JPH09266174A - Manufacture of amorphous semiconductor film, and manufacture device - Google Patents

Manufacture of amorphous semiconductor film, and manufacture device

Info

Publication number
JPH09266174A
JPH09266174A JP7614096A JP7614096A JPH09266174A JP H09266174 A JPH09266174 A JP H09266174A JP 7614096 A JP7614096 A JP 7614096A JP 7614096 A JP7614096 A JP 7614096A JP H09266174 A JPH09266174 A JP H09266174A
Authority
JP
Japan
Prior art keywords
sih
plasma
emission peak
thin film
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7614096A
Other languages
Japanese (ja)
Inventor
Masatoshi Kitagawa
雅俊 北川
Hideo Sugai
秀郎 菅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7614096A priority Critical patent/JPH09266174A/en
Publication of JPH09266174A publication Critical patent/JPH09266174A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a film formation method which materializes the formation of a high-performance amorphous semiconductor film at a low temperature near the room temperature, utilizing that the high-frequency induction coupling plasma being a plasma source without occurrence of plasma under low pressure can generate low-pressure plasma equally at large area, and besides produce high-density plasma condition being excited enough, without using a high magnetic field and without using microwaves. SOLUTION: High frequency is let pass through a matching device 15 from a high frequency oscillator 14 through an induction coil 13, and it is introduced into a plasma generator 16 at least whose coil or its vicinity consists of insulating material such as a quartz tube, or the like. Monosilane (SiH4 ) or the like is introduced from a gas introduction port 17, and generated plasma reaches a substrate holder 18, and amorphous silicon can be accumulated on a substrate even if it is at low temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主に非晶質シリコ
ン(a-Si:H)等の非晶質薄膜の室温付近の比較的
低温での製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a method for producing an amorphous thin film such as amorphous silicon (a-Si: H) at a relatively low temperature near room temperature.

【0002】[0002]

【従来の技術】従来、非晶質シリコンを形成する場合、
直流もしくは交流(高周波、マイクロ波を含む)グロー
放電プラズマ分解によって堆積するいわゆるプラズマ化
学気相成長(CVD)法で行われている。この中でも、
例えばマイクロ波電子サイクロトロン共鳴(ECR)を
用いたECRプラズマCVDを利用するものが知られて
いる。図6に示すような構成を持つ従来のECRプラズ
マCVD装置にて製膜を行った場合、1×10-4〜5×
10-4Torrの範囲の低圧SiH4雰囲気下においても、
プラズマ発生が可能であり、例えばSiH4ガスを用い
て基板加熱を行なわず、室温付近の低温で非晶質シリコ
ンを堆積形成した場合、この低圧雰囲気下で作製された
a−Si:H薄膜が良好な光電気伝導度と明暗比が得ら
れることが示されている(例えば、Japn.J.Appl.Phys:
M.Kitagawa et.al. 26(1987)L261等)。
2. Description of the Related Art Conventionally, when forming amorphous silicon,
Direct current or alternating current (including high frequency, microwave) glow discharge plasma decomposition is performed by the so-called plasma chemical vapor deposition (CVD) method. Among them,
For example, one using ECR plasma CVD using microwave electron cyclotron resonance (ECR) is known. When a film is formed by a conventional ECR plasma CVD apparatus having a structure as shown in FIG. 6, 1 × 10 −4 to 5 ×
Even in a low pressure SiH 4 atmosphere in the range of 10 −4 Torr,
Plasma can be generated, and for example, when the amorphous silicon is deposited and formed at a low temperature near room temperature without heating the substrate using SiH 4 gas, the a-Si: H thin film produced under this low-pressure atmosphere is It has been shown that good photoconductivity and light-to-dark ratio are obtained (eg Japn.J.Appl.Phys:
M. Kitagawa et.al. 26 (1987) L261).

