JPS63121667A - Device and method for forming thin film - Google Patents

Device and method for forming thin film

Info

Publication number
JPS63121667A
JPS63121667A JP61266834A JP26683486A JPS63121667A JP S63121667 A JPS63121667 A JP S63121667A JP 61266834 A JP61266834 A JP 61266834A JP 26683486 A JP26683486 A JP 26683486A JP S63121667 A JPS63121667 A JP S63121667A
Authority
JP
Japan
Prior art keywords
thin film
magnetic field
substrate
space
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61266834A
Other languages
Japanese (ja)
Other versions
JPH0420984B2 (en
Inventor
Takashi Inushima
犬島 喬
Naoki Hirose
直樹 広瀬
Mamoru Tashiro
田代 衛
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP61266834A priority Critical patent/JPS63121667A/en
Priority to DE3752208T priority patent/DE3752208T2/en
Priority to EP87116091A priority patent/EP0267513B1/en
Priority to KR1019870012471A priority patent/KR930005010B1/en
Priority to CN87107779A priority patent/CN1017726B/en
Publication of JPS63121667A publication Critical patent/JPS63121667A/en
Publication of JPH0420984B2 publication Critical patent/JPH0420984B2/ja
Priority to US07/966,562 priority patent/US5266363A/en
Priority to US08/470,596 priority patent/US6677001B1/en
Priority to US11/102,651 priority patent/US20050196549A1/en
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To stably form a high-purity thin film which is partly crystallized on a substrate to be treated by applying an external magnetic field to the substrate at the time of decomposing gaseous hydrocarbon and forming the thin film on the surface of the substrate by a microwave plasma CVD device. CONSTITUTION:The substrate 10 to be formed with the thin film is disposed in an auxiliary space 2 of the microwave CVD device and is heated by an IR heater 20 to 150-1,000 deg.C. The inside of the space is evacuated by a turbo molecular pump 8 to a high vacuum. Gaseous hydrogen is introduced from gas introducing systems 6, 7 into the space and electromagnets 5, 5' for microwave generation consisting of Hermfoltz coils are energized to form about 875 Gauss magnetic field. 2.45GHz microwaves are simultaneously introduced from a microwave generator 4 through an introducing pipe 15 into the space to generate high-density plasma. After the surface of the substrate 10 is cleaned by the H2 atoms ionized by such plasma, H2 is removed and gases such as C2H2 and CH4 are introduced into the space to excite gases by the high-density plasma and to deposit the decomposed Catoms on the surface of the substrate 10. The thin diamond or i-carbon film is thus formed thereon.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はマイクロ波電界を加えるとともに、外部磁場を
加え、それらの相互作用を用い、かつその電界の最も大
きい空間に被膜形成手段を設け、被膜形成を行うための
薄膜形成装置および形成方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention applies a microwave electric field and an external magnetic field, uses their interaction, and provides a film forming means in the space where the electric field is largest, and forms a film. The present invention relates to a thin film forming apparatus and a forming method.

〔従来の技術〕[Conventional technology]

従来、薄膜の形成手段としてBCR(電子サイクロトロ
ン共鳴)を用い、その発散磁場を利用してこの共鳴空間
より「離れた位置」に基板を配設し、そこでの被膜特に
アモルファス構造を有する被膜を形成する方法が知られ
ている。
Conventionally, BCR (Electron Cyclotron Resonance) has been used as a means of forming thin films, and by utilizing its divergent magnetic field, a substrate is placed at a position "away" from this resonant space, and a film, particularly a film having an amorphous structure, is formed there. There are known ways to do this.

