄くしてある
ためダイシング時間を短縮でき、ストレスをかけずに綺
麗に切断できる。
Further, as shown in FIG. 5, the sapphire substrate 1 may be directly full-cut by dicing. Even in this case, since the sapphire substrate 1 is thinned in advance, the dicing time can be shortened and the cutting can be performed neatly without applying stress.

【0014】[0014]

【作用】図6は、の工程のスクライビングまたはダイ
シングによって分離された窒化ガリウム系化合物半導体
素子のn型層2、およびp型層3に電極6を形成した状
態を示す断面図である。
FIG. 6 is a cross-sectional view showing a state in which electrodes 6 are formed on the n-type layer 2 and the p-type layer 3 of the gallium nitride-based compound semiconductor device separated by the scribing or dicing in the step of.

【0015】この図において、n型層2とp型層3の界
面、即ち、p−n接合面はエッチングされているため、
この界面には従来のダイシングによるストレスはかかっ
ておらず、窒化ガリウム系化合物半導体結晶の損傷はほ
とんど無い。さらに、サファイア基板1とn型層2の界
面においても、予めの工程により、n型層2の途中ま
でエッチングされているため、ダイシングを行うにして
も、その切断深さを短くすることができるため、ストレ
スのかかる割合が従来に比して大幅に減少する。従っ
て、本発明の方法により得られた窒化ガリウム系化合物
半導体チップは、格子不整合に起因する窒化ガリウム系
化合物半導体層のクラック、チッピングが防止されてお
り、半導体結晶を損傷すること無く結晶性が保持されて
いる。また、サファイア基板を研磨して薄くすることに
より、へき開性のないサファイア基板でもスクライブで
綺麗に切断でき、またダイシングにおいても切断時間を
短縮できるという優れた利点がある。
In this figure, since the interface between the n-type layer 2 and the p-type layer 3, that is, the pn junction surface is etched,
No stress is applied to this interface by conventional dicing, and the gallium nitride-based compound semiconductor crystal is hardly damaged. Furthermore, even at the interface between the sapphire substrate 1 and the n-type layer 2, the cutting depth can be shortened even if dicing is performed, because the n-type layer 2 is etched halfway through a previous process. Therefore, the rate of stress is significantly reduced compared to the conventional case. Therefore, the gallium nitride-based compound semiconductor chip obtained by the method of the present invention is prevented from cracking and chipping of the gallium nitride-based compound semiconductor layer due to lattice mismatch, and has crystallinity without damaging the semiconductor crystal. Is held. Further, by polishing and thinning the sapphire substrate, even a sapphire substrate having no cleavage property can be cut beautifully by scribing, and the cutting time can be shortened in dicing.

【0016】[0016]

【実施例】以下、本発明の窒化ガリウム系化合物半導体
チップの製造方法を実施例で説明する。
EXAMPLES Hereinafter, a method for manufacturing a gallium nitride-based compound semiconductor chip of the present invention will be described with reference to examples.

【0017】[実施例1]厚さ450μm、大きさ2イ
ンチφのサファイア基板上に、順にn型GaN層とp型
GaN層を合わせて5μmの厚みで成長させた発光ダイ
オード用のGaNエピタキシャルウエハーのp型GaN
層に、フォトレジストでパターンを形成する。
[Example 1] A GaN epitaxial wafer for a light-emitting diode, in which an n-type GaN layer and a p-type GaN layer were sequentially grown to a thickness of 5 μm on a sapphire substrate having a thickness of 450 μm and a size of 2 inches φ. P-type GaN
The layer is patterned with photoresist.

【0018】フォトレジストの上からプラズマCVD法
により保護膜としてSiO2膜を0.1μmの膜厚で形
成した後、溶剤によりフォトレジストを剥離して、パタ
ーニングされたSiO2膜を残す。
A SiO 2 film having a film thickness of 0.1 μm is formed as a protective film on the photoresist by a plasma CVD method, and then the photoresist is removed by a solvent to leave the patterned SiO 2 film.

【0019】ウエハーをリン酸と硫酸の混酸に浸漬し、
p型GaN層をn型GaN層までエッチングする。
The wafer is immersed in a mixed acid of phosphoric acid and sulfuric acid,
Etch the p-type GaN layer to the n-type GaN layer.