【0003】図6の装置構成において、61が真空チャ
ンバーで排気孔62より真空に排気される。導波管63
を通してマイクロ波発振器64からマイクロ波がプラズ
マ発生室65へ導入される。同時に電磁石66によって
プラズマ発生室65に磁界が印加される。67はガス導
入口で主にモノシラン(SiH4)を原料ガスとして導入
される。磁界の強さを電子サイクロトロン共鳴条件を満
たすように設定することにより、解離度の高いプラズマ
が得られる。発生したプラズマはプラズマ引出し窓68
を通過して基板ホルダー69に達しホルダー69上に非
晶質シリコンが堆積される。
In the apparatus configuration of FIG. 6, 61 is evacuated to a vacuum through an exhaust hole 62 in a vacuum chamber. Waveguide 63
Through the microwave oscillator 64, microwaves are introduced into the plasma generation chamber 65. At the same time, a magnetic field is applied to the plasma generation chamber 65 by the electromagnet 66. Reference numeral 67 is a gas introduction port into which monosilane (SiH 4 ) is mainly introduced as a raw material gas. By setting the strength of the magnetic field so as to satisfy the electron cyclotron resonance condition, a plasma having a high degree of dissociation can be obtained. The generated plasma is a plasma extraction window 68.
To reach the substrate holder 69, and amorphous silicon is deposited on the holder 69.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この様
なマイクロ波ECRプラズマCVDを用いた製造方法で
は、室温付近の低い形成温度で形成できるものの、図6
の装置構成に示すように、共鳴磁界が必要となる。例え
ば1.25GHzのマイクロ波の場合、875Gaussの高磁界を
発生しうる大きな磁界発生装置(電磁石等)が必要であ
り、この磁石の大きさでプラズマ発生源の大きさが制限
される。また、マイクロ波の導入は導波管やコイルアン
テナで局所的な電力の放射供給になるために、プラズマ
発生の領域の堆積・面積が制限され、大面積形成の実現
が困難であった。
However, in the manufacturing method using the microwave ECR plasma CVD as described above, although the formation can be performed at a low formation temperature near room temperature, as shown in FIG.
A resonance magnetic field is required as shown in FIG. For example, in the case of 1.25 GHz microwave, a large magnetic field generator (electromagnet or the like) capable of generating a high magnetic field of 875 Gauss is required, and the size of this magnet limits the size of the plasma generation source. In addition, since the introduction of microwaves locally radiates electric power through a waveguide or a coil antenna, the deposition / area of the plasma generation region is limited, making it difficult to achieve a large area.

【0005】これらの問題を避けるためには、複数のE
CR源を必要としたり、基板を移動させて処理すること
が必要であり、そうすることが、堆積速度の激減を招
き、低温で高速形成の可能性をなくしてしまい、この様
な製造方法の実用化を妨げていた。
To avoid these problems, multiple E
A CR source is required or the substrate needs to be moved for processing, which leads to a drastic decrease in the deposition rate and eliminates the possibility of high speed formation at low temperatures. It was impeding practical application.

【0006】また、高磁場を用いる従来のECRプラズ
マを用いたこのような方法では、発生したプラズマが磁
界勾配に沿って移動し、一般的に堆積表面へイオンと電
子両方の荷電粒子が高いエネルギーをもって照射される
ため、例えば下地や基板の損傷を引き起こすおそれが大
きいため、一層この様な製造方法の実用化を妨げてい
た。
Further, in such a method using a conventional ECR plasma using a high magnetic field, the generated plasma moves along a magnetic field gradient, and generally, charged particles of both ions and electrons have high energy to the deposition surface. Since the irradiation is carried out with a large amount, there is a high possibility that the base or the substrate will be damaged, which further hinders the practical application of such a manufacturing method.

【0007】本発明は、この様な問題点を解決すること
を目的としている。
The present invention aims to solve such problems.

【0008】[0008]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明では従来マイクロ波ECRプラズマCVD
でしか実現されていなかったa-Si:Hの低温形成
を、マイクロ波ECRの替わりに、プラズマ源として高
磁界を用いない誘導結合プラズマ(ICP)を用いるこ
とにより、大型の磁界発生装置を必要とせず、低圧力領
域で大面積に均一に、SiH4ガスをプラズマ分解で
き、上記問題点が解決できることを見いだした。
In order to solve the above problems, the present invention has proposed a conventional microwave ECR plasma CVD.
A low-temperature formation of a-Si: H, which had been realized only in the above, is required by using a large magnetic field generator by using an inductively coupled plasma (ICP) that does not use a high magnetic field as a plasma source instead of the microwave ECR. Instead, it was found that the SiH 4 gas can be plasma decomposed uniformly in a large area in a low pressure region, and the above problems can be solved.