さらに一般的にはかかるECRCVD(化学気相法)に
加えて、反応性ガスを用いる被膜形成手段として数種類
知られており、それらは熱CVD 、加熱フィラメント
CvD、化学輸送法、13.56 MH,の周波数を用
いるプラズマCVD法、マイクロ波のみを用いるプラズ
マCVD法が知られている。特にECIr CVD法は
活性種を磁場によりビンチングし、高エネルギ化するこ
とにより電子エネルギを太き(し、効率よく気体をプラ
ズマ化させている。しかしプラズマ化させることにより
、気体が有する高エネルギにより基板の被形成面がスパ
ッタ(損傷)を受けることを防ぐため、このECR条件
を満たした空間より「離れた位置」に基板を配設し、高
エネルギ条件下でのプラズマ状態を避けたイオンシャワ
ー化した反応性気体を到達させることにより被膜形成ま
たは異方性エツチングを行っていた。
Furthermore, in addition to such ECRCVD (chemical vapor phase method), there are several known film forming methods using reactive gases, including thermal CVD, heated filament CVD, chemical transport method, 13.56 MH, A plasma CVD method using a frequency of 200 nm and a plasma CVD method using only microwaves are known. In particular, the ECIr CVD method binds active species with a magnetic field and increases the energy by increasing the electron energy (and efficiently converting the gas into plasma. However, by converting into plasma, the high energy of the gas In order to prevent sputtering (damage) to the surface on which the substrate is to be formed, the substrate is placed at a distance from the space that satisfies this ECR condition, and an ion shower is performed to avoid plasma conditions under high energy conditions. Film formation or anisotropic etching was performed by allowing a reactive gas to reach the film.

〔従来の問題点〕[Conventional problems]

しかしかかるシャワー化した反応性気体を用いた被膜形
成方法では、その気体の種類により異方性エツチングま
たはアモルファス構造の被膜形成等のエツチングまたは
ディボジソションのいずれか一方のプロセスのみを採用
したものであった。
However, such a method of forming a film using a shower of reactive gas employs only one of the following processes, depending on the type of gas: anisotropic etching, etching such as forming a film with an amorphous structure, or deposition. .

そのため、この場合の被形成面上にはアモルファス構造
の被膜が形成されやすく、結晶性特に多結品性または単
結晶を有する被膜の形成はきわめて困難であった。加え
て高いエネルギを用いることにより、初めて反応性気体
の活性化または反応をさせ得る被膜形成も不可能であっ
た。
Therefore, in this case, a film having an amorphous structure is likely to be formed on the surface to be formed, and it is extremely difficult to form a film having crystallinity, particularly polycrystalline or single crystal. In addition, by using high energy, it was also impossible to form a film that could activate or react reactive gases for the first time.

〔問題を解決すべき手段〕[Means to solve the problem]

本発明は被膜形成をその一部でエツチングをさせつつ被
膜形成を行わんとするもので、好ましくは少なくとも一
部に結晶性を有する被膜を形成せんとするものである。
The present invention attempts to form a film while etching a part of the film, and preferably forms a film having crystallinity in at least a part of the film.

この目的のため、マイクロ波電力の電界強度が最も大き
くなる領域に被形成面を有する基板を配設する。さらに
その領域で電場・磁場相互作用を有せしめる。例えば、
ECR(電子サイクロトロン共鳴)を生せしめる。さら
に磁場の強度程度を調整すると、この領域においてのみ
初めて分解または反応をさせることができる被膜形成が
可能となる。例えば、i−カーボン(ダイヤモンドまた
は微結晶粒を有する炭素被膜)また高融点の金属または
セラミック性絶縁被膜である。
For this purpose, a substrate having a surface to be formed is disposed in a region where the electric field strength of microwave power is greatest. Furthermore, electric field/magnetic field interaction is created in that region. for example,
Generates ECR (Electron Cyclotron Resonance). Furthermore, by adjusting the strength of the magnetic field, it becomes possible to form a film that can undergo decomposition or reaction only in this region. For example, i-carbon (carbon coatings with diamond or microcrystalline grains) or high-melting metal or ceramic insulating coatings.

すなわち本発明は従来より知られたマイクロ波を用いた
プラズマCVD法に磁場の力を加え、さらにマイクロ波
の電場と磁場との相互作用、好ましくはECIr (エ
レクトロンサイクロトロン共鳴)条件又はホイッスラー
共鳴条件を含む相互作用を利用して、幅広い圧力範囲に
おいて高密度高エネルギのプラズマを発生させる。その
共鳴空間での高エネルギ状態を利用して、例えば活性炭
素原子を多量に発生させ、再現性にすぐれ、均一な膜厚
、均質な特性のダイヤモンド、i−カーボン膜等の被膜
の形成を可能としたものである。また加える磁場の強さ
を任意に変更可能な為、電子のみではな(特定のイオン
のECR条件を設定することができる特徴がある。
That is, the present invention adds the force of a magnetic field to the conventionally known plasma CVD method using microwaves, and further improves the interaction between the electric field of the microwave and the magnetic field, preferably ECIr (electron cyclotron resonance) conditions or Whistler resonance conditions. Using these interactions, high-density, high-energy plasma is generated over a wide pressure range. Utilizing the high energy state in the resonance space, it is possible to generate a large amount of activated carbon atoms and form films such as diamond and i-carbon films with excellent reproducibility, uniform thickness, and homogeneous properties. That is. In addition, since the strength of the applied magnetic field can be changed arbitrarily, it is possible to set ECR conditions not only for electrons but also for specific ions.