【0020】エッチング後、研磨機にてサファイア基板
を150μmまで研磨する。
After etching, the sapphire substrate is polished to 150 μm with a polishing machine.

【0021】研磨後、ウエハーをダイシングソーに設置
し、ブレード回転数30,000rpm、切断速度0.
3mm/secの条件で、ダイヤモンドブレードにて、所定
のカットライン(350μm角)上を20μmの深さで
ダイシングする。
After polishing, the wafer was placed on a dicing saw, the blade rotation speed was 30,000 rpm, and the cutting speed was 0.
Under a condition of 3 mm / sec, a diamond blade is used to perform dicing at a depth of 20 μm on a predetermined cut line (350 μm square).

【0022】次に、基板側に粘着テープを貼付し、スク
ライバーのテーブル上に張り付け、真空チャックで固定
する。テーブルはx軸(左右)、y軸(前後)に動き、
180度水平に回転可能な構造となっている。固定後、
スクライバーのダイヤモンド刃でダイシングの跡をスク
ライブしてラインを引く。ダイヤモンド刃が設けられた
バーはz軸(上下)、y軸(前後)方向に移動可能な構
造となっている。ダイヤモンド刃の刃先への加重は10
0gとし、スクライブラインの深さを深くするため、同
一のラインを2回スクライブすることにより深さ10μ
mとする。
Next, an adhesive tape is attached to the substrate side, stuck on the table of the scriber, and fixed with a vacuum chuck. The table moves on the x-axis (left and right) and the y-axis (front and back),
It has a structure that can be horizontally rotated 180 degrees. After fixing
Use the diamond blade of the scribe to scribe the dicing marks and draw a line. The bar provided with the diamond blade has a structure that can move in the z-axis (up and down) and y-axis (back and forth) directions. The weight of the diamond blade is 10
In order to increase the depth of the scribe line to 0 g, the same line is scribed twice to obtain a depth of 10 μm.
m.

【0023】スクライブラインを引いたGaNウエハー
をテーブルから剥し取り、サファイア基板側からローラ
ーにより圧力を加えて、押し割ることによりGaNチッ
プを得た。
A GaN wafer with a scribe line was peeled off from the table, pressure was applied from the sapphire substrate side by a roller, and the wafer was pressed to obtain a GaN chip.

【0024】このようにして得られたGaNチップより
外形不良によるものを取り除いたところ、歩留は95%
以上であった。また、このGaNチップのp型GaN
層、およびn型GaN層にAu電極を取り付けた後、常
法に従い発光ダイオードとしたところ、順方向電圧4.
0Vにおいて、発光出力は50μW、発光寿命は500
0時間以上であった。
From the GaN chips thus obtained, the defects due to the outer shape were removed, and the yield was 95%.
That was all. In addition, p-type GaN of this GaN chip
After the Au electrode was attached to the layer and the n-type GaN layer, a light emitting diode was formed by a conventional method.
At 0 V, the emission output is 50 μW and the emission life is 500
It was over 0 hours.

【0025】[比較例1]実施例1と同一のGaNエピ
タキシャルウエハーを、同様にしてn型GaN層までエ
ッチングした後、サファイア基板を研磨せずに、直接ダ
イサーを用い、同じくブレード回転数30,000rp
m、切断速度0.3mm/secの条件で、350μm
角のチップにフルカットしたところ、切断線に対し無数
のクラックが生じ、歩留は30%以下であった。また、
残ったGaNチップのp型層およびn型層に同じくAu
電極を取り付け、発光ダイオードとしたところ、順方向
電圧4.0Vにおいて、発光出力20μW、発光寿命は
50〜70時間であった。
[Comparative Example 1] The same GaN epitaxial wafer as in Example 1 was similarly etched to the n-type GaN layer, and then the sapphire substrate was not polished but a direct dicer was used and the blade rotation speed was 30, 000rp
m, cutting speed 0.3 mm / sec, 350 μm
When full-cut into square chips, countless cracks were generated on the cutting line, and the yield was 30% or less. Also,
Au was also used for the p-type layer and the n-type layer of the remaining GaN chip.
When an electrode was attached to form a light emitting diode, the emission output was 20 μW and the emission life was 50 to 70 hours at a forward voltage of 4.0 V.