【0009】従来の方法では、解離エネルギ−が高く分
解しにくいSiH4ガスを電子温度の高い低圧プラズマ
発生をマイクロ波と強磁界の共鳴現象(ECR)を利用
しプラズマを発生していたことにより行っていたため
に、磁界発生装置やマイクロ波導波管等の取り回しが大
きく小型化が困難で、しかも大型化に向かない装置構成
を強いられていた。本発明では、高磁界を使用せず、マ
イクロ波を使用せず、低圧下でプラズマの発生のないプ
ラズマ源である高周波誘導結合プラズマが、大面積に均
一に低圧プラズマを発生させ、かつ充分励起された、高
密度なプラズマ状態を作りだすことが可能であることを
利用した。従って堆積速度は充分速いままで膜に損傷を
与えることなく堆積することを可能とした。
According to the conventional method, SiH 4 gas, which has a high dissociation energy and is difficult to decompose, is generated by utilizing the resonance phenomenon (ECR) of microwave and strong magnetic field to generate low-pressure plasma having a high electron temperature. As a result, the magnetic field generator, the microwave waveguide, and the like are maneuvered so that downsizing is difficult, and a device configuration that is not suitable for upsizing is required. In the present invention, a high-frequency inductively coupled plasma, which is a plasma source that does not use a high magnetic field, does not use a microwave, and does not generate plasma under a low pressure, uniformly generates a low pressure plasma in a large area and is sufficiently excited. It was utilized that it is possible to create a high density plasma state. Therefore, it was possible to deposit without damaging the film while keeping the deposition rate sufficiently high.

【0010】本発明では、上記手段により高性能な非晶
質半導体薄膜を室温近傍の低温形成を実現する薄膜形成
方法を提供するものである。
The present invention provides a thin film forming method by which the high-performance amorphous semiconductor thin film can be formed at a low temperature near room temperature by the above means.

【0011】[0011]

【発明の実施の形態】以下、図面に基づき、本発明の代
表的な実施の形態を示す。
BEST MODE FOR CARRYING OUT THE INVENTION Representative embodiments of the present invention will be described below with reference to the drawings.

【0012】(実施の形態1)図1は本実施で使用する
ICPCVD装置の概略図である。11が真空チャンバ
ーで排気孔12より真空に排気される。誘導コイル13
を通して高周波発振器14から高周波が整合器15を通
し、少なくともコイル付近が石英チューブ等の絶縁性材
料からなるプラズマ発生室16へ導入される。高周波を
コイルに印加する事により、誘導磁界が発生しプラズマ
発生室16に電磁界が印加される。17はガス導入口で
主にモノシラン(SiH4)を原料ガスとして導入さ
れ、コイルの巻き数を印加する高周波の周波数との誘導
結合条件を満たすように設定することにより、解離度の
高いプラズマが得られる。このときの高周波の周波数
は、コイルで結合しやすい周波数100kHzから10
0MHzの領域が好ましい。発生したプラズマは、基板
ホルダー18に達し基板ホルダー上の基板に非晶質シリ
コンが堆積される。例えば、メタン(CH4)を混合さ
せたりすると、非晶質シリコンカーバイト(SiC)が
形成可能となる。
(First Embodiment) FIG. 1 is a schematic view of an ICPCVD apparatus used in this embodiment. A vacuum chamber 11 is evacuated to a vacuum through an exhaust hole 12. Induction coil 13
High frequency from the high frequency oscillator 14 passes through the matching device 15, and is introduced into the plasma generation chamber 16 made of an insulating material such as a quartz tube at least near the coil. By applying a high frequency to the coil, an induction magnetic field is generated and an electromagnetic field is applied to the plasma generation chamber 16. Reference numeral 17 is a gas introduction port where monosilane (SiH 4 ) is mainly introduced as a raw material gas, and the number of turns of the coil is set so as to satisfy the inductive coupling condition with the frequency of the high frequency to be applied, whereby plasma having a high dissociation degree is generated. can get. The frequency of the high frequency at this time is 10 to 10
The 0 MHz region is preferred. The generated plasma reaches the substrate holder 18 and amorphous silicon is deposited on the substrate on the substrate holder. For example, when methane (CH4) is mixed, amorphous silicon carbide (SiC) can be formed.

【0013】例えば、図2に示すように、100%のS
iH4ガスを5sccmの流量で供給し、非晶質シリコンを
基板加熱を行なわず、室温付近の低温で堆積形成した場
合、2mTorr〜15mTorrの範囲のSiH4圧力におい
て、比較的良好な光電気伝導度と明暗比が得られ、この
流量では、この圧力領域で形成することが好ましい。
For example, as shown in FIG. 2, 100% S
When iH 4 gas is supplied at a flow rate of 5 sccm and amorphous silicon is deposited and formed at a low temperature near room temperature without heating the substrate, a relatively good photoelectric conductivity is obtained at a SiH 4 pressure in the range of 2 mTorr to 15 mTorr. It is preferable to form in this pressure region at this flow rate.