また本発明の構成に付加して、マイクロ波と磁場との相
互作用により高密度プラズマを発生させた後、基板表面
上まで至る間に高エネルギを持つ光(例えば紫外光)を
照射し、活性種にエネルギを与えつづけると、高密度プ
ラズマ発生領域より十分離れた位置においても高エネル
ギ状態に励起された炭素原子が存在し、より大面積にグ
イヤモンド、i−カーボン膜を形成することも可能であ
った。
Additionally, in addition to the structure of the present invention, after high-density plasma is generated by the interaction of microwaves and a magnetic field, high-energy light (for example, ultraviolet light) is irradiated while reaching the substrate surface to activate the plasma. If energy is continued to be applied to the seeds, carbon atoms excited to a high energy state will exist even at a location sufficiently far away from the high-density plasma generation region, making it possible to form Guyamond and i-carbon films over a larger area. there were.

さらに磁場とマイクロ波の相互作用により発生する高エ
ネルギ励起種に直流バイアス電圧を加えて、基板側に多
量の励起子が到達するようにすることは薄膜の形成速度
を向上させる効果があった。
Furthermore, applying a DC bias voltage to the high-energy excited species generated by the interaction of the magnetic field and microwaves, so that a large number of excitons reach the substrate side, had the effect of increasing the rate of thin film formation.

以下に実施例を示し、さらに本発明を説明する。Examples will be shown below to further explain the present invention.

〔実施例〕〔Example〕

第1図に本発明にて用いた磁場印加可能なマイクロ波プ
ラズマCVD装置を示す。
FIG. 1 shows a microwave plasma CVD apparatus capable of applying a magnetic field used in the present invention.

同図において、この装置は減圧状態に保持可能なプラズ
マ発生空間(1)、加熱空間(3)、補助空間(2)、
磁場を発生する電磁石(5) 、(5’)およびその電
源(25)、マイクロ波発振器(4)、排気系を構成す
るターボ分子ポンプ(8)、ロータリーポンプ(14)
、圧力調整バルブ(11)、赤外線加熱ヒータ(20)
、およびその電源(23)、赤外線反射面(21)、基
板ホルダ(10’) 、基板(10)、マイクロ波導入
窓(15)、ガス導入系(6)、(7) 、水冷系(1
B) 、 (18’)より構成されている。
In the figure, this device includes a plasma generation space (1) that can be maintained in a reduced pressure state, a heating space (3), an auxiliary space (2),
Electromagnets (5) and (5') that generate magnetic fields and their power sources (25), microwave oscillators (4), turbomolecular pumps (8) that constitute the exhaust system, and rotary pumps (14).
, pressure adjustment valve (11), infrared heater (20)
, and its power source (23), infrared reflective surface (21), substrate holder (10'), substrate (10), microwave introduction window (15), gas introduction system (6), (7), water cooling system (1
B) It is composed of (18').