【0026】[0026]

【発明の効果】以上述べたように、本発明の方法による
と、pn接合部はストレス無く分離できることで、従来
問題となっていた特性劣化、特に発光寿命、発光出力に
おいて大幅な改善が認められた。また、窒化ガリウム系
化合物半導体とサファイア基板との格子定数不整から生
じる、結晶面のクラック、チッピング等を防止でき、窒
化ガリウム系化合物半導体チップを歩留良く製造でき、
その産業上の利用価値は大きい。
As described above, according to the method of the present invention, the pn junction can be separated without stress, so that the characteristic deterioration which has been a problem in the related art, in particular, the emission life and the emission output are significantly improved. It was Further, cracks on the crystal plane, which may be caused by the lattice constant mismatch between the gallium nitride compound semiconductor and the sapphire substrate, chipping, etc. can be prevented, and gallium nitride compound semiconductor chips can be manufactured with high yield.
Its industrial utility value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例の工程において得られる窒
化ガリウム系化合物半導体ウエハーの構造を示す断面
図。
FIG. 1 is a cross-sectional view showing the structure of a gallium nitride-based compound semiconductor wafer obtained in the process of one embodiment of the present invention.

【図2】 本発明の一実施例の工程において得られる窒
化ガリウム系化合物半導体ウエハーの構造を示す断面
図。
FIG. 2 is a sectional view showing the structure of a gallium nitride-based compound semiconductor wafer obtained in the process of one embodiment of the present invention.

【図3】 本発明の一実施例の工程において得られる窒
化ガリウム系化合物半導体ウエハーの構造を示す断面
図。
FIG. 3 is a cross-sectional view showing the structure of a gallium nitride-based compound semiconductor wafer obtained in the process of one example of the present invention.

【図4】 本発明の一実施例の工程において得られる窒
化ガリウム系化合物半導体ウエハーの構造を示す断面
図。
FIG. 4 is a cross-sectional view showing the structure of a gallium nitride-based compound semiconductor wafer obtained in the process of one example of the present invention.

【図5】 本発明の一実施例の工程において得られる窒
化ガリウム系化合物半導体ウエハーの構造を示す断面
図。
FIG. 5 is a sectional view showing the structure of a gallium nitride-based compound semiconductor wafer obtained in the process of one example of the present invention.

【図6】 本発明の一実施例の工程において得られる窒
化ガリウム系化合物半導体チップの構造を示す断面図。
FIG. 6 is a sectional view showing the structure of a gallium nitride-based compound semiconductor chip obtained in the process of one example of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・・・サファイア基板 2・・・・・・n型窒化ガリウム系化合物半導体層 3・・・・・・p型窒化ガリウム系化合物半導体層 4・・・・・・保護膜 5・・・・・・スクライブライン 6・・・・・・電極 1 --- Sapphire substrate 2--n-type gallium nitride-based compound semiconductor layer 3--p-type gallium nitride-based compound semiconductor layer 4--protective film 5-・ ・ ・ ・ ・ Scribe line 6 ・ ・ ・ Electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 サファイア基板上にn型およびp型の窒
化ガリウム系化合物半導体が順に積層されたウエハーを
チップ状に分離する方法であって、 サファイア基板を研磨して薄くする工程と、 p型層の一部をn型層までエッチングする工程と、 n型層をサファイア基板までエッチング、またはダイシ
ングする工程と、 サファイア基板をダイシング、またはスクライビングに
より切断する工程と、を具備することを特徴とする窒化
ガリウム系化合物半導体チップの製造方法。
1. A method of separating a wafer in which n-type and p-type gallium nitride-based compound semiconductors are sequentially stacked on a sapphire substrate into chips, the method comprising polishing a sapphire substrate to make it thin, and p-type A step of etching a part of the layer to the n-type layer; a step of etching or dicing the n-type layer to the sapphire substrate; and a step of cutting the sapphire substrate by dicing or scribing. Method of manufacturing gallium nitride compound semiconductor chip.
JP17204292A 1992-06-05 1992-06-05 Method of manufacturing gallium nitride based compound semiconductor chip Expired - Fee Related JP2914014B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17204292A JP2914014B2 (en) 1992-06-05 1992-06-05 Method of manufacturing gallium nitride based compound semiconductor chip
JP27938698A JP3679626B2 (en) 1992-06-05 1998-09-14 Gallium nitride compound semiconductor chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17204292A JP2914014B2 (en) 1992-06-05 1992-06-05 Method of manufacturing gallium nitride based compound semiconductor chip