【0014】図3はSiH4圧力を3mTorrと一定とし、
高周波の電力を100〜1000Wと変化させたときの
室温で形成した非晶質シリコン薄膜の光電気伝導度と暗
電気伝導度の変化を示している。500〜1000Wと
比較的高電力領域で良好な特性を示している。
In FIG. 3, the pressure of SiH 4 is kept constant at 3 mTorr,
It shows changes in photoconductivity and dark conductivity of an amorphous silicon thin film formed at room temperature when high-frequency power is changed from 100 to 1000 W. Good characteristics are shown in a relatively high power region of 500 to 1000 W.

【0015】(実施の形態2)図4は図1の装置構成に
おいて、堆積中のプラズマを光ファイバー等により分光
装置41に導入し発光分光を行い、所定の発光ピークの
変化を検知可能にした構成を有するものである。さら
に、発光強度をデータ処理装置42でモニタリングし放
電圧力、放電電力、供給流量へのフィードバック回路4
3を組むことにより、流量調整器44や、圧力調整器4
5、高周波電源14へフィードバックを行い、Si、S
iH、Hの発光ピークを所定の値になるよう制御を行う
ことにより、良質な非晶質薄膜を安定に作製できる。
(Embodiment 2) FIG. 4 shows a configuration in which the plasma during deposition is introduced into a spectroscope 41 through an optical fiber or the like to perform emission spectroscopy in the apparatus configuration of FIG. 1 so that a change in a predetermined emission peak can be detected. Is to have. Further, the emission intensity is monitored by the data processing device 42, and the feedback circuit 4 for the discharge pressure, discharge power, and supply flow rate is used.
By assembling 3, the flow rate regulator 44 and the pressure regulator 4
5, feedback to the high frequency power supply 14, Si, S
By controlling the emission peaks of iH and H to be a predetermined value, it is possible to stably produce a good quality amorphous thin film.

【0016】図5に高周波電力、SiH4流量、H2とS
iH4との流量比または圧力を変化させた時に作製され
た種々の非晶質シリコンの、光電気伝導度の変化を示し
ている。横軸には、基板近傍におけるプラズマ発光分光
の発光ピークのうち、400nm〜420nm付近に見られるSi
H分子からの発光ピーク、288nm付近(280〜290nm)を
中心とするSi原子からの発光ピーク、618nm付近(610
〜620nm)を中心とするH原子からの発光ピークの相対
的比Si/SiH、H/SiHをとってある。相対的に
Si>SiH、H>SiHの時に、作製した非晶質シリ
コン薄膜の光電気伝導度は良好となっている。
FIG. 5 shows high frequency power, SiH4 flow rate, H2 and S
It shows the change in photoconductivity of various amorphous silicons produced when the flow rate ratio with iH4 or the pressure is changed. The abscissa indicates the Si observed near 400 nm to 420 nm among the emission peaks of the plasma emission spectrum near the substrate.
Emission peak from H molecule, emission peak from Si atom centered around 288 nm (280 to 290 nm), around 618 nm (610
The relative ratios Si / SiH and H / SiH of emission peaks from H atoms centered at 620 nm) are obtained. When Si> SiH and H> SiH, the photoelectric conductivity of the produced amorphous silicon thin film is relatively good.

【0017】即ち、低温形成で良好な膜質の非晶質シリ
コンを得ることは、プラズマの発光分光を観測しなが
ら、前記したSi、SiH、Hのピーク強度の比をSi
>SiH、またはH>SiHとなるような条件に調整す
ることにより行える。
That is, in order to obtain amorphous silicon having a good film quality at low temperature formation, the ratio of the peak intensities of Si, SiH, and H described above can be determined by observing the emission spectrum of plasma.
It can be performed by adjusting the conditions such that> SiH or H> SiH.

【0018】またこれら条件時の成膜速度は5〜30A
/secとECRプラズマCVDの場合と比較してもの同
程度かそれ以上であり成膜速度は充分速かった。
The film forming rate under these conditions is 5 to 30 A.
/ Sec is about the same as or higher than the case of ECR plasma CVD, and the film formation rate was sufficiently high.