まず薄膜形成用基板(10)を基板ホルダ(10’)上
に設置する。このホルダは高熱伝導性を有し、かつマイ
クロ波をできるだけ乱さないため、セラミックの窒化ア
ルミニュームを用いた。この基板ホルダを赤外線ヒータ
(20)より放物反射面(21)レンズ系(22)を用
いて集光し加熱する。(例えば500℃)次に水素(6
)をIOSCCMガス系(7)を通して高密度プラズマ
発生領域(2)へと思入し、外部より2.45GHzの
周波数のマイクロ波を500Wの強さで加える。さらに
、磁場約2にガウスを磁石(5) 、 (5”)より印
加し、高密度プラズマをプラズマ発生空間(1)にて発
生させる。この時プラズマ発生空間(1)の圧力は0.
IPaに保持されている。この高密度プラズマ領域より
高エネルギを持つ水素原子または電子が基板(10)上
に到り、表面を洗浄にする。さらにこの水素を中止し、
ガス系(7)より炭化物気体例えばアセチレン(CJz
)、メタン(CH4)を活性化せしめる。そして高エネ
ルギに励起された炭素原子が生成され、約500”C加
熱された基板(10)上に、この炭素原子が体積し、ダ
イヤモンド又はi−カーボン膜が形成される。
First, a thin film forming substrate (10) is placed on a substrate holder (10'). This holder is made of ceramic aluminum nitride because it has high thermal conductivity and does not disturb microwaves as much as possible. This substrate holder is heated by focusing light from an infrared heater (20) using a parabolic reflecting surface (21) and a lens system (22). (e.g. 500℃) and then hydrogen (6
) is introduced into the high-density plasma generation region (2) through the IOSCCM gas system (7), and microwaves with a frequency of 2.45 GHz and an intensity of 500 W are applied from the outside. Furthermore, a magnetic field of about 2 Gauss is applied from the magnets (5) and (5") to generate high-density plasma in the plasma generation space (1). At this time, the pressure in the plasma generation space (1) is 0.
It is held in IPa. Hydrogen atoms or electrons with high energy reach the substrate (10) from this high-density plasma region and clean the surface. Furthermore, this hydrogen is discontinued,
From gas system (7), carbide gas such as acetylene (CJz
), activating methane (CH4). Then, carbon atoms excited with high energy are generated and deposited on the substrate (10) heated to about 500''C to form a diamond or i-carbon film.

第1図において、磁場は2つのりシダ状の磁石(5)、
(5’)を用いたヘルムホルツコイル方式を採用した。
In Figure 1, the magnetic field consists of two fern-like magnets (5),
A Helmholtz coil method using (5') was adopted.

さらに、4分割した空間(30)に対し電場・磁場の強
度を調べた結果を第2図に示す。
Furthermore, FIG. 2 shows the results of examining the strength of the electric and magnetic fields for the space (30) divided into four parts.

第2図(八)において、横軸(X軸)は空間(20)の
横力向く反応性気体の放出方向)であり、縦軸(R軸)
は磁石の直径方向を示す。図面における曲線は磁場の等
電位面を示す。そしてその線に示されている数字は磁石
(5)が約2000ガウスの時に得られる磁場の強さを
示す。磁石(5)の強度を調整すると、電極・磁場の相
互作用を有する空間(100)(875±185ガウス
)で大面積において磁場の強さを基板の被形成面の広い
面積にわたって概略均一にさせることができる。図面は
等磁場面を示し、特に&?!(26)が875ガウスと
なるECR(電子サイクロトロン共鳴)条件を生ずる等
磁場面である。
In Figure 2 (8), the horizontal axis (X-axis) is the release direction of the reactive gas directed by the lateral force in the space (20), and the vertical axis (R-axis)
indicates the diameter direction of the magnet. The curves in the drawings indicate equipotential surfaces of the magnetic field. The number shown on the line indicates the strength of the magnetic field obtained when the magnet (5) is approximately 2000 Gauss. By adjusting the strength of the magnet (5), the strength of the magnetic field is made approximately uniform over a large area of the formation surface of the substrate in the space (100) (875 ± 185 Gauss) where the electrode-magnetic field interacts. be able to. The drawing shows isomagnetic scenes, especially &? ! (26) is an isomagnetic scene that produces ECR (electron cyclotron resonance) conditions of 875 Gauss.

さらにこの共鳴条件を生ずる空間(100)は第2図(
B)に示す如く、電場が最大となる領域となるようにし
ている。第2図(B)の横軸は第2図(A)と同じく反
応性気体の流れる方向を示し、縦軸は電場(電界強度)
の強さを示す。
Furthermore, the space (100) that produces this resonance condition is shown in Figure 2 (
As shown in B), the area is set to have the maximum electric field. The horizontal axis in Figure 2 (B) indicates the flow direction of the reactive gas as in Figure 2 (A), and the vertical axis indicates the electric field (field strength).
Shows the strength of

すると電界領域(100)以外に領域(100”)も最
大となる領域に該当する。しかじにここに対応する磁場
(第2図(A))はきわめて等磁場面が多く存在してい
る。即ち領域(100’)には基板の被形成面の直径方
向(第2図(A)における縦軸方向)での膜厚のばらつ
きが大きくなり、(26’)の共鳴条件を満たすECR
条件部分で良質の被膜ができるのみである。結果として
均一かつ均質な被膜を期待できない。
Then, in addition to the electric field region (100), the region (100'') also corresponds to the region where the maximum occurs.However, the magnetic field corresponding to this region (FIG. 2 (A)) has many isomagnetic fields. That is, in the region (100'), there is a large variation in film thickness in the diametrical direction (vertical axis direction in FIG. 2 (A)) of the surface on which the substrate is formed, and the ECR satisfies the resonance condition of (26').
A good quality film can only be formed in certain conditions. As a result, a uniform and homogeneous coating cannot be expected.

もちろんドーナツ型に作らんとする場合はそれでもよい
Of course, if you want to make it into a donut shape, that's fine.

また領域(100)に対してその原点対称の反対の側に
も電場が最大であり、かつ磁場が広い領域にわたって一
定となる領域を有する。基板の加熱を行う必要がない場
合はかかる空間での被膜形成が有効である。しかしマイ
クロ波の電場を乱すことなく加熱を行う手段が得にくい
Furthermore, there is a region on the opposite side of the region (100) symmetrical to the origin, where the electric field is maximum and the magnetic field is constant over a wide region. When there is no need to heat the substrate, forming a film in such a space is effective. However, it is difficult to find a way to perform heating without disturbing the microwave electric field.

これらの結果、基板の出し入れの容易さ、加熱の容易さ
を考慮し、均一な膜でありかつ均質な被膜とするために
は第2図(A)の領域(100)が3つの領域の中では
最も工業的に量産性の優れた位置と推定される。。
As a result, considering the ease of taking in and out the substrate and the ease of heating, in order to obtain a uniform film and a homogeneous coating, the area (100) in Figure 2 (A) is one of the three areas. It is estimated that this is the location with the highest industrial productivity. .

この結果、本発明では領域(100)に基板(10)を
配設すると、この基板が円形であった場合、半径100
mmまで、好ましくは半径50mmまでの大きさで均一
、均質に被膜形成が可能となった。
As a result, in the present invention, when the substrate (10) is disposed in the area (100), if this substrate is circular, the radius is 100.
It became possible to uniformly and homogeneously form a film with a radius of up to 50 mm, preferably up to 50 mm in radius.

さらに大面積とするには、例えばこの4倍の面積におい
て同じく均一な膜厚とするには周波数を2、45GHz
ではなく 1.225GHzとすればこの空間の直径(
第2図(A)のR方向)を2倍とすることができる。
For an even larger area, for example, to achieve the same uniform film thickness over an area four times larger than this, the frequency should be set to 2.45 GHz.
If we set it to 1.225GHz instead, the diameter of this space (
R direction in FIG. 2(A)) can be doubled.

第3図は第2図における基板(10)の位置における円
形空間の磁場(A)および電場(B)の等磁場、等電場
の図面である。第3図(B)より明らかなごとく、電場
は最大25KV/mにまで達せしめ得ることがわかる。
FIG. 3 is a diagram of equal magnetic fields and equal electric fields of the magnetic field (A) and electric field (B) in a circular space at the position of the substrate (10) in FIG. 2. FIG. As is clear from FIG. 3(B), it can be seen that the electric field can reach a maximum of 25 KV/m.

また比較のために同条件下で磁場を印加せずに薄膜形成
を行った。その時基板上に形成された薄膜はグラファイ
ト膜であった。
For comparison, a thin film was formed under the same conditions without applying a magnetic field. The thin film formed on the substrate at that time was a graphite film.

さらに本実施例と同条件下において基板温度を650 
°C以上とした場合ダイヤモンド薄膜を形成することが
可能であった。
Furthermore, under the same conditions as in this example, the substrate temperature was increased to 650°C.
When the temperature was above °C, it was possible to form a diamond thin film.

本実施例にて形成された薄膜の電子線回折像をとったと
ころアモルファス特有のハローパターンとともにダイヤ
モンドのスポットがみられ、i−カーボン膜となってい
た。さらに基板温度を上げて形成してゆ(にしたがい、
ハローパターンが少しづつ消えてゆき650”C以上で
ダイヤモンドとなった。
When an electron beam diffraction image of the thin film formed in this example was taken, diamond spots were observed along with a halo pattern peculiar to an amorphous film, indicating that the film was an i-carbon film. Furthermore, the temperature of the substrate is increased and the formation is performed.
The halo pattern gradually disappeared and became a diamond at 650"C or higher.

また基板加熱温度を150 °C未満とした場合、磁場
を加えてもi−カーボン膜を作成することはできなかっ
た。
Further, when the substrate heating temperature was less than 150°C, it was not possible to form an i-carbon film even when a magnetic field was applied.

かかる方式において、基板上に炭化珪化物気体(メチル
シラン)を用い炭化珪素の多結晶膜を作ることができる
。アルミニューム化物気体とアンモニアとの反応により
窒化アルミニューム被膜を作ることもできる。さらにタ
ングステン、チタン、モリブデンまたはそれらの珪化物
の高融点導体を作ることもできる。
In this method, a polycrystalline film of silicon carbide can be formed on a substrate using a silicon carbide gas (methylsilane). Aluminum nitride coatings can also be produced by reaction of aluminide gas with ammonia. Furthermore, high melting point conductors of tungsten, titanium, molybdenum or their silicides can also be made.

〔効果〕〔effect〕

本発明の構成を取ることにより、従来作製されていた結
晶性を少なくとも一部に存する被膜の作製条件より幅広
い条件下にて作製可能であった。
By employing the configuration of the present invention, it was possible to manufacture the film under a wider range of conditions than the conventional manufacturing conditions of a film having at least a portion of crystallinity.

また従来法に比べ大面積に均一な薄膜を形成することが
可能であった。
Furthermore, it was possible to form a uniform thin film over a larger area than with conventional methods.

さらに作製された薄膜は引張、圧縮とも膜応力をほとん
ど有さない良好な膜であった。
Furthermore, the produced thin film was a good film with almost no film stress in either tension or compression.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で用いる磁場・電場相互作用を用いたマ
イクロ波CVD装置の概略を示す。 第2図はコンピュータシミュレイションによる磁場およ
び電場特性を示す。 第3図は電場・磁場相互作用をさせた位置での磁場およ
び電場の特性を示す。 1・・・・プラズマ発生空間 10、10°・・基板および基板ホルダ4・・・・マイ
クロ波発振器 5.5゛・・・外部磁場発生器 20・・・・基板加熱ヒータ
FIG. 1 schematically shows a microwave CVD apparatus using magnetic field/electric field interaction used in the present invention. FIG. 2 shows the magnetic field and electric field characteristics by computer simulation. Figure 3 shows the characteristics of the magnetic field and electric field at a position where the electric field and magnetic field interact. 1...Plasma generation space 10, 10°...Substrate and substrate holder 4...Microwave oscillator 5.5゛...External magnetic field generator 20...Substrate heating heater

Claims (1)

【特許請求の範囲】 1、磁場および電場の相互作用を利用して薄膜を形成す
る装置であって、減圧状態に保持されたプラズマ発生室
、該発生室を囲んで設けられた磁場発生手段、前記プラ
ズマ発生室にマイクロ波を供給する手段および前記マイ
クロ波の電界強度が最大となりかつ電場・磁場相互作用
を有する空間に被形成面を有する基板を配設せしめ、薄
膜形成を行うための手段とを有することを特徴とする薄
膜形成装置。 2、減圧状態に保持されたプラズマ発生室、該発生室を
囲んで設けられた磁場発生手段、前記プラズマ発生室に
マイクロ波電力を供給する手段とを有する薄膜形成装置
において、前記マイクロ波電界が最大となり、かつ電場
・磁場相互作用を有する空間に被形成面を有する基板を
配設せしめ、さらに前記プラズマ発生室に生成物気体を
導入し、該気体を励起、分解または反応せしめた反応生
成物を前記被形成面上に形成せしめることを特徴とする
薄膜形成方法。 3、特許請求の範囲第2項において、減圧装置は100
Pa〜10^−^2Paの圧力範囲に保持され、被形成
面は150〜1000℃の範囲に加熱されたことを特徴
とする薄膜形成方法。 4、特許請求の範囲第2項において、薄膜が結晶性を少
なくとも一部に有することを特徴とする薄膜形成方法。 5、特許請求の範囲第1項において、電場・磁場相互作
用は電子サイクロトロン共鳴条件を満たすことを特徴と
する薄膜形成装置。 6、特許請求の範囲第1項において、マイクロ波の周波
数は概略2.45GHzを有し、被膜形成面は概略87
5ガウスを有する電子サイクロトロン共鳴空間であって
、かつマイクロエネルギを供給する手段の反対側に設け
られたことを特徴とする薄膜形成装置。 7、特許請求の範囲第1項において、磁場発生手段はヘ
ルムホルツコイルよりなることを特徴とする薄膜形成装
置。
[Claims] 1. An apparatus for forming a thin film using the interaction of a magnetic field and an electric field, which comprises: a plasma generation chamber maintained in a reduced pressure state; a magnetic field generation means provided surrounding the generation chamber; Means for supplying microwaves to the plasma generation chamber; and means for forming a thin film by arranging a substrate having a surface to be formed in a space where the electric field strength of the microwave is maximum and having an electric field/magnetic field interaction; A thin film forming apparatus characterized by having: 2. A thin film forming apparatus comprising a plasma generation chamber maintained in a reduced pressure state, a magnetic field generation means provided surrounding the generation chamber, and a means for supplying microwave power to the plasma generation chamber, in which the microwave electric field is A reaction product is produced by arranging a substrate having a surface to be formed in a space that has a maximum electric field/magnetic field interaction, and further introducing a product gas into the plasma generation chamber, and causing the gas to be excited, decomposed, or reacted. A method for forming a thin film, comprising forming on the surface to be formed. 3. In claim 2, the pressure reducing device is 100
A method for forming a thin film, characterized in that the pressure is maintained in the range of Pa to 10^-^2Pa, and the surface to be formed is heated to a temperature in the range of 150 to 1000C. 4. The thin film forming method according to claim 2, wherein the thin film has at least a portion of crystallinity. 5. The thin film forming apparatus according to claim 1, wherein the electric field/magnetic field interaction satisfies an electron cyclotron resonance condition. 6. In claim 1, the frequency of the microwave is approximately 2.45 GHz, and the coating surface is approximately 87 GHz.
1. A thin film forming apparatus characterized in that the electron cyclotron resonance space has an energy of 5 Gauss and is provided on the opposite side of a means for supplying micro-energy. 7. The thin film forming apparatus according to claim 1, wherein the magnetic field generating means is a Helmholtz coil.
JP61266834A 1986-11-10 1986-11-10 Device and method for forming thin film Granted JPS63121667A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP61266834A JPS63121667A (en) 1986-11-10 1986-11-10 Device and method for forming thin film
DE3752208T DE3752208T2 (en) 1986-11-10 1987-11-02 CVD process and device enhanced by microwaves
EP87116091A EP0267513B1 (en) 1986-11-10 1987-11-02 Microwave enhanced CVD method and apparatus
KR1019870012471A KR930005010B1 (en) 1986-11-10 1987-11-06 Microwave enhanced cvd method and apparatus
CN87107779A CN1017726B (en) 1986-11-10 1987-11-09 Microwave plasma cvd method enhanced magnetic field
US07/966,562 US5266363A (en) 1986-11-10 1992-10-26 Plasma processing method utilizing a microwave and a magnetic field at high pressure
US08/470,596 US6677001B1 (en) 1986-11-10 1995-06-06 Microwave enhanced CVD method and apparatus
US11/102,651 US20050196549A1 (en) 1986-11-10 2005-04-11 Microwave enhanced CVD method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61266834A JPS63121667A (en) 1986-11-10 1986-11-10 Device and method for forming thin film

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP14506890A Division JPH03166379A (en) 1990-06-01 1990-06-01 Film formation
JP14506790A Division JPH0317274A (en) 1990-06-01 1990-06-01 Film formation

Publications (2)

Publication Number Publication Date
JPS63121667A true JPS63121667A (en) 1988-05-25
JPH0420984B2 JPH0420984B2 (en) 1992-04-07

Family

ID=17436303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61266834A Granted JPS63121667A (en) 1986-11-10 1986-11-10 Device and method for forming thin film

Country Status (1)

Country Link
JP (1) JPS63121667A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145782A (en) * 1986-12-08 1988-06-17 Semiconductor Energy Lab Co Ltd Formation of thin film
JPS63169380A (en) * 1987-01-05 1988-07-13 Semiconductor Energy Lab Co Ltd Watch coated with carbon film
JPS63169386A (en) * 1987-01-05 1988-07-13 Semiconductor Energy Lab Co Ltd Formation of thin film
JPS63169387A (en) * 1987-01-05 1988-07-13 Semiconductor Energy Lab Co Ltd Formation of thin film
JPS63169379A (en) * 1987-01-05 1988-07-13 Semiconductor Energy Lab Co Ltd Plastic coated with carbon film
JPS63195267A (en) * 1987-02-10 1988-08-12 Semiconductor Energy Lab Co Ltd Plastic coated with carbon film
JPS63195266A (en) * 1987-02-10 1988-08-12 Semiconductor Energy Lab Co Ltd Timepiece coated with carbon film
US5250149A (en) * 1990-03-06 1993-10-05 Sumitomo Electric Industries, Ltd. Method of growing thin film
JPH07233478A (en) * 1994-06-06 1995-09-05 Semiconductor Energy Lab Co Ltd Plasma treatment

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145782A (en) * 1986-12-08 1988-06-17 Semiconductor Energy Lab Co Ltd Formation of thin film
JPH0420985B2 (en) * 1986-12-08 1992-04-07 Handotai Energy Kenkyusho
JPS63169380A (en) * 1987-01-05 1988-07-13 Semiconductor Energy Lab Co Ltd Watch coated with carbon film
JPS63169386A (en) * 1987-01-05 1988-07-13 Semiconductor Energy Lab Co Ltd Formation of thin film
JPS63169387A (en) * 1987-01-05 1988-07-13 Semiconductor Energy Lab Co Ltd Formation of thin film
JPS63169379A (en) * 1987-01-05 1988-07-13 Semiconductor Energy Lab Co Ltd Plastic coated with carbon film
JPH0715147B2 (en) * 1987-01-05 1995-02-22 株式会社半導体エネルギ−研究所 Thin film formation method
JPS63195267A (en) * 1987-02-10 1988-08-12 Semiconductor Energy Lab Co Ltd Plastic coated with carbon film
JPS63195266A (en) * 1987-02-10 1988-08-12 Semiconductor Energy Lab Co Ltd Timepiece coated with carbon film
US5250149A (en) * 1990-03-06 1993-10-05 Sumitomo Electric Industries, Ltd. Method of growing thin film
JPH07233478A (en) * 1994-06-06 1995-09-05 Semiconductor Energy Lab Co Ltd Plasma treatment

Also Published As

Publication number Publication date
JPH0420984B2 (en) 1992-04-07

Similar Documents

Publication Publication Date Title
KR900008505B1 (en) Microwave enhanced cvd method for depositing carbon
JPH0672306B2 (en) Plasma processing apparatus and plasma processing method
US5039548A (en) Plasma chemical vapor reaction method employing cyclotron resonance
JPS63210275A (en) Method for removing unnecessary carbon matter in apparatus for producing carbon
JPS63121667A (en) Device and method for forming thin film
JP4741060B2 (en) Method and apparatus for epitaxially depositing atoms or molecules from a reaction gas on a deposition surface of a substrate
JPS63145782A (en) Formation of thin film
US5270029A (en) Carbon substance and its manufacturing method
EP0267513B1 (en) Microwave enhanced CVD method and apparatus
JPH0543792B2 (en)
JP2660244B2 (en) Surface treatment method
JP2739286B2 (en) Plasma processing method
US6677001B1 (en) Microwave enhanced CVD method and apparatus
JP2769977B2 (en) Plasma processing method
JP2899254B2 (en) Plasma CVD equipment
JPH0543793B2 (en)
JP2715277B2 (en) Thin film forming equipment
JP2617539B2 (en) Equipment for producing cubic boron nitride film
JP2892347B2 (en) Thin film formation method
JP2965935B2 (en) Plasma CVD method
JPS63169387A (en) Formation of thin film
JP2691399B2 (en) Plasma processing method
JPH0672307B2 (en) Plasma processing apparatus and plasma processing method
JPH0814022B2 (en) How to remove unwanted materials
JP3291274B2 (en) Carbon coating method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term