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP27938698A Division JP3679626B2 (en) 1992-06-05 1998-09-14 Gallium nitride compound semiconductor chip

Publications (2)

Publication Number Publication Date
JPH05343742A true JPH05343742A (en) 1993-12-24
JP2914014B2 JP2914014B2 (en) 1999-06-28

Family

ID=15934458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17204292A Expired - Fee Related JP2914014B2 (en) 1992-06-05 1992-06-05 Method of manufacturing gallium nitride based compound semiconductor chip

Country Status (1)

Country Link
JP (1) JP2914014B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5627109A (en) * 1994-09-16 1997-05-06 Sassa; Michinari Method of manufacturing a semiconductor device that uses a sapphire substrate
JPH09129924A (en) * 1995-10-27 1997-05-16 Toyoda Gosei Co Ltd Iii group nitride semiconductor etching method and light emitting element manufacturing method
EP0926784A2 (en) * 1997-12-27 1999-06-30 Hewlett-Packard Company Method of fabricating opto-electronic devices
US6033927A (en) * 1996-09-20 2000-03-07 Toyoda Gosei Co., Ltd. Method for separating a substrate of a group III nitride semiconductor light-emitting device
JP2002151740A (en) * 2000-11-09 2002-05-24 Seiwa Electric Mfg Co Ltd Gallium nitride compound semiconductor device and its manufacturing method
US6940099B2 (en) 2001-09-14 2005-09-06 Sharp Kabushiki Kaisha Semiconductor light emitting element and semiconductor light emitting device
JP2006024914A (en) * 2004-06-11 2006-01-26 Showa Denko Kk Manufacturing method of compound semiconductor device wafer
US7121925B2 (en) 2000-03-31 2006-10-17 Toyoda Gosei Co., Ltd. Method for dicing semiconductor wafer into chips
JP2007511105A (en) * 2003-11-12 2007-04-26 クリー インコーポレイテッド Method for processing the back side of a semiconductor wafer having a light emitting device (LED) thereon, and an LED formed by the method
JP2008116696A (en) * 2006-11-06 2008-05-22 Seiko Epson Corp Manufacturing method of electro-optical device
JP2008135785A (en) * 2008-02-18 2008-06-12 Nichia Chem Ind Ltd Method of manufacturing nitride semiconductor element
JP2009038407A (en) * 2005-03-09 2009-02-19 Showa Denko Kk Nitride semiconductor light emitting element and method for manufacturing the same
US7572657B2 (en) 2004-08-20 2009-08-11 Showa Denko K.K. Method for fabrication of semiconductor light-emitting device and the device fabricated by the method
US7876798B2 (en) 2007-12-28 2011-01-25 Rohm Co., Ltd. Nitride semiconductor laser device
JP2012039128A (en) * 2011-09-20 2012-02-23 Nichia Chem Ind Ltd Method of manufacturing nitride semiconductor element
CN102637640A (en) * 2011-02-09 2012-08-15 达尔萨公司 Method and system for minimizing edge defects of chips
JP2013206990A (en) * 2012-03-27 2013-10-07 Nichia Chem Ind Ltd Vertical nitride semiconductor element and manufacturing method of the same
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
US5627109A (en) * 1994-09-16 1997-05-06 Sassa; Michinari Method of manufacturing a semiconductor device that uses a sapphire substrate
JPH09129924A (en) * 1995-10-27 1997-05-16 Toyoda Gosei Co Ltd Iii group nitride semiconductor etching method and light emitting element manufacturing method
US6033927A (en) * 1996-09-20 2000-03-07 Toyoda Gosei Co., Ltd. Method for separating a substrate of a group III nitride semiconductor light-emitting device
EP0926784A2 (en) * 1997-12-27 1999-06-30 Hewlett-Packard Company Method of fabricating opto-electronic devices
EP0926784A3 (en) * 1997-12-27 2000-06-14 Hewlett-Packard Company Method of fabricating opto-electronic devices
US7121925B2 (en) 2000-03-31 2006-10-17 Toyoda Gosei Co., Ltd. Method for dicing semiconductor wafer into chips
JP2002151740A (en) * 2000-11-09 2002-05-24 Seiwa Electric Mfg Co Ltd Gallium nitride compound semiconductor device and its manufacturing method
US6940099B2 (en) 2001-09-14 2005-09-06 Sharp Kabushiki Kaisha Semiconductor light emitting element and semiconductor light emitting device
JP2007511105A (en) * 2003-11-12 2007-04-26 クリー インコーポレイテッド Method for processing the back side of a semiconductor wafer having a light emitting device (LED) thereon, and an LED formed by the method
JP2006024914A (en) * 2004-06-11 2006-01-26 Showa Denko Kk Manufacturing method of compound semiconductor device wafer
US7572657B2 (en) 2004-08-20 2009-08-11 Showa Denko K.K. Method for fabrication of semiconductor light-emitting device and the device fabricated by the method
JP2009038407A (en) * 2005-03-09 2009-02-19 Showa Denko Kk Nitride semiconductor light emitting element and method for manufacturing the same
JP2008116696A (en) * 2006-11-06 2008-05-22 Seiko Epson Corp Manufacturing method of electro-optical device
US7876798B2 (en) 2007-12-28 2011-01-25 Rohm Co., Ltd. Nitride semiconductor laser device
JP2008135785A (en) * 2008-02-18 2008-06-12 Nichia Chem Ind Ltd Method of manufacturing nitride semiconductor element
CN102637640A (en) * 2011-02-09 2012-08-15 达尔萨公司 Method and system for minimizing edge defects of chips
JP2012039128A (en) * 2011-09-20 2012-02-23 Nichia Chem Ind Ltd Method of manufacturing nitride semiconductor element
JP2013206990A (en) * 2012-03-27 2013-10-07 Nichia Chem Ind Ltd Vertical nitride semiconductor element and manufacturing method of the same