【0019】なお、上記実施例では図1のようなソレノ
イドコイル型で外部コイル配置の誘導結合装置を用いて
本発明の実施例について説明したが、例えば同一面内に
コイルを巻く、スパイラル型の誘導結合装置や、これら
のコイルを反応室内に設置する内部コイル配置のもの
や、さらには補助磁石を付加したものであっても全く同
様な効果を得るものである。
In the above embodiment, the embodiment of the present invention has been described by using the solenoid coil type inductive coupling device having the external coil arrangement as shown in FIG. 1. However, for example, a spiral type coil is wound in the same plane. An inductive coupling device, an internal coil arrangement in which these coils are installed in the reaction chamber, and a device to which an auxiliary magnet is added have the same effect.

【0020】[0020]

【発明の効果】第1に、従来、分解エネルギ−が高く分
解しにくいSiH4ガスを電子温度の高い低圧プラズマ
発生をマイクロ波と強磁界の共鳴現象(ECR)を利用
しプラズマを発生していたことにより行っていたため
に、磁界発生装置やマイクロ波導波管等の取り回しが大
きく小型化が困難で、しかも大型化に向かない装置構成
を強いられていた。
First of all, the SiH 4 gas, which has a high decomposition energy and is hard to decompose, has conventionally been used to generate a low-pressure plasma having a high electron temperature by utilizing a resonance phenomenon (ECR) between a microwave and a strong magnetic field. Because of this, the arrangement of the magnetic field generator, the microwave waveguide, and the like is large, and downsizing is difficult, and the device configuration is not suitable for upsizing.

【0021】この課題に対し、本発明によれば、大面積
に低圧プラズマを発生させることが可能な誘導結合プラ
ズマにすることにより、結果的に、低圧力で分解し低電
力で充分励起された状態となり堆積速度は充分速いまま
で膜に損傷を与えることなく堆積することを可能とし
た。その結果、薄膜半導体装置を形成する際にも、基板
や下層膜に損傷を与えることもなく、高性能な素子作製
を可能とした。
To solve this problem, according to the present invention, by using an inductively coupled plasma capable of generating a low pressure plasma in a large area, it is decomposed at a low pressure and sufficiently excited at a low power. It was possible to deposit without damaging the film while maintaining a sufficiently high deposition rate. As a result, it is possible to fabricate a high-performance element without damaging the substrate or the lower layer film even when forming the thin film semiconductor device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第1の実施の形態の誘導結合プラズマ
(ICP)CVD装置の概略図
FIG. 1 is a schematic diagram of an inductively coupled plasma (ICP) CVD apparatus according to a first embodiment of the present invention.

【図2】非晶質シリコン薄膜の光電気伝導度と暗電気伝
導度の変化を示す図
FIG. 2 is a diagram showing changes in photoconductivity and dark conductivity of an amorphous silicon thin film.

【図3】非晶質シリコン薄膜の光電気伝導度と暗電気伝
導度の変化を示す図
FIG. 3 is a diagram showing changes in photoconductivity and dark conductivity of an amorphous silicon thin film.

【図4】本発明第2の実施の形態の誘導結合プラズマ
(ICP)CVD装置の概略図
FIG. 4 is a schematic diagram of an inductively coupled plasma (ICP) CVD apparatus according to a second embodiment of the present invention.

【図5】混合ガス比を変化させた時の非晶質シリコンの
光電気伝導度の変化を示す図
FIG. 5 is a diagram showing changes in photoconductivity of amorphous silicon when the mixed gas ratio is changed.

【図6】従来例としてECRプラズマCVDを用いて非
晶質シリコンを堆積する装置構成図
FIG. 6 is a configuration diagram of an apparatus for depositing amorphous silicon by using ECR plasma CVD as a conventional example.

【符号の説明】[Explanation of symbols]

11 真空チャンバー 12 排気口 13 誘導コイル 14 高周波発振器 15 整合器 16 プラズマ発生室 17 ガス導入口 18 基板ホルダー 41 分光装置 42 データ処理装置 43 流量調整器 44 圧力調整器 11 Vacuum Chamber 12 Exhaust Port 13 Induction Coil 14 High Frequency Oscillator 15 Matching Device 16 Plasma Generation Chamber 17 Gas Inlet Port 18 Substrate Holder 41 Spectroscopic Device 42 Data Processing Device 43 Flow Rate Regulator 44 Pressure Regulator

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】原料として、シラン(SiH4)、ジシラ
ン(Si26)等のシリコン元素、メタン(CH4)、
エタン(C24)等の炭素元素を含む原料、水素
(H2)もしくはこれらを混合した元素のうち少なくと
も1種を用い、高周波誘導結合プラズマ(ICP:Indu
ctive Coupled Plasma)を利用した化学気相成長過程に
おいて堆積形成することを特徴とする非晶質半導体薄膜
の製造方法。
1. A raw material comprising a silicon element such as silane (SiH 4 ), disilane (Si 2 H 6 ), methane (CH 4 ),
At least one of a raw material containing a carbon element such as ethane (C 2 H 4 ), hydrogen (H 2 ) or a mixture of these elements is used, and high frequency inductively coupled plasma (ICP: Indu) is used.
A method for producing an amorphous semiconductor thin film, which comprises depositing and forming in a chemical vapor deposition process using a ctive coupled plasma.
【請求項2】高周波の周波数を100kHz〜100M
Hzとすることを特徴とする請求項1記載の非晶質半導
体薄膜の製造方法。
2. A high frequency of 100 kHz to 100 M
The method for producing an amorphous semiconductor thin film according to claim 1, wherein the frequency is set to Hz.
【請求項3】原料の堆積時におけるガス圧力を1x10
-4〜6x10-3Torrとすることを特徴とする請求項
1記載の非晶質薄膜製造方法。
3. The gas pressure during the deposition of the raw material is 1 × 10.
-4 to 6x10 -3 Torr is set, and the amorphous thin film manufacturing method according to claim 1 characterized by things.
【請求項4】原料の堆積時におけるガス圧力を、高周波
誘導結合プラズマの少なくとも基板近傍におけるプラズ
マ発光分光スペクトルにおいて400nm〜420nm付近に見ら
れるSiH分子からの発光ピーク(SiH)、288nm付
近(280〜290nm)を中心とするSi原子からの発光ピー
ク(Si)、618nm付近(610〜620nm)を中心とするH
原子からの発光ピーク(H)の相対的な関係が、(S
i)>4.0×(SiH)、または(H)>2.0×
(SiH)を満たすよう設定することを特徴とする請求
項1記載の非晶質半導体薄膜の製造方法。
4. An emission peak (SiH) from SiH molecules, which is observed near 400 nm to 420 nm in a plasma emission spectrum of at least the vicinity of the substrate of the high frequency inductively coupled plasma, and a gas pressure during deposition of the raw material are near 288 nm (280 to 280 nm). 290 nm) centered at the emission peak (Si) from Si atoms, H centered around 618 nm (610-620 nm)
The relative relationship between the emission peaks (H) from the atoms is (S
i)> 4.0 × (SiH), or (H)> 2.0 ×
The method for producing an amorphous semiconductor thin film according to claim 1, wherein the setting is made so as to satisfy (SiH).
【請求項5】高周波電力を、高周波誘導結合プラズマの
少なくとも基板近傍におけるプラズマ発光分光スペクト
ルにおいて400nm〜420nm付近に見られるSiH分子から
の発光ピーク(SiH)、288nm付近(280〜290nm)を
中心とするSi原子からの発光ピーク(Si)、618nm
付近(610〜620nm)を中心とするH原子からの発光ピー
ク(H)の相対的な関係が、(Si)>4.0×(Si
H)、または(H)>2.0×(SiH)を満たすよう
設定することを特徴とする請求項1記載の非晶質半導体
薄膜の製造方法。
5. The high frequency power is centered on the emission peak (SiH) from SiH molecules, which is seen near 400 nm to 420 nm in the plasma emission spectrum of at least the vicinity of the substrate of the high frequency inductively coupled plasma, and around 288 nm (280 to 290 nm). Emission peak (Si) from Si atom, 618nm
The relative relationship of the emission peak (H) from the H atom centered around (610 to 620 nm) is (Si)> 4.0 × (Si
2. The method for producing an amorphous semiconductor thin film according to claim 1, wherein H) or (H)> 2.0 × (SiH) is set.
【請求項6】原料ガスの堆積時におけるガス供給流量
を、高周波誘導結合プラズマの少なくとも基板近傍にお
けるプラズマ発光分光スペクトルにおいて400nm〜420nm
付近に見られるSiH分子からの発光ピーク(Si
H)、288nm付近(280〜290nm)を中心とするSi原子
からの発光ピーク(Si)、618nm付近(610〜620nm)
を中心とするH原子からの発光ピーク(H)の相対的な
関係が、(Si)>4.0×(SiH)、または(H)
>2.0×(SiH)を満たすよう設定することを特徴
とする請求項1記載の非晶質半導体薄膜の製造方法。
6. The gas supply flow rate at the time of depositing the source gas is 400 nm to 420 nm in the plasma emission spectrum of high frequency inductively coupled plasma at least in the vicinity of the substrate.
The emission peak from the SiH molecule (Si
H), emission peak from Si atoms centered around 288 nm (280 to 290 nm) (Si), near 618 nm (610 to 620 nm)
The relative relationship of the emission peak (H) from the H atom centered at is (Si)> 4.0 × (SiH), or (H)
The method for producing an amorphous semiconductor thin film according to claim 1, wherein the setting is made so as to satisfy> 2.0 × (SiH).
【請求項7】原料の堆積時における原料ガスとしてSi
4と水素H2の混合ガスを用い、その供給流量比を、高
周波誘導結合プラズマの少なくとも基板近傍におけるプ
ラズマ発光分光スペクトルにおいて400nm〜420nm付近に
見られるSiH分子からの発光ピーク(SiH)、288n
m付近(280〜290nm)を中心とするSi原子からの発光
ピーク(Si)、618nm付近(610〜620nm)を中心とす
るH原子からの発光ピーク(H)の相対的な関係が、
(Si)>4.0×(SiH)、または(H)>2.0
×(SiH)を満たすよう混合設定することを特徴とす
る請求項1記載の非晶質半導体薄膜の製造方法。
7. Si as a source gas during deposition of the source
A mixed gas of H 4 and hydrogen H 2 was used, and the supply flow rate ratio thereof was set such that the emission peak (SiH) from SiH molecules at about 400 nm to 420 nm in the plasma emission spectrum of at least the vicinity of the substrate of the high frequency inductively coupled plasma was 288n.
The relative relationship between the emission peak (Si) from the Si atom centered around m (280 to 290 nm) and the emission peak (H) from the H atom centered around 618 nm (610 to 620 nm) is
(Si)> 4.0 × (SiH) or (H)> 2.0
The method for producing an amorphous semiconductor thin film according to claim 1, wherein mixed setting is performed so as to satisfy x (SiH).
【請求項8】真空チャンバの中に、基板ホルダと、シラ
ン(SiH4)、ジシラン(Si26)等のシリコン元
素、メタン(CH4)、エタン(C24)等の炭素元素
を含む原料、水素(H2)もしくはこれらを混合した元
素のうち少なくとも1種を含む原料を供給す原料供給手
段を備え、前記真空チャンバ内でプラズマを発生させる
領域に高周波電界を発生させるための高周波印加手段を
備え、誘導結合プラズマ(ICP:Inductive Coupled
Plasma)利用した化学気相成長にて堆積形成することを
特徴とする非晶質半導体薄膜の製造装置。
8. A substrate holder and a silicon element such as silane (SiH 4 ) and disilane (Si 2 H 6 ) and a carbon element such as methane (CH 4 ) and ethane (C 2 H 4 ) in a vacuum chamber. And a raw material supply means for supplying a raw material containing at least one of hydrogen (H 2 ) or an element obtained by mixing these, and for generating a high-frequency electric field in a region where plasma is generated in the vacuum chamber. Inductively coupled plasma (ICP: Inductive Coupled)
Plasma) apparatus for depositing and forming an amorphous semiconductor thin film, which is formed by chemical vapor deposition.
【請求項9】高周波の周波数を100kHz〜100M
Hzとすることを特徴とする請求項8記載の非晶質半導
体薄膜の製造装置。
9. A high frequency of 100 kHz to 100 M
9. The apparatus for producing an amorphous semiconductor thin film according to claim 8, wherein the frequency is set to Hz.
【請求項10】原料の堆積時におけるガス圧力を1x1
-4〜6x10-3Torrとすることを特徴とする請求
項8記載の非晶質薄膜製造装置。
10. The gas pressure during the deposition of the raw material is 1 × 1.
9. The amorphous thin film manufacturing apparatus according to claim 8, wherein the thickness is 0 −4 to 6 × 10 −3 Torr.
【請求項11】原料の堆積時におけるガス圧力、ガス供
給流量、ガス混合比、高周波電力の少なくとも1つを、
高周波誘導結合プラズマの少なくとも基板近傍における
プラズマ発光分光スペクトルにおいて400nm〜420nm付近
に見られるSiH分子からの発光ピーク(SiH)、28
8nm付近(280〜290nm)を中心とするSi原子からの発
光ピーク(Si)、618nm付近(610〜620nm)を中心と
するH原子からの発光ピーク(H)の相対的な関係が、
(Si)>4.0×(SiH)、または(H)>2.0
×(SiH)を満たすよう設定することを特徴とする請
求項8記載の非晶質半導体薄膜の製造装置。
11. At least one of a gas pressure, a gas supply flow rate, a gas mixing ratio and a high frequency power at the time of depositing a raw material,
An emission peak (SiH) from SiH molecules, which is seen near 400 nm to 420 nm in the plasma emission spectrum of at least the vicinity of the substrate of the high frequency inductively coupled plasma, 28
The relative relationship between the emission peak (Si) from the Si atom centered around 8 nm (280 to 290 nm) and the emission peak (H) from the H atom centered around 618 nm (610 to 620 nm) is
(Si)> 4.0 × (SiH) or (H)> 2.0
9. The apparatus for producing an amorphous semiconductor thin film according to claim 8, wherein the setting is made so as to satisfy x (SiH).
JP7614096A 1996-03-29 1996-03-29 Manufacture of amorphous semiconductor film, and manufacture device Pending JPH09266174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7614096A JPH09266174A (en) 1996-03-29 1996-03-29 Manufacture of amorphous semiconductor film, and manufacture device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7614096A JPH09266174A (en) 1996-03-29 1996-03-29 Manufacture of amorphous semiconductor film, and manufacture device

Publications (1)

Publication Number Publication Date
JPH09266174A true JPH09266174A (en) 1997-10-07

Family

ID=13596689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7614096A Pending JPH09266174A (en) 1996-03-29 1996-03-29 Manufacture of amorphous semiconductor film, and manufacture device

Country Status (1)

Country Link
JP (1) JPH09266174A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999000829A1 (en) * 1997-06-30 1999-01-07 Matsushita Electric Industrial Co., Ltd. Method of producing thin semiconductor film and apparatus therefor
WO2009142016A1 (en) 2008-05-22 2009-11-26 株式会社イー・エム・ディー Plasma generating apparatus and plasma processing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999000829A1 (en) * 1997-06-30 1999-01-07 Matsushita Electric Industrial Co., Ltd. Method of producing thin semiconductor film and apparatus therefor
WO2009142016A1 (en) 2008-05-22 2009-11-26 株式会社イー・エム・ディー Plasma generating apparatus and plasma processing apparatus
KR20110016450A (en) 2008-05-22 2011-02-17 가부시키가이샤 이엠디 Plasma generating apparatus and plasma processing apparatus
US8917022B2 (en) 2008-05-22 2014-12-23 Emd Corporation Plasma generation device and plasma processing device

Similar Documents

Publication Publication Date Title
US5330802A (en) Plasma CVD of carbonaceous films on substrate having reduced metal on its surface
US7125588B2 (en) Pulsed plasma CVD method for forming a film
KR900008505B1 (en) Microwave enhanced cvd method for depositing carbon
JP4382265B2 (en) Method and apparatus for forming silicon oxide film
KR100325500B1 (en) Method of producing thin semiconductor film and apparatus therefor
JPH0672306B2 (en) Plasma processing apparatus and plasma processing method
JPH01297141A (en) Microwave plasma processing device
JPH1060652A (en) Method for plasma treatment of surface and apparatus therefor
JPS6232157B2 (en)
RU99105927A (en) METHOD AND DEVICE FOR MANUFACTURING THIN SEMICONDUCTOR FILM
US4913928A (en) Microwave plasma chemical vapor deposition apparatus with magnet on waveguide
JP4741060B2 (en) Method and apparatus for epitaxially depositing atoms or molecules from a reaction gas on a deposition surface of a substrate
JPH09266174A (en) Manufacture of amorphous semiconductor film, and manufacture device
JPS63121667A (en) Device and method for forming thin film
JPH1174204A (en) Method and device for manufacturing semiconductor thin film
JPH0521983B2 (en)
JPH0420985B2 (en)
Kim et al. Effect of the substrate state on the formation of diamond film in a low temperature microwave‐plasma‐enhanced chemical vapor deposition system
RU214891U1 (en) DEVICE FOR GAS-JET DEPOSITION OF DIAMOND COATINGS
RU2792526C1 (en) Diamond coating device
JP2715277B2 (en) Thin film forming equipment
JPS6385092A (en) Production of diamond film
JPH0742197B2 (en) Diamond synthesis method using plasma
JPS6383271A (en) Production of diamond-like carbon film
JP3359475B2 (en) Thin film forming method and thin film forming apparatus