Also Published As

Publication number Publication date
JP2914014B2 (en) 1999-06-28

Similar Documents

Publication Publication Date Title
JP2780618B2 (en) Method of manufacturing gallium nitride based compound semiconductor chip
JP2914014B2 (en) Method of manufacturing gallium nitride based compound semiconductor chip
JP3230572B2 (en) Method for manufacturing nitride compound semiconductor device and semiconductor light emitting device
KR100854986B1 (en) Production method of compound semiconductor device wafer
JP4493127B2 (en) Manufacturing method of nitride semiconductor chip
US6197609B1 (en) Method for manufacturing semiconductor light emitting device
US7393790B2 (en) Method of manufacturing carrier wafer and resulting carrier wafer structures
US7858414B2 (en) Nitride semiconductor device and manufacturing method thereof
JP2748355B2 (en) Method of manufacturing gallium nitride based compound semiconductor chip
JP2861991B2 (en) Method of manufacturing gallium nitride based compound semiconductor chip
CN101015070A (en) Method for fabrication of semiconductor light-emitting device and the device fabricated by the method
JPH10275936A (en) Method for manufacturing semiconductor light-emitting element
JP2765644B2 (en) Gallium nitride based compound semiconductor wafer cutting method
JP4710148B2 (en) Manufacturing method of nitride semiconductor chip
JP3227287B2 (en) Method of manufacturing gallium nitride-based compound semiconductor chip and gallium nitride-based compound semiconductor device
JP4639520B2 (en) Manufacturing method of nitride semiconductor chip
JP3723347B2 (en) Manufacturing method of semiconductor light emitting device
JP2748354B2 (en) Method of manufacturing gallium nitride based compound semiconductor chip
JP2910811B2 (en) Gallium nitride based compound semiconductor wafer cutting method
JPH11126763A (en) Method for separating semiconductor devices
JP2859478B2 (en) Gallium nitride based compound semiconductor wafer cutting method for light emitting device
JP4594707B2 (en) Semiconductor chip manufacturing method
JP3679626B2 (en) Gallium nitride compound semiconductor chip
JP3928621B2 (en) Light emitting device wafer
JP3938101B2 (en) Method for manufacturing light emitting device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees